
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 1476–1486

June 6–11, 2021. ©2021 Association for Computational Linguistics

1476

Neural Sequence Segmentation as Determining the Leftmost Segments

Yangming Li1, Lemao Liu1, Kaisheng Yao2

1Tencent AI Lab
2Ant Group

{newmanli,redmondliu}@tencent.com
kaisheng.yao@antgroup.com

Abstract

Prior methods to text segmentation are mostly
at token level. Despite the adequacy, this na-
ture limits their full potential to capture the
long-term dependencies among segments. In
this work, we propose a novel framework that
incrementally segments natural language sen-
tences at segment level. For every step in seg-
mentation, it recognizes the leftmost segment
of the remaining sequence. Implementations
involve LSTM-minus technique to construct
the phrase representations and recurrent neu-
ral networks (RNN) to model the iterations of
determining the leftmost segments. We have
conducted extensive experiments on syntactic
chunking and Chinese part-of-speech (POS)
tagging across 3 datasets, demonstrating that
our methods have significantly outperformed
previous all baselines and achieved new state-
of-the-art results. Moreover, qualitative anal-
ysis and the study on segmenting long-length
sentences verify its effectiveness in modeling
long-term dependencies.

1 Introduction

Sequence segmentation, as an important task in
natural language understanding (NLU), partitions a
sentence into multiple segments. The first two rows
of Table 1 show a case from a syntactic chunking
dataset. The input sentence is a sequence of to-
kens and the output segments are multiple labeled
phrases. These segments are nonoverlapping and
fully cover the input sentence.

In previous works, there are two dominant ap-
proaches to sequence segmentation. The most com-
mon is to regard it as a sequence labeling prob-
lem with resorting to IOB tagging scheme (Huang
et al., 2015; Akbik et al., 2018; Liu et al., 2019).
This method is simple yet very effective, provid-
ing tons of state-of-the-art performances. For ex-
ample, Huang et al. (2015) present Bidirectional
LSTM-CRF for named entity recognition (NER)
and POS tagging, which adopts BiLSTM (Hochre-

Sentence
Tangible capital will be about

$ 115 million .

Segments
(Tangible capital, NP), (will be, VP),

(about $ 115 million, NP), (., O)

IOB Tags
B-NP I-NP B-VP I-VP

B-NP I-NP I-NP I-NP O
SHIFT SHIFT REDUCE-NP

Transition SHIFT SHIFT REDUCE-VP
Actions SHIFT SHIFT SHIFT SHIFT

REDUCE-NP OUT

Table 1: The first two rows show an example extracted
from CoNLL-2000 dataset (Sang and Buchholz, 2000).
The last two rows are two types of token-level labels
commonly used to represent the segments.

iter and Schmidhuber, 1997) to read the input sen-
tence and CRF (Lafferty et al., 2001) to decode the
label sequence. An alternative method employs a
transition-based system to incrementally segment
and label an input token sequence (Zhang et al.,
2016, 2018). For instance, Zhang et al. (2016)
present a transition-based model for Chinese word
segmentation that exploits not only character em-
bedding but also token embedding. This type of
method enjoys a number of attractive properties,
including theoretically lower time complexity and
capturing non-local features.

The above two approaches are essentially at to-
ken level, where a single segment is represented by
multiple token-level labels (e.g., transition actions).
In spite of the adequacy, the labels used to model
the relation among output segments are far more
than the segments themselves. As demonstrated
in Figure 1, modeling the transition between the
two segments, “will be" and “about $ 115 million",
consumes 6 IOB tags or 8 transition actions. This
ill-posed design certainly limits the full potential
of segmentation models to capture the long-term
dependencies among segments.

Previously, Kong et al. (2015) attempted to de-

1477

(Tangible capital, NP)

(will be, VP)

(., O)Iterations to Determine the Leftmost Segments

Tangible capital will be about $ 115 million .

(about $ 115 million, NP)

Figure 1: This case illustrates how our method segments a natural language sentence.

velop segment-level models, which define a joint
probability distribution over the partition of an in-
put sentence and the labeling of the segments. Such
an approach circumvents using token-level labels.
However, we find that, in experiments, it underper-
forms current token-level models. Moreover, its
use of dynamic programming (DP) incurs quadratic
running time, which is too slow for both training
and inference (see Section 3.7).

In this paper, we introduce a novel framework
that incrementally segments a sentence at segment
level. The segmentation process is iterative and
incremental. At each iteration, the proposed frame-
work determines the leftmost segment of the re-
maining unprocessed sequence. Under this scheme,
we don’t resort to token-level labels and enjoy lin-
ear time complexity. The implementation contains
two stages. Firstly, we utilize LSTM-minus (Wang
and Chang, 2016; Cross and Huang, 2016) tech-
nique to construct the representations for all the
phrases. Secondly, we adopt LSTM to model the
iterative segmentation process, which captures the
strong correlation among segments. At every step,
the input consists of the previous segment and the
remaining unprocessed sequence, and the output is
the leftmost segment.

