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Abstract

The design of expressive representations of en-
tities and relations in a knowledge graph is
an important endeavor. While many of the
existing approaches have primarily focused
on learning from relational patterns and struc-
tural information, the intrinsic complexity of
KG entities has been more or less overlooked.
More concretely, we hypothesize KG entities
may be more complex than we think, i.e.,
an entity may wear many hats and relational
triplets may form due to more than a single
reason. To this end, this paper proposes to
learn disentangled representations of KG enti-
ties - a new method that disentangles the inner
latent properties of KG entities. Our disentan-
gled process operates at the graph level and a
neighborhood mechanism is leveraged to dis-
entangle the hidden properties of each entity.
This disentangled representation learning ap-
proach is model agnostic and compatible with
canonical KG embedding approaches. We con-
duct extensive experiments on several bench-
mark datasets, equipping a variety of models
(DistMult, SimplE, and QuatE) with our pro-
posed disentangling mechanism. Experimen-
tal results demonstrate that our proposed ap-
proach substantially improves performance on
key metrics.

1 Introduction

Knowledge graphs (KG) have emerged as a com-
pelling abstraction for organizing structured knowl-
edge. They have been playing crucial roles in many
machine learning tasks. A knowledge graph repre-
sents a collection of linked data, describing entities
of interest and relationships between them. To in-
corporate KGs into other machine learning systems,
a prevalent way is mapping entities and relations of
knowledge graphs into expressive representations
in a low-dimensional space that preserves the rela-
tionships among objects, also known as knowledge
graph embeddings. Representative work such as
(Bordes et al., 2013; Wang et al., 2014; Yang et al.,

2014; Sun et al., 2019; Zhang et al., 2019; Chami
et al., 2020) has gained intensive attention across
the recent years.

The substantial effectiveness of recent work
can be attributed to relational pattern modeling in
which a suitable relational inductive bias is used
to fit the structural information in data. Neverthe-
less, these methods ignore the fact that the origi-
nation and formation of KGs can be rather com-
plex (Ehrlinger and Wöß, 2016). They may be col-
lected, mined, handcrafted or merged in a compli-
cated or convoluted process (Ji et al., 2017; Bosse-
lut et al., 2019; Qin et al., 2018). To this end, enti-
ties in a knowledge graph may be highly entangled
and relational triplets may form and be constructed
for various reasons under a plethora of different cir-
cumstances or contexts. Contextual reasons and/or
domains may be taken into account at the same
time. As such, it is only natural that KG embed-
ding methods trained in this fashion would result
in highly entangled latent factors. Moreover, the
existing holistic approaches fail to disentangle such
factors and may result in sub-optimal solutions.

Recently, disentangled representation learning
has achieved state-of-the-art performance and at-
tracts much attention in the field of visual repre-
sentation learning. A disentangled representation
should separate the distinct, informative factors of
variations in the data (Bengio et al., 2013). Disen-
tangling the latent factors hidden in the observed
data can not only increase the robustness, making
the model less sensitive to misleading correlations
but also enhance the model explainability. Disen-
tanglement can be achieved using either supervised
signals or unsupervised approaches. Zhu et al. (Zhu
et al., 2014) propose to untangle the identity and
view features in a supervised face recognition task.
A bilinear model is adopted in (Tenenbaum and
Freeman, 2000) to separate content from styles.
There is also a large body of work on unsupervised
disentangled representation learning (Chen et al.,
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2016; Denton et al., 2017; Higgins et al., 2016).
Generally, the disentanglement mechanism is inte-
grated into unsupervised learning frameworks such
as variational autoencoders (Kingma and Welling,
2013) and generative adversarial networks (Good-
fellow et al., 2014). The quality of unsupervised
disentangled representation can even match that
learned from supervised label signals.

Inspired by the success of disentangled represen-
tation learning, we seek to enhance the disentangle-
ment capability of entities representation in knowl-
edge graphs. Our hope is that this idea can address
the aforementioned challenge in learning entity em-
beddings, that is, enabling the entities embeddings
to better reflect the their inner properties. Unlike
learning disentangled representations in visual data,
it is more challenging to disentangle the discrete
relational data. Most KGs embedding approaches
operate at the triplet level, which is uninforma-
tive for disentanglement. Intuitively, information
about the entities resides largely within the graph
encoded through neighborhood structures. Our as-
sumption is that an entity connects with a certain
group of entities for a certain reason. For example,
Tim Robbins, as an actor, starred in films such as
The Shawshank Redemption; as a musician, is a
member of the folk music group The Highwaymen.
We believe that relational triplets form because of
different factors and this can be disentangled when
looking it at the graph level.

