
NAACL-HLT 2021

The 2021 Conference
of the North American Chapter

of the Association for Computational Linguistics:
Human Language Technologies

Demonstrations

June 6 - 11, 2021

©2021 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-954085-48-0

ii

Introduction

Welcome to the proceedings of the system demonstration track of NAACL-HLT 2021 on Jun 6th - Jun
11th, 2021. NAACL-HLT 2021 will be a virtual conference.

The system demonstration track invites submissions ranging from early prototypes to mature production-
ready systems. This year we received 42 submissions, of which 17 were selected for inclusion in the
program (acceptance rate 40.5%) after reviewed by three members of the program committee.

This is the first year NAACL-HLT incorporates ethical considerations in the review process. In the
standard review stage, members of the program committee are given the option to flag a paper as needing
separate ethics reviews. Papers flagged as needing separate ethics reviews by at least one members
from the program committee are subsequently reviewed by two members from the NAACL-HLT 2021
ethics committee. In total, 4 papers went through the subsequent ethics review stage, of which 1 was
offered conditional acceptance, 2 were accepted as it is and 1 was deemed as a false positive flag. The
conditionally accepted paper was re-reviewed by the ethics committee post camera-ready submission
and accepted to the program based on addressed ethical concerns.

We would like to thank the members of the program committee and ethics committee for their timely
help in reviewing the submissions. We also thank the many authors who submitted their work to the
demonstration track. The demonstration paper will be presented through pre-recorded talks (12 minutes)
and one live online Q&A session (80 minutes).

Best,
Avi Sil and Xi Victoria Lin
NAACL-HLT 2021 Demonstration Track Chairs

iii

Organizing Committee:

Avi Sil, IBM Research AI
Xi Victoria Lin, Facebook AI Research

Program Committee:

Ahmed Abdelali, Qatar Computing Research Institute
Alan Akbik, Humboldt-Universität zu Berlin
Zeynep Akkalyoncu, University of Waterloo
Bo An, Institute of Software, Chinese Academy of Sciences
Eleftherios Avramidis, German Research Center for Artificial Intelligence (DFKI)
Gianni Barlacchi, Amazon Alexa
Bernd Bohnet, Google
Georgeta Bordea, Université de Bordeaux
Aljoscha Burchardt, DFKI
José G. C. de Souza, Unbabel
Christos Christodoulopoulos, Amazon Research
Montse Cuadros, Vicomtech
Giovanni Da San Martino, University of Padova
Marina Danilevsky, IBM Research
Joseph P. Dexter, Harvard University
Chenchen Ding, NICT
James Fan, Google
Nicolas Rodolfo Fauceglia, IBM Research AI
Ming Gong, STCA NLP Group, Microsoft (China)
Ben Hachey, Harrison.ai
Masato Hagiwara, Octanove Labs LLC
Xianpei Han, Institute of Software, Chinese Academy of Sciences
Xu Han, Tsinghua University
Barbora Hladka, Charles University
Ales Horak, Masaryk University
Shajith Ikbal, IBM Research AI, India.
Philipp Koehn, Johns Hopkins University
Mamoru Komachi, Tokyo Metropolitan University
Valia Kordoni, Humboldt-Universität zu Berlin
Vishwajeet Kumar, IBM Research AI
Mark Last, Ben-Gurion University of the Negev
John Lee, City University of Hong Kong
Hao Li, ByteDance
Marina Litvak, Shamoon College of Engineering
Changsong Liu, University of California, Los Angeles
Wei Lu, Singapore University of Technology and Design
Suraj Maharjan, University of Houston
Wolfgang Maier, Mercedes-Benz AG
Benjamin Marie, NICT
David McClosky, Google
Marie-Jean Meurs, Université du Québec à Montréal
Ivan Vladimir Meza Ruiz, Insituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS-
UNAM)
Margot Mieskes, University of Applied Sciences, Darmstadt
Hamdy Mubarak, Qatar Computing Research Institute