Figure 1 depicts how our framework segments
the sentence in Table 1. The output segments are
obtained in an iterative and incremental manner. At
each iteration, the leftmost segment of the remain-
ing sequence is extracted and labeled. Compared
with token-level models, we take much fewer steps
to complete the segmentation process.

Extensive experiments have been conducted on
syntactic chunking and Chinese part-of-speech
(POS) tagging across 3 datasets. The proposed
framework has obtained new state-of-the-art per-
formances on all of them. Besides, qualitative
study and the results on segmenting long-length
sentences confirm its effectiveness in capturing

long-term dependencies.
Our contributions are as follows:

• we present a novel framework that incremen-
tally segments a natural language sentence at
segment level. In comparison, previous ap-
proaches are mostly at token-level;

• we have notably outperformed previous base-
lines and established new state-of-the-art re-
sults on the 3 datasets of syntactic chunk-
ing and Chinese POS tagging. Experiments
also show that our model is competitive with
strong NER baselines;

• compared with prior methods, our model well
captures the long-term dependencies among
segments. This is strongly verified by qualita-
tive study and the experiment on segmenting
long-length sentences.

The source code of this work is available at
https://github.com/LeePleased/LeftmostSeg.

2 Architecture

We denote a n-length input sentence as x =
[x1, x2, · · · , xn], where xi is a token (such as a
word or a character). The output segments are
represented as y = [y1, y2, · · · , ym], where m
is the amount of segments. Every segment yk
is denoted as a triple (ik, jk, lk). (ik, jk) is the
span of the segment, corresponding to the phrase
xik,jk = [xik ,xik+1, · · · ,xjk]. lk is from a prede-
fined label space L and specifies the label of the
segment. These segments are non-overlapping and
fully cover the input sentence.

The example in Table 1 is represented as

x = [Tangible, capital,will,be, about, $, 115,

million, .]

y = [(1, 2,NP), (3, 4,VP), (5, 8,NP), (9, 9,O)]

.

1478

𝒉!"

𝒙#,%

𝒉&"

𝒙&,%

𝒉#"

𝒙',%

𝑦# = (5, 8, 𝑁𝑃)

𝑦! = (3, 4, 𝑉𝑃)𝑦& = (1, 2, 𝑁𝑃)

𝑦! = (3, 4, 𝑉𝑃)

y(

𝑦& = (1, 2, 𝑁𝑃)

𝒉)"

𝒙%,%𝑦# = (5, 8, 𝑁𝑃)

𝑦) = (9, 9, 𝑂)

Figure 2: An example to show the incremental process to recognize leftmost segments.

2.1 Phrase Representation Construction
Our goal here is to construct the representation for
every phrase xi,j . Later, we will use the phrase
representation to embed the segment yk−1 and the
unprocessed sequence xik,n.

Firstly, each token xk is represented as

ek = Et(xk)⊕ CharCNN(xk), (1)

where Et is a token embedding matrix and ⊕ is
the column-wise vector concatenation. Following
previous works (Ma and Hovy, 2016; Liu et al.,
2019), we use CharCNN to extract the character-
level representations.

Secondly, we utilize bidirectional LSTMs
−→
f e

and
←−
f e to compute the context-sensitive represen-

tation for each token xk:
−→
h c

k =
−→
f e(
−→
h c

k−1, ek)
←−
h c

k =
←−
f e(
←−
h c

k+1, ek)

hc
k =
−→
h c

k ⊕
←−
h c

k

. (2)

Inspired by previous works (Wang and Chang,
2016; Gaddy et al., 2018) in syntactic analysis, we
integrate LSTM-minus features into phrase repre-
sentations. Specifically, the representation h

p
i,j for

a phrase xi,j is computed as the concatenation of
the difference of LSTM hidden states:

h
p
i,j = hc

j ⊕ (hc
j − hc

i)⊕ hc
i . (3)

Inside algorithm (Lari and Young, 1990) is an-
other method to extracting phrase representation.
Its advantage is to incorporate the potential hier-
archical structure of natural language without us-
ing treebank annotation. For example, Drozdov
et al. (2019) utilize inside algorithm to recursively
compute the content representations. Despite the
attractive property, its time complexity O(n3) is
too inefficient to practice use.

2.2 Leftmost Segment Determination

Figure 2 demonstrates how our method iteratively
and incrementally segments the sentence in Table
1. LSTM is used as the backbone to model the
iterative process. At every step, the input consists
of the prior segment and the unprocessed sequence,
and the output is the predicted segment.

Firstly, we embed the previous segment yk−1
and the unprocessed sequence xik,n. The previous
segment is represented as

hs
k−1 =

{
h

p
ik−1,jk−1

⊕El(lk−1) k > 1

v k = 1
, (4)

where El is a label embedding matrix and v is
a trainable vector. The unprocessed sequence is
embedded as hp

ik,n
.

At each iteration k, we use another LSTM fd to
model the dependency among segments:

hd
k = fd(hd

k−1,h
s
k−1 ⊕ h

p
ik,n

). (5)

During training, ik is known since the ground truth
segments y is reachable. At evaluation time, we
set ik = jk−1 + 1.