To summarize, our key contributions are: (1) We
propose Knowledge Router (KR), an approach
that learns disentangled representations for entities
in knowledge graphs. Specifically, a neighbour-
hood routing mechanism disentangles the hidden
factors of entities from interactions with their neigh-
bors. (2) Knowledge Router is model agnostic,
which means that it can play with different canon-
ical knowledge graph embedding approaches. It
enables those models to have the capability in learn-
ing disentangled entity representations without in-
curring additional free parameters. (3) We con-
duct extensive experiments on four publicly avail-
able datasets to demonstrate the effectiveness of
Knowledge Router. We apply Knowledge Router
to models such as DistMult, SimplE, and QuatE
and observe a notable performance enhancement.
We also conduct model analysis to inspect the inner
workings of Knowledge Router.

2 Related Work

2.1 Learning Disentangled Representations
Learning representations from data is the key chal-
lenge in many machine learning tasks. The primary
posit of disentangled representation learning is that
disentangling the underlying structure of data into
disjoint parts could bring advantages.

Recently, there is a growing interest in learning
disentangled representations across various appli-
cations. A trending line of work is integrating dis-
entanglement into generative models. (Tran et al.,
2017) propose a disentangled generative adversar-
ial network for face recognition and synthesis. The
learned representation is explicitly disentangled
from a pose variation to make it pose-invariant,
which is critical for face recognition/synthesis task.
(Denton et al., 2017) present a disentangled repre-
sentation learning approach for videos. The pro-
posed approach separates each frame into a time-
independent component and a temporal dynamics
aware component. As such, it can reflect both the
time-invariant and temporal features of a video.
(Ma et al., 2018) propose a disentangled generative
model for personal image generation. It separates
out the foreground, background, and pose informa-
tion, and offers a mechanism to manipulate these
three components as well as control the generated
images. Some works (Higgins et al., 2016; Burgess
et al., 2018) (e.g., β-VAE) integrate disentangle-
ment mechanism with variational autoencoder, a
probabilistic generative model. β-VAE uses a regu-
larization coefficient β to constrain the capacity of
the latent information channel. This simple modi-
fication enables latent representations to be more
factorised.

Drawing inspiration from the vision community,
learning disentangled representations has also been
investigated in areas such as natural language pro-
cessing and graph analysis. (Jain et al., 2018) pro-
pose an autoencoders architecture to disentangle
the populations, interventions, and outcomes in
biomedical texts. (Liu et al., 2019) propose a prism
module for semantic disentanglement in named en-
tity recognition. The prism module can be easily
trained with downstream tasks to enhance perfor-
mance. For graph analysis, (Ma et al., 2019a) pro-
pose to untangle the node representation of graph-
structured data in graph neural networks. (Ma et al.,
2019b) present a disentangled variational autoen-
coder to disentangle the user’s diverse interests for
recommender systems.
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2.2 Knowledge Graph Embeddings
Learning effective representations for knowledge
graphs is extensively studied because of its im-
portance in downstream tasks such as knowledge
graph completion, natural language understanding,
web search, and recommender systems. Among the
large body of related literature, two popular lines
are translational approaches and semantic match-
ing approaches. The groundbreaking TransE (Bor-
des et al., 2013) sets the fundamental paradigm
for translational models. Typically, the aim is to
reduce the distance between translated (by rela-
tion) head entity and tail entity. Successors such
as TransH (Wang et al., 2014), TransR (Lin et al.,
2015) all follow this translational pattern. Semantic
matching methods calculate the semantic similar-
ities between entities. A representative semantic
model is DistMult (Yang et al., 2014) which mea-
sures the plausibility of triplets with vector multi-
plications. To model more complex relation pat-
terns, (Trouillon et al., 2016; Zhang et al., 2019;
Sun et al., 2019; Zhang et al., 2021) extend the
embedding spaces to complex number space or hy-
perbolic space. A fully expressive model named
SimplE (Kazemi and Poole, 2018) could achieve
the same level of capability of ComplEx (Trouillon
et al., 2016) with lower calculation cost.