v

Aldrian Obaja Muis, None
Philippe Muller, IRIT, University of Toulouse
Diane Napolitano, The Associated Press
Denis Newman-Griffis, University of Pittsburgh
Pierre Nugues, Lund University
Yusuke Oda, LegalForce
Siddharth Patwardhan, Apple
Oren Pereg, AI Lab, Intel Labs
Prokopis Prokopidis, ILSP/Athena RC
Saurav Sahay, Intel Labs
Sebastin Santy, Microsoft Research
Liang-Hsin Shen, National Taiwan University
Michal Shmueli-Scheuer, IBM Research
Sunayana Sitaram, Microsoft Research India
Konstantinos Skianis, BLUAI
Dezhao Song, Thomson Reuters
Yuanfeng Song, Hong Kong University of Science and Technology, WeBank Co., Ltd
Michael Stewart, The University of Western Australia
Natalia Vanetik, Shamoon College of Engineering
Andrea Varga, CUBE
Changhan Wang, Facebook AI Research
Rui Wang, VIP.com
Deyi Xiong, Tianjin University
Qiongkai Xu, The Australian National University and Data61
Tae Yano, Expedia Group
Wenlin Yao, Tencent AI Lab
Seid Muhie Yimam, Universität Hamburg
Dian Yu, University of California, Davis
Mo Yu, IBM Research
Liang-Chih Yu, Yuan Ze University
Jun Zhao, Chinese Academy of Sciences
Guangyou Zhou, School of Computer Science, Central China Normal University
Imed Zitouni, Google

vi

Table of Contents

PhoNLP: A joint multi-task learning model for Vietnamese part-of-speech tagging, named entity recog-
nition and dependency parsing

Linh The Nguyen and Dat Quoc Nguyen . 1

Machine-Assisted Script Curation
Manuel Ciosici, Joseph Cummings, Mitchell DeHaven, Alex Hedges, Yash Kankanampati, Dong-

Ho Lee, Ralph Weischedel and Marjorie Freedman. .8

NAMER: A Node-Based Multitasking Framework for Multi-Hop Knowledge Base Question Answering
Minhao Zhang, Ruoyu Zhang, Lei Zou, Yinnian Lin and Sen Hu . 18

DiSCoL: Toward Engaging Dialogue Systems through Conversational Line Guided Response Generation
Sarik Ghazarian, Zixi Liu, Tuhin Chakrabarty, Xuezhe Ma, Aram Galstyan and Nanyun Peng . . 26

FITAnnotator: A Flexible and Intelligent Text Annotation System
Yanzeng Li, Bowen Yu, Li Quangang and Tingwen Liu . 35

Robustness Gym: Unifying the NLP Evaluation Landscape
Karan Goel, Nazneen Fatema Rajani, Jesse Vig, Zachary Taschdjian, Mohit Bansal and Christopher

Ré . 42

EventPlus: A Temporal Event Understanding Pipeline
Mingyu Derek Ma, Jiao Sun, Mu Yang, Kung-Hsiang Huang, Nuan Wen, Shikhar Singh, Rujun

Han and Nanyun Peng . 56

COVID-19 Literature Knowledge Graph Construction and Drug Repurposing Report Generation
Qingyun Wang, Manling Li, Xuan Wang, Nikolaus Parulian, Guangxing Han, Jiawei Ma, Jingxuan

Tu, Ying Lin, Ranran Haoran Zhang, Weili Liu, Aabhas Chauhan, Yingjun Guan, Bangzheng Li, Ruisong
Li, Xiangchen Song, Yi Fung, Heng Ji, Jiawei Han, Shih-Fu Chang, James Pustejovsky, Jasmine Rah,
David Liem, Ahmed ELsayed, Martha Palmer, Clare Voss, Cynthia Schneider and Boyan Onyshkevych
66

Multifaceted Domain-Specific Document Embeddings
Julian Risch, Philipp Hager and Ralf Krestel .78

Improving Evidence Retrieval for Automated Explainable Fact-Checking
Chris Samarinas, Wynne Hsu and Mong Li Lee . 84

Interactive Plot Manipulation using Natural Language
Yihan Wang, Yutong Shao and Ndapa Nakashole . 92

ActiveAnno: General-Purpose Document-Level Annotation Tool with Active Learning Integration
Max Wiechmann, Seid Muhie Yimam and Chris Biemann . 99

TextEssence: A Tool for Interactive Analysis of Semantic Shifts Between Corpora
Denis Newman-Griffis, Venkatesh Sivaraman, Adam Perer, Eric Fosler-Lussier and Harry Hochheiser

106

Supporting Spanish Writers using Automated Feedback
Aoife Cahill, James Bruno, James Ramey, Gilmar Ayala Meneses, Ian Blood, Florencia Tolentino,

Tamar Lavee and Slava Andreyev . 116

vii

Alexa Conversations: An Extensible Data-driven Approach for Building Task-oriented Dialogue Systems
Anish Acharya, Suranjit Adhikari, Sanchit Agarwal, Vincent Auvray, Nehal Belgamwar, Arijit

Biswas, Shubhra Chandra, Tagyoung Chung, Maryam Fazel-Zarandi, Raefer Gabriel, Shuyang Gao,
Rahul Goel, Dilek Hakkani-Tur, Jan Jezabek, Abhay Jha, Jiun-Yu Kao, Prakash Krishnan, Peter Ku,
Anuj Goyal, Chien-Wei Lin, Qing Liu, Arindam Mandal, Angeliki Metallinou, Vishal Naik, Yi Pan,
Shachi Paul, Vittorio Perera, Abhishek Sethi, Minmin Shen, Nikko Strom and Eddie Wang 125