Then, we separately predict the span and the
label of a segment. We define a set Sk containing
all valid span candidates for prediction:

Sk = {(ik, ik), (ik, ik + 1), · · · , (ik, n)}. (6)

The probability of a span (i, j) ∈ Sk is

Qs
k,i,j ∝ exp

(
(hd

k)
>Wsh

p
i,j

)
. (7)

The probability of a label l ∈ L for a span (i, j) is

Ql
k,i,j,l ∝ exp

(
El(l)>Wl(h

p
i,j ⊕ hd

k)
)
. (8)

The matrices Ws and Wl are learnable.

1479

Algorithm 1: Inference Procedure
Input: The representations for all the phrases, hp

i,j , 1 ≤ i ≤ j ≤ n.
Output: The sequence of predicted segments, ŷ = [ŷ1, ŷ2, · · · , ŷm̂].

1 Set a list y as [] and set a counter as k = 1.
2 Denote the remaining input token list as x.
3 Initialize the representation for previous segment as v.
4 Initialize the representation for unprocessed sequence as hp

1,n.
5 while x is not empty do
6 Get LSTM hidden state hd

k by using Equation 5.
7 Predict a segment ŷk by using the Equations from 7 to 9.
8 Append the new segment ŷk into list ŷ.
9 Reset the representation for previous segment as hp

îk,ĵk
⊕El(l̂k).

10 Reset the representation for unprocessed sequence as hp
ĵk+1,n

.

11 Pop the tokens [xîk , xîk+1, · · · , xĵk] from the remaining tokens x.
12 Increase the counter by 1: k = k + 1.

13 The amount of predicted segments: m̂ = k.

Finally, the leftmost segment is obtained as
(̂ik, ĵk) = argmax

(i,j)∈Sk
Qs

k,i,j

l̂k = argmax
l∈L

Ql
k,i,j,l

ŷk = (̂ik, ĵk, l̂k)

. (9)

The iterative process ends when the remaining
sequence xjk+1,n is empty (i.e., jk = n).

2.3 Training and Inference
During training, we use teacher forcing where
every segment yk is predicted using its previous
ground-truth segments [y1, y2, · · · , yk−1]. A hy-
brid loss is induced as

J = −
∑
yk∈y

(logQs
k,ik,jk

+ logQl
k,ik,jk,lk

). (10)

At test time, every segment ŷk is inferred
in terms of the previous predicted segments
[ŷ1, ŷ2, · · · , ŷk−1]. Algorithm 1 demonstrates how
our proposed framework makes inference. Note
that Algorithm 1 uses greedy search to get ŷ be-
cause it is both fast in speed and effective in ac-
curacy in our experiments, although beam search
may be better in accuracy.

3 Experiments

Extensive experiments have been conducted on syn-
tactic chunking and Chinese POS tagging across
3 datasets. Firstly, our models have obtained new

state-of-the-art performances on all the datasets.
Then, we have investigated ablation studies to un-
derstand the importance of each component. Lastly,
case study and the results on segmenting long-
length sentences confirm the effectiveness of the
proposed framework in capturing the long-term
dependencies among segments.

3.1 Settings

Syntactic chunking segments a word sequence into
multiple labeled groups of words. We use CoNLL-
2000 dataset (Sang and Buchholz, 2000), which
defines 11 syntactic chunk types (NP, VP, PP, etc.).
Standard data includes a training set and a test set.
Following Xin et al. (2018), we randomly sample
1000 sentences from the training set as the develop-
ment set. Chinese POS tagging converts a Chinese
character sequence into a token sequence and asso-
ciates every word with a POS tag. We use Penn Chi-
nese Treebank 9.0 (CTB9) (Xue et al., 2005) and
Universal Dependencies 1.4 (UD1) (Nivre et al.,
2016). CTB9 contains the source text in various
genres, covering its previous versions (e.g., CTB6).
We use the Chinese section of UD1. We follow
the same format and partition of the two datasets
as Shao et al. (2017).

We use the same neural network configuration
for all 3 datasets. The dimensions of token embed-
ding and label embedding are respectively set as
300 and 50. The hidden unit sizes for the encoder
and decoder are 256 and 512, respectively. The
layers of two LSTMs are both 2. L2 regulariza-

1480

Approach CoNLL-2000
Segmental RNN (Kong et al., 2015) 95.08

Bi-LSTM + CRF (Huang et al., 2015) 94.46
Char-IntNet-5 (Xin et al., 2018) 95.29

GCDT (Liu et al., 2019) 95.17
Flair Embedding (Akbik et al., 2018) 96.72

Cross-view Training (Clark et al., 2018) 97.00
GCDT w/ BERT (Liu et al., 2019) 96.81

This Work
Our Model 96.13

Our Model w/ BERT 97.05

Table 2: The performances of the baselines and our models on CoNLL-2000 dataset.