Inspired by the success of disentangled repre-
sentations, we explore methods to factorize differ-
ent components/aspects of entangled entities in a
knowledge graph. To the best of our knowledge,
our work is one of the first efforts to induce disen-
tangled representations in knowledge graphs. Our
disentangled embedding algorithm can be easily in-
tegrated into existing knowledge graph embedding
models (model agnostic).

3 The Proposed Knowledge Router

3.1 Notation and Problem Formulation
Suppose we have an entity set E and a relation set
R, where |E| = N and |R| = M . A knowledge
graph G = (E ,R) is made up of a collection of
facts F in triplet form (h, r, t), where h, t ∈ E and
r ∈ R. The triplet (h, r, t) ∈ F means that entities
h and r are connected via a relation r. The facts
are usually directional, which means exchanging
the head entity and tail entity does not necessarily
result in a legitimate fact.

We are concerned with the link prediction task.
The goal is to embed the entities and relations
of a knowledge graph into low-dimensional rep-

Notation Description
E Entity set.
R Relation set.
E The entity embedding matrix.
W The relation embedding matrix.
Ee The eth row of the entity embedding matrix.
Wr The rth row of the relation embedding matrix.
d The length of the embedding vector.
N (e) Neighbourhood entities set of entity e.
K The number of independent components.
T The number of routing iterations.
xe,k The kth initial vector for entity e.
pe,k The kth vector of entity e after disentanglement.

se,i,k
The similarity score between entity e

and entity i w.r.t the kth component.

wi,k

The extent to which the model attends to
the kth component of entity i.

Table 1: The notations and denotations.

resentations that can preserve the facts in the graph.
A classical setting is using an embedding matrix
E ∈ RN×d to represent all the entities and an em-
bedding matrix W ∈ RM×d to represent all the
relations.

3.2 Disentangled Knowledge Graph
Embeddings

Instead of directly modeling triplet facts, we pro-
pose to disentangle the entities with their neighbors
in a message passing setting. The neighborhood
entities could form several clusters for different rea-
sons and the entity is updated by the information
accepted from its neighborhood clusters.

Figure 1 illustrates the overall process of Knowl-
edge Router. It consists of two stages: (1) disen-
tangling the entities from a graph perspective using
neighbourhood routing; (2) scoring the facts using
relations and the disentangled entities representa-
tions.

Let us build an undirected graph from the train-
ing data. The relations are anonymized, which
means we do not need to know under which condi-
tions two entities are linked. We denote the neigh-
bourhood of entity e as N (e), regardless of the
relations. Our neighborhood routing approach op-
erates on this graph.

Given an entity e, we aim to learn a disentangled
embedding that encodes various attributes of the
entity. In this regard, we suppose that each entity
is composed of K independent components, with
each component denoted by pe,k ∈ R

d
K , where

∀k = 1, 2, ...,K. Each component stands for one
aspect of the entity, e.g., a role of a person. A
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Figure 1: The overall procedure of the proposed Knowledge Router algorithm for learning disentangled entity
representations. In this example, we disentangle the entity embedding into four components (K = 4) via neigh-
borhood routing (iterate T times). These components are then concatenated to represent the corresponding entity.

major challenge here is to make the learned K
components to be independent of one another so
that different facets can be separately encoded. To
this end, we adopt routing mechanisms that are
inspired by capsule networks (Hinton et al., 2011).
Specifically, we aim to learn the K components
from both the entity e and its neighbourhoodsN (e).
Next, we describe this procedure in detail.

For each entity e, we first initialize the Ee ran-
domly and evenly split it into K parts. The kth

part is denoted by xe,k ∈ R
d
K . By doing so, the

embedding is projected into different subspaces.
To ensure computation stability, each part is also
normalized as follows:

xe,k =
xe,k

‖ xe,k ‖2
(1)