RESIN: A Dockerized Schema-Guided Cross-document Cross-lingual Cross-media Information Extrac-
tion and Event Tracking System

Haoyang Wen, Ying Lin, Tuan Lai, Xiaoman Pan, Sha Li, Xudong Lin, Ben Zhou, Manling Li,
Haoyu Wang, Hongming Zhang, Xiaodong Yu, Alexander Dong, Zhenhailong Wang, Yi Fung, Piyush
Mishra, Qing Lyu, Dídac Surís, Brian Chen, Susan Windisch Brown, Martha Palmer, Chris Callison-
Burch, Carl Vondrick, Jiawei Han, Dan Roth, Shih-Fu Chang and Heng Ji .133

MUDES: Multilingual Detection of Offensive Spans
Tharindu Ranasinghe and Marcos Zampieri . 144

viii

Conference Program

Jun 8th, 2021

620pm PST–740pm PST

PhoNLP: A joint multi-task learning model for Vietnamese part-of-speech tagging,
named entity recognition and dependency parsing
Linh The Nguyen and Dat Quoc Nguyen

Machine-Assisted Script Curation
Manuel Ciosici, Joseph Cummings, Mitchell DeHaven, Alex Hedges, Yash
Kankanampati, Dong-Ho Lee, Ralph Weischedel and Marjorie Freedman

NAMER: A Node-Based Multitasking Framework for Multi-Hop Knowledge Base
Question Answering
Minhao Zhang, Ruoyu Zhang, Lei Zou, Yinnian Lin and Sen Hu

DiSCoL: Toward Engaging Dialogue Systems through Conversational Line Guided
Response Generation
Sarik Ghazarian, Zixi Liu, Tuhin Chakrabarty, Xuezhe Ma, Aram Galstyan and
Nanyun Peng

FITAnnotator: A Flexible and Intelligent Text Annotation System
Yanzeng Li, Bowen Yu, Li Quangang and Tingwen Liu

Robustness Gym: Unifying the NLP Evaluation Landscape
Karan Goel, Nazneen Fatema Rajani, Jesse Vig, Zachary Taschdjian, Mohit Bansal
and Christopher Ré

EventPlus: A Temporal Event Understanding Pipeline
Mingyu Derek Ma, Jiao Sun, Mu Yang, Kung-Hsiang Huang, Nuan Wen, Shikhar
Singh, Rujun Han and Nanyun Peng

ix

Jun 9th, 2021

9am PST–1020am PST

COVID-19 Literature Knowledge Graph Construction and Drug Repurposing Re-
port Generation
Qingyun Wang, Manling Li, Xuan Wang, Nikolaus Parulian, Guangxing Han,
Jiawei Ma, Jingxuan Tu, Ying Lin, Ranran Haoran Zhang, Weili Liu, Aabhas
Chauhan, Yingjun Guan, Bangzheng Li, Ruisong Li, Xiangchen Song, Yi Fung,
Heng Ji, Jiawei Han, Shih-Fu Chang, James Pustejovsky, Jasmine Rah, David
Liem, Ahmed ELsayed, Martha Palmer, Clare Voss, Cynthia Schneider and Boyan
Onyshkevych

Multifaceted Domain-Specific Document Embeddings
Julian Risch, Philipp Hager and Ralf Krestel

Improving Evidence Retrieval for Automated Explainable Fact-Checking
Chris Samarinas, Wynne Hsu and Mong Li Lee

Interactive Plot Manipulation using Natural Language
Yihan Wang, Yutong Shao and Ndapa Nakashole

ActiveAnno: General-Purpose Document-Level Annotation Tool with Active Learn-
ing Integration
Max Wiechmann, Seid Muhie Yimam and Chris Biemann

TextEssence: A Tool for Interactive Analysis of Semantic Shifts Between Corpora
Denis Newman-Griffis, Venkatesh Sivaraman, Adam Perer, Eric Fosler-Lussier and
Harry Hochheiser

Supporting Spanish Writers using Automated Feedback
Aoife Cahill, James Bruno, James Ramey, Gilmar Ayala Meneses, Ian Blood, Flo-
rencia Tolentino, Tamar Lavee and Slava Andreyev