Approach PTB9 UD1
Segmental RNN (Kong et al., 2015) 92.16 90.01

Bi-RNN + CRF (single) (Shao et al., 2017) 91.89 89.41
Bi-RNN + CRF (ensemble) (Shao et al., 2017) 92.34 89.75

Lattice LSTM (Zhang and Yang, 2018) 92.13 90.09
Glyce + Lattice LSTM (Meng et al., 2019) 92.38 90.87

BERT (Devlin et al., 2019) 92.29 94.79
Glyce + BERT (Meng et al., 2019) 93.15 96.14

This Work
Our Model 92.56 91.65

Our Model w/ BERT 93.38 96.43

Table 3: The results on the two datasets of Chinese POS tagging.

tion is set as 1 × 10−6 and dropout ratio is set as
0.4 for reducing overfit. The above setting is ob-
tained by grid search. We adopt Adam (Kingma
and Ba, 2014) as the optimization algorithm and
adopt the suggested hyper-parameters. For CoNLL-
2000 dataset, the cased, 300d Glove (Pennington
et al., 2014) is used to initialize token embedding.
CharCNN is not used in Chinese tasks. The batch
size is set as 16. All our models in experiments are
running on NVIDIA Tesla P100.

At test time, following previous literature, we
convert the prediction of our model into IOB for-
mat and use the standard conlleval script1 to get
the F1 score. We select the model that works the
best on development set, and then evaluate it on
test set. In all the experiments, the improvements
of our models over the baselines are statistically
significant with p < 0.05 under t-test.

3.2 Results on Syntactic Chunking

Our models are compared with two groups of base-
lines. One of them is trained without any external
resources besides the training data:

1https://www.clips.uantwerpen.be/conll2000/chunking/co
nlleval.txt.

Segmental RNN It’s a segment-level model that
defines a joint probability distribution over the
partition of an input sequence and the labeling
of the segments;

Bi-LSTM + CRF It utilizes bidirectional LSTM
to read the input sentence and CRF to decode
the label sequence;

Char-IntNet-5 It is a funnel-shaped CNN model
with no down-sampling which learns a better
internal structure for tokens;

GCDT It deepens the state transition path at each
position in a sentence and assigns each token
with a global representation learned from the
entire sentence.

The other uses extra unlabeled corpora or fine-
tunes on a pre-trained language model:

Flair Embedding It firstly pre-trains a character-
level language model on a large corpus, and
then uses a sequence labeling model (e.g., Bi-
LSTM + CRF) to fine-tune on it;

Cross-view Training It designs a LSTM based
sentence encoder to facilitate semi-supervised

1481

Approach CoNLL-2000 PTB9 UD1
Our Model 96.13 92.56 91.65

w/o CharCNN 95.81 - -
w/o LSTM-minus, w/ Inside Algorithm 96.35 92.71 91.87

w/o LSTM Decoder fd, w/ MLP 94.91 91.28 90.05
w/o Phrase Representation hp

ik−1,jk−1
in Equation 4 95.78 92.09 91.27

w/o Label Representation El(lk−1) in Equation 4 95.82 91.92 91.04
w/o Greedy Search, w/ Beam Search 96.22 92.77 91.72

Table 4: The results of ablation experiments on all three datasets.

learning. The model can benefit from massive
unlabeled corpora;

GCDT w/ BERT It adopts BERT as additional to-
ken embeddings to improve GCDT.

We adopt most of the results of baselines as re-
ported in Huang et al. (2015); Akbik et al. (2018);
Xin et al. (2018). Since the evaluation method of
GCDT is not standard (see the experiment setup in
Luo et al. (2020)), we correct its source code2 to
retest the performance. The result for Segmental
RNN is from our re-implementation.

Table 2 demonstrates that we have notably out-
performed previous methods and achieved new
state-of-the-art results on CoNLL-2000 dataset.
When not using external resource, we obtain the
F1 score of 96.13, which outperforms Segmental
RNN by 1.10%, Bi-LSTM + CRF by 1.77%, Char-
IntNet-5 by 0.88%, and GCDT by 1.01%. Note
that Segmental RNN, a segment-level model, un-
derperforms Char-IntNet-5, a token-level model,
by 0.22%. To make a fair comparison with the
baselines using additional unlabeled corpora, we
also use BERT (Devlin et al., 2019), a powerful
pretrained language model, to replace our token
embedding. In this way, we achieve the F1 score
of 97.05, which outnumbers Flair Embedding by
0.34%, Cross-view Training by 0.05%, and GCDT
w/ BERT by 0.25%. All these results verify the
effectiveness of our framework.

3.3 Results on Chinese POS Tagging

We categorize the baselines into two types. The
methods without using external resources:

Segmental RNN Also described in Section 3.2;

Bi-RNN + CRF It utilizes bidirectional RNN and
CRF to model joint word segmentation and

2https://github.com/Adaxry/GCDT.

POS tagging. Ensemble learning is also used
to improve the results;

Lattice LSTM It’s a lattice-structured LSTM that
encodes Chinese characters as well as all po-
tential tokens that match a lexicon;

Glyce + Lattice LSTM It incorporates Chinese
glyph information into Lattice LSTM.

Others using a pre-trained language model:

BERT It is a language model pre-training on a
large corpus. It uses the representations from
the last layer to predict IOB tags;

Glyce + BERT It integrates Chinese glyph infor-
mation into BERT Tagging model.