This is used for the initialization of pe,k. Ob-
viously, the information contained is limited and
it cannot reach the goal of disentanglement. To
enrich the information, we use a graph message
passing mechanism and define the update rule for
the kth component of pe as follows:

pe,k = xe,k+AGGREGATE({xi,k,∀i ∈ N (e)}),
(2)

where AGGREGATE represents the neighborhood
aggregation function (defined in equation 5). The
same `2 normalization as (1) is applied to pe,k

afterwards.
In this way, pe,k contains information from the

kth aspect of both entity e and all of its neigh-
bors. Common aggregating functions such as mean
pooling and sum pooling are viable, but treating

each neighbor equally when determining one com-
ponent of the representation is undoubtedly not
sensible. As such, an attention mechanism is used
to obtain weights for each neighbor. In particu-
lar, a scaled dot-product attention method is ap-
plied. We first get the dot product between pe,k

and xi,k,∀i ∈ N (e). For each k, we get the fol-
lowing similarity score:

se,i,k =
p>e,kxi,k√

d/k
, (3)

which provides information on how entity e inter-
acts with its neighbour entity i pertaining to the
aspect k. Then the softmax function is applied to
get the weight distribution over different compo-
nents for each neighbour.

wi,k =
exp(se,i,k)∑K
k=1 exp(se,i,k)

, (4)

and wi,k indicates the extent to which the model
attends to the kth component of entity i.

Now, we formulate the definition of the
AGGREGATE function as follows:

AGGREGATE({xi,k, ∀i ∈ N (e)}) :=
∑

i∈N (e)

wi,kxi,k

(5)
The above process, including equations (2), (3),

(4), (5) for learning pe,k,∀k = 1, 2, ...,K, is
repeated for T iterations, which is the same as
that of a routing mechanism. Like capsule net-
works (Sabour et al., 2017), we also assume that
entity (object) is composed of entity (object) parts.
This routing method enables it to model part-whole
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relationships and enlarge the differences between
parts after several routing iterations.

Afterwards, the concatenation of all K compo-
nents of an entity is used to represent that entity.
That is, the disentangled representation pe of the
entity e is defined as:

pe = [pe,1,pe,2, ...,pe,K ] (6)

This neighborhood routing algorithm is model
agnostic as our aim is to learn an entity embed-
ding matrix which is necessary for most knowl-
edge graph embedding methods. It is worth noting
that this model will not introduce additional free
parameters to the model.

The intuition behind the “routing mechanism” is
that each facet in an entity has a separate route to
contribute to the meaning of this entity. The rout-
ing algorithm will coordinately infer pe,k (we can
view it as the center of each cluster) and wi,k (the
probability that factor k is the reason why entity e
is connected with entity i ). They are coordinately
learned and under the constraint that each neighbor
should belong to one cluster. It is reminiscent of the
iterative method used in the EM algorithm (Bishop,
2006) and is expected to lead to convergence and
meaningful disentangled representations (Ma et al.,
2019a).

Until now, the relation embeddings are not uti-
lized as all relations are anonymous during graph
construction. This algorithm will be jointly trained
with the following facts scoring algorithms.

3.3 Facts Scoring using Disentangled Entities
Using disentangled entity embeddings alone can-
not recover the facts in a knowledge graph. It shall
be further updated simultaneously with the rela-
tion embeddings for the fact scoring process. To
predict whether a triplet 〈h, r, t〉 holds or not, we
first fetch the learned disentangled representation
of the head and tail entities, ph and pt. Then we
adopt three methods for triplet scoring including
DistMult (Yang et al., 2014), SimplE (Kazemi and
Poole, 2018), and QuatE (Zhang et al., 2019). We
denote the model after disentanglement as: KR-
DistMult, KR-SimplE, and KR-QuatE.

The scoring function of KR-DistMult is defined
as follows:

φ(h, r, t) = 〈Wr,ph,pt〉 (7)

where 〈∗, ∗, ∗〉 denotes the standard component-
wise multi-linear dot product.

SimplE needs an additional entity embedding
matrix H ∈ RN×d and an additional relation em-
bedding matrix V ∈ RM×d. We perform the same
disentanglement process on H and denote the dis-
entangled representation of entity e as qe, the scor-
ing function of KR-SimplE (SimplE-avg is adopted
since it outperforms SimplE-ignr) is:

φ(h, r, t) = (〈Wr,ph,qt〉+ 〈Vr,qh,pt〉)×
1

2
(8)

For QuatE, entities and relations are represented
with quaternions. Each quaternion is composed of
a real component and three imaginary components.
Let Q ∈ HN×d denote the quaternion entity em-
bedding and W ∈ HM×d denote the quaternion re-
lation embedding, where H is the quaternion space.
Each entity is represented by Qe. We apply the
Knowledge Router algorithm on each component
of Qe. The scoring function of KR-QuatE is:

φ(h, r, t) = QKR
h ⊗ Wr

|Wr|
·QKR

t (9)

where “⊗" is Hamilton product; “·" represents the
quaternion inner product; QKR denotes the entity
representation after disentanglement.