Alexa Conversations: An Extensible Data-driven Approach for Building Task-
oriented Dialogue Systems
Anish Acharya, Suranjit Adhikari, Sanchit Agarwal, Vincent Auvray, Nehal Bel-
gamwar, Arijit Biswas, Shubhra Chandra, Tagyoung Chung, Maryam Fazel-
Zarandi, Raefer Gabriel, Shuyang Gao, Rahul Goel, Dilek Hakkani-Tur, Jan Jez-
abek, Abhay Jha, Jiun-Yu Kao, Prakash Krishnan, Peter Ku, Anuj Goyal, Chien-Wei
Lin, Qing Liu, Arindam Mandal, Angeliki Metallinou, Vishal Naik, Yi Pan, Shachi
Paul, Vittorio Perera, Abhishek Sethi, Minmin Shen, Nikko Strom and Eddie Wang

RESIN: A Dockerized Schema-Guided Cross-document Cross-lingual Cross-media
Information Extraction and Event Tracking System
Haoyang Wen, Ying Lin, Tuan Lai, Xiaoman Pan, Sha Li, Xudong Lin, Ben Zhou,
Manling Li, Haoyu Wang, Hongming Zhang, Xiaodong Yu, Alexander Dong, Zhen-
hailong Wang, Yi Fung, Piyush Mishra, Qing Lyu, Dídac Surís, Brian Chen, Susan
Windisch Brown, Martha Palmer, Chris Callison-Burch, Carl Vondrick, Jiawei Han,
Dan Roth, Shih-Fu Chang and Heng Ji

MUDES: Multilingual Detection of Offensive Spans
Tharindu Ranasinghe and Marcos Zampieri

x

Jun 9th, 2021 (continued)

xi

Proceedings of NAACL-HLT 2021: Demonstrations, pages 1–7
June 6–11, 2021. ©2021 Association for Computational Linguistics

PhoNLP: A joint multi-task learning model for Vietnamese part-of-speech
tagging, named entity recognition and dependency parsing

Linh The Nguyen and Dat Quoc Nguyen
VinAI Research, Hanoi, Vietnam

{v.linhnt140, v.datnq9}@vinai.io

Abstract

We present the first multi-task learning
model—named PhoNLP—for joint Viet-
namese part-of-speech (POS) tagging, named
entity recognition (NER) and dependency
parsing. Experiments on Vietnamese bench-
mark datasets show that PhoNLP produces
state-of-the-art results, outperforming a
single-task learning approach that fine-tunes
the pre-trained Vietnamese language model
PhoBERT (Nguyen and Nguyen, 2020) for
each task independently. We publicly release
PhoNLP as an open-source toolkit under the
Apache License 2.0. Although we specify
PhoNLP for Vietnamese, our PhoNLP training
and evaluation command scripts in fact can
directly work for other languages that have a
pre-trained BERT-based language model and
gold annotated corpora available for the three
tasks of POS tagging, NER and dependency
parsing. We hope that PhoNLP can serve as
a strong baseline and useful toolkit for future
NLP research and applications to not only
Vietnamese but also the other languages. Our
PhoNLP is available at https://github.
com/VinAIResearch/PhoNLP.

1 Introduction

Vietnamese NLP research has been significantly
explored recently. It has been boosted by the suc-
cess of the national project on Vietnamese language
and speech processing (VLSP) KC01.01/2006-
2010 and VLSP workshops that have run shared
tasks since 2013.1 Fundamental tasks of POS tag-
ging, NER and dependency parsing thus play im-
portant roles, providing useful features for many
downstream application tasks such as machine
translation (Tran et al., 2016), sentiment analy-
sis (Bang and Sornlertlamvanich, 2018), relation
extraction (To and Do, 2020), semantic parsing
(Nguyen et al., 2020), open information extrac-
tion (Truong et al., 2017) and question answering

1https://vlsp.org.vn/

(Nguyen et al., 2017; Le-Hong and Bui, 2018).
Thus, there is a need to develop NLP toolkits for
linguistic annotations w.r.t. Vietnamese POS tag-
ging, NER and dependency parsing.

VnCoreNLP (Vu et al., 2018) is the previ-
ous public toolkit employing traditional feature-
based machine learning models to handle those
Vietnamese NLP tasks. However, VnCoreNLP
is now no longer considered state-of-the-art be-
cause its performance results are significantly
outperformed by ones obtained when fine-tuning
PhoBERT—the current state-of-the-art monolin-
gual pre-trained language model for Vietnamese
(Nguyen and Nguyen, 2020). Note that there are
no publicly available fine-tuned BERT-based mod-
els for the three Vietnamese tasks. Assuming that
there would be, a potential drawback might be that
an NLP package wrapping such fine-tuned BERT-
based models would take a large storage space, i.e.
three times larger than the storage space used by a
BERT model (Devlin et al., 2019), thus it would not
be suitable for practical applications that require a
smaller storage space. Jointly multi-task learning
is a promising solution as it might help reduce the
storage space. In addition, POS tagging, NER and
dependency parsing are related tasks: POS tags
are essential input features used for dependency
parsing and POS tags are also used as additional
features for NER. Jointly multi-task learning thus
might also help improve the performance results
against the single-task learning (Ruder, 2019).