We take most of the performances of baselines
from Meng et al. (2019). The results for Segmental
RNN are from our re-implementation.

Table 3 shows that our models have achieved
state-of-the-art results on the two datasets, PTB9
and UD1. When BERT is not used, we have ob-
tained the F1 scores of 92.56 and 91.65, which
outperform Glyce + Lattice LSTM by 0.19% and
0.86% and Bi-RNN + CRF (ensemble) by 0.24%
and 2.12%. Note that Segmental RNN, a segment-
level model, underperforms Lattice LSTM, a token-
level model, by 0.09% on UD1. When using BERT,
even without incorporating Chinese glyph informa-
tion, we still obtain the F1 scores of 93.38 and
96.43, which outperform Glyce + BERT by 0.25%
and 0.30%. These results further confirm the effec-
tiveness of our proposed framework.

3.4 Ablation Studies

As shown in Table 4, we conduct ablation studies
to explore the impact of every component.

1482

Approach 1-22 (711) 23-44 (1030) 45-66 (248) 67-88 (23) Overall
Bi-LSTM + CRF 94.01 94.76 92.98 87.09 94.23

GCDT 94.95 95.52 93.77 87.14 95.17
Our Model 96.01 96.55 94.82 91.07 96.13

Table 5: The F1 scores for the sentences of different length ranges.

Input Sentence
Other antibodies sparked by the preparation are of a sort

rarely present in large quantities in infected or ill individuals

Output Segments

GCDT
(Other antibodies, NP) (sparked, VP) (by, PP) (the preparation, NP)

(are, VP) (of, PP) (a sort, NP) (rarely present, VP) (in, PP)
(large quantities, NP) (in, PP) (infected or ill individuals, NP)

Our Model
(Other antibodies, NP) (sparked, VP) (by, PP) (the preparation, NP)

(are, VP) (of, PP) (a sort, NP) (rarely present, ADJP) (in, PP)
(large quantities, NP) (in, PP) (infected or ill individuals, NP)

Table 6: The case is from CoNLL-2000 dataset. The predicted segments of our model is correct.

Effect of Representation Learning. Following
prior works (Ma and Hovy, 2016; Liu et al., 2019),
we employ CharCNN to incorporate character in-
formation into word representations. By remov-
ing it, the F1 score on CoNLL-2000 decreases by
0.33%. Inside algorithm is another technique to
construct phrase representations. After using it
to replace LSTM-minus, the results on the three
datasets are slightly improved by 0.23%, 0.16%,
and 0.24%. Our implementation of inside algo-
rithm is the same as described in Drozdov et al.
(2019). Despite the slight improvements, its time
complexityO(n3) is too slow for both training and
inference. Empirically, we find that the running
time of inside algorithm is about 7 times slower
than that of LSTM-minus.

Effect of Modeling the Dependencies Among
Segments. LSTM decoder fd models the long-
term dependencies among segments. The predic-
tion of every segment yk is conditional on prior
segments yk′ , 1 ≤ k′ < k. By replacing it with
multilayer perceptron (MLP), the performances fall
by 1.29%, 1.40%, and 1.78% on the three datasets.
We use both phrase representation hp

ik−1,jk−1
and

label representation El(lk−1) to embed the pre-
vious segment yk−1. After removing the phrase
representations, the F1 scores decrease by 0.37%,
0.51%, and 0.42% on the three datasets. By remov-
ing the label representations, the results also drop
by 0.32%, 0.70%, and 0.67%.

Effect of Inference Algorithm Beam search is
a widely used technique in language generation

tasks, like machine translation (Bahdanau et al.,
2014; Vaswani et al., 2017; Li and Yao, 2020b)
and data-to-text generation (Shen et al., 2020; Li
et al., 2020c; Li and Yao, 2020a). We have at-
tempted to use beam search (with the beam size
being 5), instead of greedy search, for inference.
By doing so, the F1 scores of our models increased
by 0.09% on CoNLL-2000, 0.23% on PTB9, and
0.08% on UD1. While obtaining slightly better
performances, the time costs for inference become
intolerably high (increase about 10 times). There-
fore, we adopt greedy search as the default infer-
ence algorithm.

3.5 Segmenting Long-length Sentences

Compared with token-level methods, our frame-
work better captures the long-term dependencies
among segments. Therefore, our model should be
more accurate in segmenting long-length sentences.
To verify this, we test the baselines and our model
on the sentences of different lengths.

The study is conducted on CoNLL-2000 dataset.
Bi-LSTM + CRF and GCDT are very strong base-
lines and have open source implementations. We
use toolkit NCRFPP3 to reproduce the perfor-
mances of Bi-LSTM + CRF. We use the reproduc-
tion in Section 3.2 as the results of GCDT. Table 5
shows the experiment results. Each column name
denotes the sentence length range and the case num-
ber. Our model notably outperforms prior meth-
ods in terms of long sentence length ranges. For
length range 45-66, our model obtains the F1 score

3https://github.com/jiesutd/NCRFpp.