As Knowledge Router is model agnostic, other
scoring functions are also applicable.

3.4 Objective Functions
To learn a disentangled KG model, we adopt the
following negative log-likelihood loss:

L = − 1

S

S∑
i=1

(y(i) log(φ(i))+(1−y(i)) log(1−φ(i)))

(10)
where S is the number of training samples (triplets);
y(i) is a binary label indicating whether the ith

triplet holds or not; φ(i) is the prediction for the ith

triplet. Our model can be trained with commonly
used minibatch gradient descent optimizers.

3.5 Complexity Analysis
The disentanglement process of each node needs
O(|N (e)| dKK + T (|N (e)| dKK + d

KK)) time
complexity, where |N (e)| is neighborhood size.
After simplification, the time complexity is
O(T |N (e)|d). This will not incur a high computa-
tional cost since T is usually a small number (e.g.,
3), and the neighborhood size is determined by
the average degree and can usually be constrainted
by a constant value (e.g., 10). With regard to fact
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Datasets N M |train| |validation| |test|
FB15k-237 14,541 237 272,115 17,535 20,466
WIKIDATA 11,153 96 53,252 11,894 11,752
ICEWS14 7,128 230 42,690 7,331 7,419

ICEWS05-15 10,488 251 368,962 46,275 46,092

Table 2: Statistics of datasets used in our experiments.

scoring, it requires O(d) time complexity for each
triplet in general.

4 Experiments

In this section, we conduct experiments on several
benchmark datasets to verify the effectiveness of
the proposed approach. We target at answering:
RQ I: whether the disentanglement method can en-
hance the traditional knowledge graph embedding
methods? RQ II: Model-agnosticism: can it effec-
tively work with different baseline models? RQ III:
How do certain important hyper-parameters impact
the model performance and what has the disentan-
glement algorithm learned? Are they meaningful?

4.1 Datasets Description
We use four publicly available datasets including
ICEWS14, ICEWS05-15, WikiData, and FB15k-
237. The reason for using these is that their en-
tities are complicated and highly entangled. The
WordNet dataset is not appropriate to evaluate the
proposed method as the entities in WordNet are
already disentangled1.

FB15k-237 is a subset of the Freebase knowl-
edge base which contains general information
about the world. We adopt the widely used version
generated by (Dettmers et al., 2018) where inverse
relations are eliminated to avoid data leakage.

WikiData is sampled from Wikidata2, a collabo-
rative open knowledge base. The knowledge is rel-
atively up-to-date compared with FB15k-237. We
use the version provided by (García-Durán et al.,
2018). Timestamp is discarded.

ICEWS (García-Durán et al., 2018) is collected
from the integrated crisis early warning system3

which was built to monitor and forecast national
and internal crises. The datasets contain political
events that connect entities (e.g., countries, pres-
idents, intergovernmental organizations) to other
entities via predicates (e.g., “make a visit", “sign
formal agreement", etc.). ICES14 contains events
in the year 2014, while the ICEWS05-15 contains

1For example, a word with five meanings is represented
with five different entities in WordNet.

2https://www.wikidata.org/
3http://www.icews.com/

events occurring between 2005 and 2015. Tempo-
ral information is not used in our experiments.

Data statistics and the train/validation/test splits
are summarized in Table 2.

4.2 Evaluation Protocol
We adopt four commonly used evaluation met-
rics including hit rate with given cut-off (HR@1,
HR@3, HR@10) and mean reciprocal rank (MRR).
HR measures the percentage of true triples of the
ranked list. MRR is the average of the mean rank
inverse which reflects the ranking quality. Evalua-
tion is performed under the commonly used filtered
setting (Bordes et al., 2013), which is more reason-
able and stable compared to the unfiltered setting.

4.3 Baselines
To demonstrate the advantage of our approach,
we compare the proposed method with several
representative knowledge graph embedding ap-
proaches including TransE (Bordes et al., 2013),
DistMult (Yang et al., 2014), ComplEx (Trouillon
et al., 2016), SimplE (Kazemi and Poole, 2018),
and QuatE (Zhang et al., 2019). For FB15k-237,
the results of RotatE (Sun et al., 2019) and R-
GCN (Schlichtkrull et al., 2018) are also included.