In this paper, we present a new multi-task learn-
ing model—named PhoNLP—for joint POS tag-
ging, NER and dependency parsing. In particu-
lar, given an input sentence of words to PhoNLP,
an encoding layer generates contextualized word
embeddings that represent the input words. These
contextualized word embeddings are fed into a POS
tagging layer that is in fact a linear prediction layer
(Devlin et al., 2019) to predict POS tags for the
corresponding input words. Each predicted POS

1

BIAFFINE

sub vmod

FFNNFFNNFFNN

BIAFFINE

POS Tagging

NER

Dependency
parsing

ĐâyThis

softmax

FFNN

PRON

làis

softmax

FFNN

VERB

Hà_NộiHa_Noi

softmax

FFNN

NOUN

O

FFNN

O

FFNN

B-LOC

FFNN

BERT-based
encoder

CRF

Pre-trained BERT-based LM

ID Form POS NER Head DepRel
1 ĐâyThis PRON O 2 sub
2 làis VERB O 0 root
3 Hà_NộiHa_Noi NOUN B-LOC 2 vmod

Figure 1: Illustration of our PhoNLP model.

tag is then represented by two “soft” embeddings
that are later fed into NER and dependency pars-
ing layers separately. More specifically, based on
both the contextualized word embeddings and the
“soft” POS tag embeddings, the NER layer uses a
linear-chain CRF predictor (Lafferty et al., 2001)
to predict NER labels for the input words, while the
dependency parsing layer uses a Biaffine classifier
(Dozat and Manning, 2017) to predict dependency
arcs between the words and another Biaffine clas-
sifier to label the predicted arcs. Our contributions
are summarized as follows:

• To the best of our knowledge, PhoNLP is the first
proposed model to jointly learn POS tagging,
NER and dependency parsing for Vietnamese.

• We discuss a data leakage issue in the Viet-
namese benchmark datasets, that has not yet
been pointed out before. Experiments show that
PhoNLP obtains state-of-the-art performance re-
sults, outperforming the PhoBERT-based single
task learning.

• We publicly release PhoNLP as an open-source
toolkit that is simple to setup and efficiently run
from both the command-line and Python API. We
hope that PhoNLP can serve as a strong baseline

and useful toolkit for future NLP research and
downstream applications.

2 Model description

Figure 1 illustrates our PhoNLP architecture that
can be viewed as a mixture of a BERT-based encod-
ing layer and three decoding layers of POS tagging,
NER and dependency parsing.

2.1 Encoder & Contextualized embeddings
Given an input sentence consisting of n word to-
kens w1, w2, ..., wn, the encoding layer employs
PhoBERT to generate contextualized latent feature
embeddings ei each representing the ith word wi:

ei = PhoBERTbase
(
w1:n, i

)
(1)

In particular, the encoding layer employs the
PhoBERTbase version. Because PhoBERT uses
BPE (Sennrich et al., 2016) to segment the input
sentence with subword units, the encoding layer in
fact represents the ith word wi by using the contex-
tualized embedding of its first subword.

2.2 POS tagging
Following a common manner when fine-tuning a
pre-trained language model for a sequence labeling

2

task (Devlin et al., 2019), the POS tagging layer is
a linear prediction layer that is appended on top of
the encoder. In particular, the POS tagging layer
feeds the contextualized word embeddings ei into
a feed-forward network (FFNNPOS) followed by a
softmax predictor for POS tag prediction:

pi = softmax
(
FFNNPOS

(
ei
))

(2)

where the output layer size of FFNNPOS is the num-
ber of POS tags. Based on probability vectors pi, a
cross-entropy objective loss LPOS is calculated for
POS tagging during training.

2.3 NER
The NER layer creates a sequence of vectors v1:n

in which each vi is resulted in by concatenating
the contextualized word embedding ei and a “soft”
POS tag embedding t

(1)
i :

vi = ei ◦ t(1)i (3)

where following Hashimoto et al. (2017), the “soft”
POS tag embedding t

(1)
i is computed by multiply-

ing a label weight matrix W(1) with the corre-
sponding probability vector pi:

t
(1)
i = W(1)pi

The NER layer then passes each vector vi into a
FFNN (FFNNNER):

hi = FFNNNER
(
vi

)
(4)

where the output layer size of FFNNNER is the num-
ber of BIO-based NER labels.

The NER layer feeds the output vectors hi into a
linear-chain CRF predictor for NER label predic-
tion (Lafferty et al., 2001). A cross-entropy loss
LNER is calculated for NER during training while
the Viterbi algorithm is used for inference.