1483

Approach Time Complexity Training Time Evaluation Time
Segmental RNN O(n2|L|2) 16m17s 3m01s
Bi-LSTM + CRF O(n|L|2) 3m28s 0m26s

Our Model O(n|L|) 2m36s 0m20s

Table 7: Running time comparisons on CoNLL-2000 dataset.

Approach CoNLL-2003 OntoNotes 5.0
BiLSTM-CNN-CRF (Chen et al., 2019) 91.21 87.05

GRN (Chen et al., 2019) 91.44 87.67
HCR (Luo et al., 2020) 91.96 87.98

Our Model 91.42 87.74

Table 8: The results on two NER datasets.

of 94.82, which outperforms Bi-LSTM + CRF by
1.98% and GCDT by 1.12%. For length range 67-
88, our model outperforms Bi-LSTM + CRF by
4.57% and GCDT by 4.51%.

3.6 Case Study

In Table 6, we present an example extracted from
the test set of CoNLL-2000. Given an input sen-
tence, we show the prediction from a strong base-
line, GCDT, and our model. The output segments
from our model are consistent with the ground truth
segments. The segment in bold is the one incor-
rectly produced by GCDT.

Understanding the structure of this sentence is
very hard because the main constituents “Other
antibodies", “are", and “rarely present" locate
far apart. By removing the two middle phrases
“sparked by the preparation" and “of a sort", the
original sentence can be simplified to “Other an-
tibodies are rarely present in large quantities in
infected or ill individuals", which is very clear.
Therefore, correctly predicting the segment, (rarely
present, ADJP), implies that our model well cap-
tures the long-term dependencies among the seg-
ments. For GCDT, a token-level segmentation
model, it mistakes “rarely present" for the verb
phrase of “a sort". This may result from the follow-
ing two causes:

• The adjacent segments labeled with (NP, VP)
frequently appear in training data;

• the token “present" acting as a verb is much
more common than as a adjective.

Both potentials indicate that token-level models
can’t capture the long-term dependencies well.

3.7 Running Time Analysis

Table 7 demonstrates the running time comparison
among different methods. The last two columns
are respectively the running times for training (one
epoch) and evaluation. We set the batch size as
16 and run all the models on 1 GPU. From the
table, we can draw the following two conclusions.
Firstly, Segmental RNN, a segment-level model,
is very slow for both training and inference due to
the high time complexity. For instance, its training
and testing are respectively 6.26 and 9.05 times
slower than ours. Secondly, our framework is very
efficient. For example, training our model for one
epoch is 1.33 times faster than training Bi-LSTM +
CRF, a token-level model.

3.8 Results on NER

While our model is tailored for sequence segmenta-
tion tasks, we have also tested its performances on
two widely used NER datasets, CoNLL-2003 (Sang
and De Meulder, 2003) and OntoNotes 5.0 (Prad-
han et al., 2013). Note that, in NER, the label cor-
relations among adjacent segments are very weak.
This seems bad for our model.

Table 8 diagrams the comparison of our model
and strong NER baselines. The results of GRN
and HCR are copied from Chen et al. (2019); Luo
et al. (2020). For BiLSTM-CNN-CRF, its scores on
CoNLL-2003 and OntoNotes 5.0 are respectively
from Chen et al. (2019) and our re-implementation.
From the table, we can see that our model is com-
petitive with prior methods. For example, our
model underperforms HCR by only 0.27% on
OntoNotes 5.0. In particular, our F1 scores are
notably higher than those of BiLSTM-CNN-CRF
by 0.23% and 0.79% on the two datasets. This

1484

experiment shows that our model is applicable to
general sequence labeling tasks.

4 Related Work

There are two mainstream approaches to sequence
segmentation. One of them treat sequence seg-
mentation as a sequence labeling problem by using
IOB tagging scheme (Huang et al., 2015; Xin et al.,
2018; Clark et al., 2018; Akbik et al., 2018; Liu
et al., 2019; Li et al., 2020a). Each token in a sen-
tence is labeled as B-tag if it’s the beginning of a
segment, I-tag if it is inside but not the first one
within the segment, or O otherwise. This method
is extensively studied by prior works and provides
tons of state-of-the-art results. Xin et al. (2018) in-
troduce a funnel-shaped convolutional architecture
that learns a better internal structure for the tokens.
Akbik et al. (2018) propose an efficient character-
level framework that uses pretrained character em-
bedding. Clark et al. (2018) adopt semi-supervised
learning to train LSTM encoder using both labeled
and unlabeled corpora. Despite the effectiveness,
these models are at token level, relying on multi-
ple token-level labels to represent a single segment.
This limits their full potential to capture the long-
term dependencies among segments.

The other uses transition-based systems as the
backbone to incrementally segment and label an in-
put sequence (Qian et al., 2015; Zhang et al., 2016,
2018). For example, Qian et al. (2015) design spe-
cial transition actions to jointly segment, tag, and
normalize a sentence. These models have many
advantages, such as theoretically lower time com-
plexity and capturing non-local features. However,
they are still token-level models, which predict tran-
sition actions to shift a token from the buffer to the
stack or assign a label to a span.