4.4 Implementation Details
We implement our model using pytorch (Paszke
et al., 2019) and run it on TITAN XP GPUs. We
adopt Adam optimizer to learn our model (Good-
fellow et al., 2016) and the learning rate is set
to 0.01 without further tuning. The embedding
size d is set to 100 and the number of negative
samples is fixed to 50. The batch size is selected
from {128, 512, 1024}. The regularization rate is
searched from {0.0, 0.01, 0.1, 0.2, 0.3, 0.5}. For
the disentanglement algorithm, the number of com-
ponents K is selected from {2, 4, 5, 10} (K should
be divisible by d); the number of routing iterations
T is tuned amongst {2, 3, 4, 5, 7, 10}. The hyper-
parameters are determined by the validation set.
Each experiment runs five times and the average
is reported. For convenience of implementation,
the maximum neighbor sizes are: 16 (FB15K-237),
4 (WikiData), 10 (ICEWS14), 16 (ICEWS05-15).
We apply zero padding to entities that have fewer
neighbors.

4.5 Main Results
The test results on the four datasets are shown in
Tables 3, 4 and 5. Evidently, we can make the
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Models FB15k-237
MRR HR@10 HR@3 HR@1

TransE 0.294 0.465 - -
DistMult 0.241 0.419 0.263 0.155
ComplEx 0.247 0.428 0.275 0.158
SimplE 0.229 0.379 0.252 0.153

R-GCN♥ 0.249 0.417 0.264 0.151
RotatE? 0.297 0.480 0.328 0.205
QuatE� 0.311 0.495 0.342 0.221

KR-DistMult 0.275 0.450 0.302 0.190
KR-SimplE 0.273 0.438 0.298 0.190
KR-QuatE 0.322 0.507 0.356 0.228
KR-D vs. D +14.1% +7.4% +14.8% +22.6%
KR-S vs. S +19.2% +15.5% +18.2% +24.2%
KR-Q vs. Q +3.5% +2.4% +4.1% +3.2%

Table 3: Results on the FB15K-237 dataset. Best re-
sults are in bold. “D”, “S”, and “D” stand for DistMult,
SimplE, and QuatE, respectively. “♥”: results from
(Schlichtkrull et al., 2018). “?”: results from (Sun et al.,
2019). For fair comparison, adversarial negative sam-
pling is not used. “�”: results from (Zhang et al., 2019)
(without N3 regularization and type constraints).

Models WikiData
MRR HR@10 HR@3 HR@1

TransE 0.164 0.288 0.162 0.101
DistMult 0.863 0.902 0.883 0.837
ComplEx 0.850 0.895 0.871 0.821
SimplE 0.878 0.902 0.890 0.861
QuatE 0.792 0.852 0.823 0.752

KR-DistMult 0.888 0.911 0.898 0.872
KR-SimplE 0.898 0.912 0.900 0.891
KR-QuatE 0.900 0.912 0.900 0.893
KR-D vs. D +2.9% +1.0% +1.7% +4.2%
KR-S vs. S +2.3% +1.1% +1.1% +3.6%
KR-Q vs. Q +13.6% +7.0% +9.4% +18.7%

Table 4: Results on WikiData. Best results are in bold.
“D”, “S”, and “D” stand for DistMult, SimplE, and
QuatE, respectively.

following observations: (1) Models with Knowl-
edge Router outperform the counterparts without
it by a large margin, confirming the effectiveness
of Knowledge Router and assuring the benefits of
learning disentangled representations. This clearly
answers our RQ I; (2) On the four datasets, we
observe a consistent enhancement of Knowledge
Router on both traditional embedding models such
as DistMult, SimplE, as well as hypercomplex num-
ber based model QuatE. This is expected as our
Knowledge Router is model agnostic (RQ II) and
can be integrated to canonical knowledge embed-
ding models. (3) The model KR-QuatE is usually
the best performer on all datasets, indicating the
generalization capability of Knowledge Router in
more complex embedding spaces.