2.4 Dependency parsing
The dependency parsing layer creates vectors z1:n
in which each zi is resulted in by concatenating ei
and another “soft” POS tag embedding t

(2)
i :

zi = ei ◦ t(2)i (5)

t
(2)
i = W(2)pi

Following Dozat and Manning (2017), the de-
pendency parsing layer uses FFNNs to split zi into
head and dependent representations:

h
(A-H)
i = FFNNArc-Head

(
zi
)

(6)

h
(A-D)
i = FFNNArc-Dep

(
zi
)

(7)

h
(L-H)
i = FFNNLabel-Head

(
zi
)

(8)

h
(L-D)
i = FFNNLabel-Dep

(
zi
)

(9)

To predict potential dependency arcs, based on
input vectors h

(A-H)
i and h

(A-D)
j , the parsing layer

uses a Biaffine classifier’s variant (Qi et al., 2018)
that additionally takes into account the distance
and relative ordering between two words to pro-
duce a probability distribution of arc heads for each
word. For inference, the Chu–Liu/Edmonds’ al-
gorithm is used to find a maximum spanning tree
(Chu and Liu, 1965; Edmonds, 1967). The parsing
layer also uses another Biaffine classifier to label
the predicted arcs, based on input vectors h

(L-H)
i

and h
(L-D)
j . An objective loss LDEP is computed by

summing a cross entropy loss for unlabeled depen-
dency parsing and another cross entropy loss for
dependency label prediction during training based
on gold arcs and arc labels.

2.5 Joint multi-task learning

The final training objective loss L of our model
PhoNLP is the weighted sum of the POS tagging
loss LPOS, the NER loss LNER and the dependency
parsing loss LDEP:

L = λ1LPOS+λ2LNER+(1−λ1−λ2)LDEP (10)

Discussion: Our PhoNLP can be viewed as an
extension of previous joint POS tagging and depen-
dency parsing models (Hashimoto et al., 2017; Li
et al., 2018; Nguyen and Verspoor, 2018; Nguyen,
2019; Kondratyuk and Straka, 2019), where we
additionally incorporate a CRF-based prediction
layer for NER. Unlike Hashimoto et al. (2017),
Nguyen and Verspoor (2018), Li et al. (2018) and
Nguyen (2019) that use BiLSTM-based encoders
to extract contextualized feature embeddings, we
use a BERT-based encoder. Kondratyuk and Straka
(2019) also employ a BERT-based encoder. How-
ever, different from PhoNLP where we construct a
hierarchical architecture over the POS tagging and
dependency parsing layers, Kondratyuk and Straka
(2019) do not make use of POS tag embeddings for
dependency parsing.2

2In our preliminary experiments, not feeding the POS tag
embeddings into the dependency parsing layer decreases the
performance.

3

Task #train #valid #test
POS tagging (leakage) 27000 870 2120
POS tagging (re-split) 23906 2009 3481
NER 14861 2000 2831
Dependency parsing 8977 200 1020

Table 1: Dataset statistics. #train, #valid and #test de-
note the numbers of training, validation and test sen-
tences, respectively. Here, “POS tagging (leakage)”
and “POS tagging (re-split)” refer to the statistics for
POS tagging before and after re-splitting & sentence
duplication removal, respectively.

3 Experiments

3.1 Setup

3.1.1 Datasets
To conduct experiments, we use the benchmark
datasets of the VLSP 2013 POS tagging dataset,3

the VLSP 2016 NER dataset (Nguyen et al., 2019)
and the VnDT dependency treebank v1.1 Nguyen
et al. (2014), following the setup used by the Vn-
CoreNLP toolkit (Vu et al., 2018). Here, VnDT
is converted from the Vietnamese constituent tree-
bank (Nguyen et al., 2009).

Data leakage issue: We further discover an is-
sue of data leakage, that has not yet been pointed
out before. That is, all sentences from the VLSP
2016 NER dataset and the VnDT treebank are in-
cluded in the VLSP 2013 POS tagging dataset. In
particular, 90+% of sentences from both validation
and test sets for NER and dependency parsing are
included in the POS tagging training set, result-
ing in an unrealistic evaluation scenario where the
POS tags are used as input features for NER and
dependency parsing.

To handle the data leakage issue, we have to
re-split the VLSP 2013 POS tagging dataset to
avoid the data leakage issue: The POS tagging val-
idation/test set now only contains sentences that
appear in the union of the NER and dependency
parsing validation/test sets (i.e. the validation/test
sentences for NER and dependency parsing only
appear in the POS tagging validation/test set). In
addition, there are 594 duplicated sentences in the
VLSP 2013 POS tagging dataset (here, sentence
duplication is not found in the union of the NER
and dependency parsing sentences). Thus we have
to perform duplication removal on the POS tag-
ging dataset. Table 1 details the statistics of the
experimental datasets.