Recently, there is a surge of interest in de-
veloping span-based models, such as Segmental
RNN (Sarawagi and Cohen, 2004; Kong et al.,
2015) and LUA (Li et al., 2020b). These methods
circumvent using token-level labels and directly
label the phrases in a sentence. Span-based mod-
els also enjoy great popularity in language mod-
eling (Li et al., 2020d), NER (Yu et al., 2020; Li
et al., 2021), and constituent parsing (Cross and
Huang, 2016; Stern et al., 2017). However, its
underperforms current token-level models (see Sec-
tion 3.2 and Section 3.3) and is very slow in terms
of running time (see Section 3.7).

5 Conclusion

In this work, we present a novel framework to se-
quence segmentation that segments a sentence at
segment level. The segmentation process is itera-
tive and incremental. For every step, it determines
the leftmost segment of the remaining sequence.
Implementations involve LSTM-minus to extract
phrase representations and RNN to model the it-
erations of leftmost segment determination. Ex-
tensive experiments have been conducted on syn-
tactic chunking and Chinese POS tagging across
3 datasets. We have achieved new state-of-the-art
performances on all of them. Case study and the
results on segmenting long-length sentences both
verify the effectiveness of our framework in model-
ing long-term dependencies.

Acknowledgments

This work was done when the first author did intern-
ship at Ant Group. We thank anonymous reviewers
for their kind and constructive suggestions.

References
Alan Akbik, Duncan Blythe, and Roland Vollgraf.

2018. Contextual string embeddings for sequence
labeling. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
1638–1649.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Hui Chen, Zijia Lin, Guiguang Ding, Jianguang Lou,
Yusen Zhang, and Borje Karlsson. 2019. Grn: Gated
relation network to enhance convolutional neural
network for named entity recognition. In Proceed-
ings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pages 6236–6243.

Kevin Clark, Minh-Thang Luong, Christopher D. Man-
ning, and Quoc Le. 2018. Semi-supervised se-
quence modeling with cross-view training. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1914–
1925, Brussels, Belgium. Association for Computa-
tional Linguistics.

James Cross and Liang Huang. 2016. Span-based con-
stituency parsing with a structure-label system and
provably optimal dynamic oracles. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 1–11, Austin,
Texas. Association for Computational Linguistics.

https://doi.org/10.18653/v1/D18-1217
https://doi.org/10.18653/v1/D18-1217
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/D16-1001

1485

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Andrew Drozdov, Patrick Verga, Mohit Yadav, Mohit
Iyyer, and Andrew McCallum. 2019. Unsupervised
latent tree induction with deep inside-outside recur-
sive auto-encoders. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1129–1141, Minneapolis, Minnesota.
Association for Computational Linguistics.

David Gaddy, Mitchell Stern, and Dan Klein. 2018.
What’s going on in neural constituency parsers? an
analysis. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 999–1010,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Lingpeng Kong, Chris Dyer, and Noah A Smith.
2015. Segmental recurrent neural networks. arXiv
preprint arXiv:1511.06018.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data.

Karim Lari and Steve J Young. 1990. The estimation
of stochastic context-free grammars using the inside-
outside algorithm. Computer speech & language,
4(1):35–56.

Yangming Li, lemao liu, and Shuming Shi. 2021.
Empirical analysis of unlabeled entity problem in
named entity recognition. In International Confer-
ence on Learning Representations.

Yangming Li, Han Li, Kaisheng Yao, and Xiaolong Li.
2020a. Handling rare entities for neural sequence
labeling. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6441–6451, Online. Association for Computa-
tional Linguistics.

Yangming Li, Lemao Liu, and Shuming Shi. 2020b.
Segmenting natural language sentences via lexical
unit analysis. arXiv preprint arXiv:2012.05418.

Yangming Li and Kaisheng Yao. 2020a. Interpretable
nlg for task-oriented dialogue systems with het-
erogeneous rendering machines. arXiv preprint
arXiv:2012.14645.

Yangming Li and Kaisheng Yao. 2020b. Rewriter-
evaluator framework for neural machine translation.
arXiv preprint arXiv:2012.05414.

Yangming Li, Kaisheng Yao, Libo Qin, Wanxiang Che,
Xiaolong Li, and Ting Liu. 2020c. Slot-consistent
NLG for task-oriented dialogue systems with iter-
ative rectification network. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 97–106, Online. Associa-
tion for Computational Linguistics.

Yangming Li, Kaisheng Yao, Libo Qin, Shuang Peng,
Yijia Liu, and Xiaolong Li. 2020d. Span-based neu-
ral buffer: Towards efficient and effective utilization
of long-distance context for neural sequence models.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 8277–8284.

Yijin Liu, Fandong Meng, Jinchao Zhang, Jinan Xu,
Yufeng Chen, and Jie Zhou. 2019. GCDT: A global
context enhanced deep transition architecture for se-
quence labeling. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2431–2441, Florence, Italy. Associa-
tion for Computational Linguistics.