On the FB15k-237 dataset, the model KR-QuatE
achieves the best performance compared to the re-

cent translational model RotatE and the seman-
tic matching model QuatE. Models such as Dist-
Mult and SimplE are also outperformed by KR-
DistMult and KR-SimplE. In addition, it is good
to note that the performance of each of the three
KR-models is much higher than the graph convolu-
tional networks based model, R-GCN. This implies
that simply/naively incorporating graph structures
might not lead to good performance. Knowledge
Router also operates at the graph level, moreover,
the neighborhood information is effectively utilized
for disentanglement.

Similar trends are also observed on WikiData.
Interestingly, we find that the performance differ-
ences of the three KR-models are quite small on
this dataset. We hypothesize that the performance
on this dataset has already been quite high, making
further improvement more difficult.

Among the baselines, SimplE is the best per-
former. We notice that even though the pure QuatE
does not show impressive performance, the Knowl-
edge Router enhances its results and enables it to
achieve the state-of-the-art performance.

On the two ICEWS datasets, disentanglement
usually leads to a large performance boost. The
average performance gains of Knowledge Router
based models (KR-DistMult, KR-SimplE, KR-
QuatE) are high, compared with the original mod-
els (DistMult, SimplE, and QuatE). We also ob-
serve that KR-QuatE outperforms other models
significantly.

To conclude, our experimental evidence shows
that disentangling the entities can indeed bring per-
formance increase and the proposed Knowledge
Router can effectively be integrated into different
models.

4.6 Model Analysis

To answer RQ III and gain further insights, we
empirically analyze the important ingredients of
the model via qualitative analysis and visualization.

4.6.1 Visualization of similarity scores
The attention mechanism is critical to achieving
the final disentanglement. To show its efficacy, we
visualize four examples of attention weights wi,k

in Figure 2. The color scale represents the strength
of the attention weights. Each row represents a
neighbor of the selected entity and each column
represents a disentangled component. We observe
a clear staggered pattern in the attention weights.
For example, in the upper left figure, the neighbors
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Models ICEWS 14 ICEWS05-15
MRR HR@10 HR@3 HR@1 MRR HR@10 HR@3 HR@1

TransE? 0.280 0.637 - 0.094 0.294 0.663 - 0.090
DistMult? 0.439 0.672 - 0.323 0.456 0.691 - 0.337

SimplE 0.458 0.687 0.516 0.341 0.478 0.708 0.539 0.359
ComplEx 0.638 0.753 0.677 0.574 0.708 0.821 0.748 0.645

QuatE 0.656 0.733 0.673 0.615 0.723 0.817 0.754 0.671
KR-DistMult 0.544 0.740 0.608 0.439 0.611 0.789 0.662 0.519
KR-SimplE 0.588 0.753 0.642 0.498 0.639 0.803 0.689 0.553
KR-QuatE 0.688 0.753 0.692 0.643 0.797 0.853 0.812 0.767

KR-DistMult vs. DistMult +23.9% +10.1% - +11.6% +33.9% +14.2% - +54.0%
KR-SimplE vs. SimplE +28.3% +9.6% +24.4% +46.0% +33.7% +13.4% +27.8% +54.0%
KR-QuatE vs. QuatE +4.9% +2.7% +2.8% +4.6% +10.2% +4.4% +7.7% +14.3%

Table 5: Results on ICEWS14 and ICEWS05-15. Best results are in bold. “?”: results from (García-Durán et al.,
2018). Note that the embedding size is 100 for all models.

0 1

0
1

2
3 0.46

0.48

0.50

0.52

0.54

0 1

0
1

2
3

0.46

0.48

0.50

0.52

0.54

0 1 2 3

0
1

2
3

4
5

6
7

8
9 0.200

0.225

0.250

0.275

0.300

0.325

0 1 2 3

0
1

2
3

4
5

6
7

8
9

0.210

0.225

0.240

0.255

0.270

Figure 2: Four examples of attention weights learned
during the routing process. Te upper two examples are
taken from WikiData (K = 2) and the lower two exam-
ples are taken from ICEWS14 (K = 4). Rows rep-
resent neighbors and columns represent disentangled
components. Best viewed in color.

1, 2, 3 give higher weights to the second component
while 0 gives a stronger weight to the first compo-
nent. In other figures, the attention weights are also
staggered among the disentangled components.