3https://vlsp.org.vn/vlsp2013/eval

3.1.2 Implementation

PhoNLP is implemented based on PyTorch (Paszke
et al., 2019), employing the PhoBERT encoder
implementation available from the transformers
library (Wolf et al., 2020) and the Biaffine classifier
implementation from Qi et al. (2020). We set both
the label weight matrices W(1) and W(2) to have
100 rows, resulting in 100-dimensional soft POS
tag embeddings. In addition, following Qi et al.
(2018, 2020), FFNNs in equations 6–9 use 400-
dimensional output layers.

We use the AdamW optimizer (Loshchilov and
Hutter, 2019) and a fixed batch size at 32, and
train for 40 epochs. The sizes of training sets are
different, in which the POS tagging training set is
the largest, consisting of 23906 sentences. Thus
for each training epoch, we repeatedly sample from
the NER and dependency parsing training sets to
fill the gaps between the training set sizes. We
perform a grid search to select the initial AdamW
learning rate, λ1 and λ2. We find the optimal initial
AdamW learning rate, λ1 and λ2 at 1e-5, 0.4 and
0.2, respectively. Here, we compute the average
of the POS tagging accuracy, NER F1-score and
dependency parsing score LAS after each training
epoch on the validation sets. We select the model
checkpoint that produces the highest average score
over the validation sets to apply to the test sets.
Each of our reported scores is an average over 5
runs with different random seeds.

3.2 Results

Table 2 presents results obtained for our PhoNLP
and compares them with those of a baseline ap-
proach of single-task training. For the single-task
training approach: (i) We follow a common ap-
proach to fine-tune a pre-trained language model
for POS tagging, appending a linear prediction
layer on top of PhoBERT, as briefly described in
Section 2.2. (ii) For NER, instead of a linear pre-
diction layer, we append a CRF prediction layer
on top of PhoBERT. (iii) For dependency parsing,
predicted POS tags are produced by the learned
single-task POS tagging model; then POS tags are
represented by embeddings that are concatenated
with the corresponding PhoBERT-based contextu-
alized word embeddings, resulting in a sequence
of input vectors for the Biaffine-based classifiers
for dependency parsing (Qi et al., 2018). Here,
the single-task training approach is based on the
PhoBERTbase version, employing the same hyper-

4

Model POS NER LAS UAS
L

ea
k. Single-task 96.7† 93.69 78.77† 85.22†

PhoNLP 96.76 94.41 79.11 85.47

R
e-

sp
l Single-task 93.68 93.69 77.89 84.78

PhoNLP 93.88 94.51 78.17 84.95

Table 2: Performance results (in %) on the test sets
for POS tagging (i.e. accuracy), NER (i.e. F1-score)
and dependency parsing (i.e. LAS and UAS scores).
“Leak.” abbreviates “leakage”, denoting the results ob-
tained w.r.t. the data leakage issue. “Re-spl” denotes
the results obtained w.r.t. the data re-split and duplica-
tion removal for POS tagging to avoid the data leakage
issue. “Single-task” refers to as the single-task training
approach. † denotes scores taken from the PhoBERT
paper (Nguyen and Nguyen, 2020). Note that “Single-
task” NER is not affected by the data leakage issue.

parameter tuning and model selection strategy that
we use for PhoNLP.

Note that PhoBERT helps produce state-of-the-
art results for multiple Vietnamese NLP tasks (in-
cluding but not limited to POS tagging, NER and
dependency parsing in a single-task training strat-
egy), and obtains higher performance results than
VnCoreNLP. However, in both the PhoBERT and
VnCoreNLP papers (Nguyen and Nguyen, 2020;
Vu et al., 2018), results for POS tagging and de-
pendency parsing are reported w.r.t. the data leak-
age issue. Our “Single-task” results in Table 2
regarding “Re-spl” (i.e. the data re-split and dupli-
cation removal for POS tagging to avoid the data
leakage issue) can be viewed as new PhoBERT
results for a proper experimental setup. Table 2
shows that in both setups “Leak.” and “Re-spl”,
our joint multi-task training approach PhoNLP per-
forms better than the PhoBERT-based single-task
training approach, thus resulting in state-of-the-
art performances for the three tasks of Vietnamese
POS tagging, NER and dependency parsing.

4 PhoNLP toolkit

We present in this section a basic usage of our
PhoNLP toolkit. We make PhoNLP simple to
setup, i.e. users can install PhoNLP from either
source or pip (e.g. pip3 install phonlp). We also
aim to make PhoNLP simple to run from both the
command-line and the Python API. For example,
annotating a corpus with POS tagging, NER and
dependency parsing can be performed by using a
simple command as in Figure 2.