Ying Luo, Fengshun Xiao, and Hai Zhao. 2020. Hi-
erarchical contextualized representation for named
entity recognition. In AAAI, pages 8441–8448.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional LSTM-CNNs-
CRF. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1064–1074, Berlin, Ger-
many. Association for Computational Linguistics.

Yuxian Meng, Wei Wu, Fei Wang, Xiaoya Li, Ping Nie,
Fan Yin, Muyu Li, Qinghong Han, Xiaofei Sun, and
Jiwei Li. 2019. Glyce: Glyph-vectors for chinese
character representations. In Advances in Neural In-
formation Processing Systems, pages 2746–2757.

Joakim Nivre, Marie-Catherine De Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, et al. 2016. Universal dependencies
v1: A multilingual treebank collection. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC’16), pages
1659–1666.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1116
https://doi.org/10.18653/v1/N19-1116
https://doi.org/10.18653/v1/N19-1116
https://doi.org/10.18653/v1/N18-1091
https://doi.org/10.18653/v1/N18-1091
https://openreview.net/forum?id=5jRVa89sZk
https://openreview.net/forum?id=5jRVa89sZk
https://doi.org/10.18653/v1/2020.acl-main.574
https://doi.org/10.18653/v1/2020.acl-main.574
https://doi.org/10.18653/v1/2020.acl-main.10
https://doi.org/10.18653/v1/2020.acl-main.10
https://doi.org/10.18653/v1/2020.acl-main.10
https://doi.org/10.18653/v1/P19-1233
https://doi.org/10.18653/v1/P19-1233
https://doi.org/10.18653/v1/P19-1233
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101

1486

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Björkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards ro-
bust linguistic analysis using ontonotes. In Pro-
ceedings of the Seventeenth Conference on Computa-
tional Natural Language Learning, pages 143–152.

Tao Qian, Yue Zhang, Meishan Zhang, Yafeng Ren,
and Donghong Ji. 2015. A transition-based model
for joint segmentation, pos-tagging and normaliza-
tion. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 1837–1846.

Erik F Sang and Sabine Buchholz. 2000. Introduc-
tion to the conll-2000 shared task: Chunking. arXiv
preprint cs/0009008.

Erik F Sang and Fien De Meulder. 2003. Intro-
duction to the conll-2003 shared task: Language-
independent named entity recognition. arXiv
preprint cs/0306050.

Sunita Sarawagi and William W Cohen. 2004. Semi-
markov conditional random fields for information
extraction. Advances in neural information process-
ing systems, 17:1185–1192.

Yan Shao, Christian Hardmeier, Jörg Tiedemann, and
Joakim Nivre. 2017. Character-based joint segmen-
tation and POS tagging for Chinese using bidirec-
tional RNN-CRF. In Proceedings of the Eighth In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 173–
183, Taipei, Taiwan. Asian Federation of Natural
Language Processing.

Xiaoyu Shen, Ernie Chang, Hui Su, Cheng Niu, and
Dietrich Klakow. 2020. Neural data-to-text genera-
tion via jointly learning the segmentation and corre-
spondence. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7155–7165, Online. Association for Computa-
tional Linguistics.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017. A
minimal span-based neural constituency parser. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 818–827, Vancouver, Canada.
Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Wenhui Wang and Baobao Chang. 2016. Graph-based
dependency parsing with bidirectional lstm. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 2306–2315.

Yingwei Xin, Ethan Hart, Vibhuti Mahajan, and Jean-
David Ruvini. 2018. Learning better internal struc-
ture of words for sequence labeling. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 2584–2593,
Brussels, Belgium. Association for Computational
Linguistics.

Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Marta
Palmer. 2005. The penn chinese treebank: Phrase
structure annotation of a large corpus. Natural lan-
guage engineering, 11(2):207.

Juntao Yu, Bernd Bohnet, and Massimo Poesio. 2020.
Named entity recognition as dependency parsing. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6470–
6476, Online. Association for Computational Lin-
guistics.

Meishan Zhang, Nan Yu, and Guohong Fu. 2018. A
simple and effective neural model for joint word
segmentation and pos tagging. IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing,
26(9):1528–1538.

Meishan Zhang, Yue Zhang, and Guohong Fu. 2016.
Transition-based neural word segmentation. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 421–431.

Yue Zhang and Jie Yang. 2018. Chinese NER us-
ing lattice LSTM. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1554–
1564, Melbourne, Australia. Association for Compu-
tational Linguistics.

https://www.aclweb.org/anthology/I17-1018
https://www.aclweb.org/anthology/I17-1018
https://www.aclweb.org/anthology/I17-1018
https://doi.org/10.18653/v1/2020.acl-main.641
https://doi.org/10.18653/v1/2020.acl-main.641
https://doi.org/10.18653/v1/2020.acl-main.641
https://doi.org/10.18653/v1/P17-1076
https://doi.org/10.18653/v1/P17-1076
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/D18-1279
https://doi.org/10.18653/v1/D18-1279
https://doi.org/10.18653/v1/2020.acl-main.577
https://doi.org/10.18653/v1/P18-1144
https://doi.org/10.18653/v1/P18-1144