4.6.2 Case study

We randomly pick one entity (Michael Rensing, a
German footballer) from the WikiData and show
the learned weight between him and his neighbor-
hood entities in Figure 3. We observe that FC Bay-
ern Munich and Jan Kirchhoff (who is also a team
member of the FC Bayern Munich club) contribute
more on the first component of the representation of
Michael Rensing, while Germany national under-
18 football team and Germany national under-21
football team make larger contributions to the sec-
ond component. Clearly, the first component cap-
tures the fact that Michael Rensing is a member of
the FC Bayern Munich association football club
and the second component reflects that he is also a

Figure 3: Case study on WikiData for the German foot-
baller Michael Rensing.
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Figure 4: (a) The impact of number of components K
on ICEWS14. (b) The impact of number of neighbor-
hood routing iteration T on ICEWS14.

Germany national football team member. This case
justifies our assumption that entities are connected
for different reasons and demonstrates that Knowl-
edge Router is able to disentangle the underlying
factors effectively.

4.6.3 Impact of size K

We analyze the impact of K. Intuitively, K is dif-
ficult to choose since there is no prior information
on how many components we should decompose
each entity into. The test results with varying K on
ICEWS14 of KR-QuatE are shown in Figure 4 (a).
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As can be seen, using large K could result in a per-
formance degradation. One possible reason is that
there are not enough neighborhood entities to be
divided into 20 groups. Empirically, we found that
settingK to a small value around 2 to 5 can usually
render reasonable results. A practical suggestion is
that K should not exceed the average degree of the
knowledge graph.

4.6.4 Impact of routing iteration T
We study the influence of number of routing iter-
ations. As shown in Figure 4 (b), the model per-
formance is stable when using different iterations.
The reason is that the Knowledge Router algorithm
is not prone to saturation and has good convergence
properties. In practice, we find that using a small
number of iterations (e.g., 3) could lead to ideal en-
hancement without putting on much computation
burden.

5 Conclusion

In this paper, we present Knowledge Router, an
algorithm for learning disentangled entity represen-
tations in knowledge graphs. Our method is model
agnostic and can be applied to many canonical
knowledge graph embedding methods. Extensive
experiments on four benchmarking datasets demon-
strate that equipping popular embedding models
with the proposed Knowledge Router can outper-
form a number of recent strong baselines. Via qual-
itative model analysis, we discover that Knowledge
Router can effectively learns the hidden factors con-
necting entities, thus leading to disentanglement.
We also showcase the impact of certain important
hyper-parameters and give suggestions on hyper-
parameters tuning.

References
Yoshua Bengio, Aaron Courville, and Pascal Vincent.

2013. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis
and machine intelligence, 35(8):1798–1828.

Christopher M Bishop. 2006. Pattern recognition and
machine learning. springer.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in neural information
processing systems, pages 2787–2795.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.

2019. Comet: Commonsense transformers for auto-
matic knowledge graph construction. arXiv preprint
arXiv:1906.05317.

Christopher P Burgess, Irina Higgins, Arka Pal, Loic
Matthey, Nick Watters, Guillaume Desjardins, and
Alexander Lerchner. 2018. Understanding disentan-
gling in beta-vae. arXiv preprint arXiv:1804.03599.

Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic
Sala, Sujith Ravi, and Christopher Ré. 2020. Low-
dimensional hyperbolic knowledge graph embed-
dings. arXiv preprint arXiv:2005.00545.

Xi Chen, Yan Duan, Rein Houthooft, John Schul-
man, Ilya Sutskever, and Pieter Abbeel. 2016. Info-
gan: Interpretable representation learning by infor-
mation maximizing generative adversarial nets. In
Advances in neural information processing systems,
pages 2172–2180.

Emily L Denton et al. 2017. Unsupervised learning
of disentangled representations from video. In Ad-
vances in neural information processing systems,
pages 4414–4423.

T Dettmers, P Minervini, P Stenetorp, and S Riedel.
2018. Convolutional 2d knowledge graph embed-
dings. In 32nd AAAI Conference on Artificial Intel-
ligence, AAAI 2018, volume 32, pages 1811–1818.
AAI Publications.

Lisa Ehrlinger and Wolfram Wöß. 2016. Towards a def-
inition of knowledge graphs. SEMANTiCS (Posters,
Demos, SuCCESS), 48:1–4.

Alberto García-Durán, Sebastijan Dumančić, and
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