Assume that the input file “input.txt” in
Figure 2 contains a sentence “Tôi đang làm_việc tại

python3 run_phonlp.py --save_dir
./pretrained_phonlp --mode
annotate --input_file input.txt
--output_file output.txt

Figure 2: Minimal command to run PhoNLP. Here
“save_dir” denote the path to the local machine folder
that stores the pre-trained PhoNLP model.

1 Tôi P O 3 sub
2 đang R O 3 adv
3 làm_việc V O 0 root
4 tại E O 3 loc
5 VinAI Np B-ORG 4 pob
6 . CH O 3 punct

Table 3: The output in the output file “output.txt”
for the sentence “Tôi đang làm_việc tại VinAI .” from
the input file “input.txt” in Figure 2. The output
is formatted with 6 columns representing word index,
word form, POS tag, NER label, head index of the cur-
rent word and its dependency relation type.

VinAI .” (ITôi amđang workinglàm_việc attại VinAI).
Table 3 shows the annotated output in plain text
form for this sentence. Similarly, we also get the
same output by using the Python API as simple
as in Figure 3. Furthermore, commands to (re-
)train and evaluate PhoNLP using gold annotated
corpora are detailed in the PhoNLP GitHub reposi-
tory. Note that it is absolutely possible to directly
employ our PhoNLP (re-)training and evaluation
command scripts for other languages that have gold
annotated corpora available for the three tasks and a
pre-trained BERT-based language model available
from the transformers library.

Speed test: We perform a sole CPU-based speed
test using a personal computer with Intel Core i5
8265U 1.6GHz & 8GB of memory. For a GPU-
based speed test, we employ a machine with a sin-
gle NVIDIA RTX 2080Ti GPU. For performing the
three NLP tasks jointly, PhoNLP obtains a speed at
15 sentences per second for the CPU-based test and
129 sentences per second for the GPU-based test,
respectively, with an average of 23 word tokens per
sentence and a batch size of 8.

5 Conclusion and future work

We have presented the first multi-task learning
model PhoNLP for joint POS tagging, NER and de-
pendency parsing in Vietnamese. Experiments on
Vietnamese benchmark datasets show that PhoNLP
outperforms its strong fine-tuned PhoBERT-based

5

import phonlp
Automatically download the pre-trained PhoNLP model
and save it in a local machine folder
phonlp.download(save_dir=’./pretrained_phonlp’)
Load the pre-trained PhoNLP model
model = phonlp.load(save_dir=’./pretrained_phonlp’)
Annotate a corpus
model.annotate(input_file=’input.txt’, output_file=’output.txt’)
Annotate a sentence
model.print_out(model.annotate(text="Tôi đang làm_việc tại VinAI ."))

Figure 3: A simple and complete example code for using PhoNLP in Python.

single-task training baseline, producing state-of-
the-art performance results. We publicly release
PhoNLP as an easy-to-use open-source toolkit and
hope that PhoNLP can facilitate future NLP re-
search and applications. In future work, we will
also apply PhoNLP to other languages.

References
Tran Sy Bang and Virach Sornlertlamvanich. 2018.

Sentiment classification for hotel booking review
based on sentence dependency structure and sub-
opinion analysis. IEICE Transactions on Informa-
tion and Systems, E101.D(4):909–916.

Yoeng-Jin Chu and Tseng-Hong Liu. 1965. On the
Shortest Arborescence of a Directed Graph. Science
Sinica, 14:1396–1400.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL, pages 4171–
4186.

Timothy Dozat and Christopher D. Manning. 2017.
Deep Biaffine Attention for Neural Dependency
Parsing. In Proceedings of ICLR.

Jack Edmonds. 1967. Optimum Branchings. Journal
of Research of the National Bureau of Standards,
71:233–240.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2017. A Joint Many-
Task Model: Growing a Neural Network for Multi-
ple NLP Tasks. In Proceedings of EMNLP, pages
1923–1933.

Dan Kondratyuk and Milan Straka. 2019. 75 Lan-
guages, 1 Model: Parsing Universal Dependencies
Universally. In Proceedings of EMNLP-IJCNLP,
pages 2779–2795.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling

Sequence Data. In Proceedings of ICML, pages
282–289.

Phuong Le-Hong and Duc-Thien Bui. 2018. A Fac-
toid Question Answering System for Vietnamese. In
Companion Proceedings of the The Web Conference
2018, page 1049–1055.

Zuchao Li, Shexia He, Zhuosheng Zhang, and Hai
Zhao. 2018. Joint Learning of POS and Dependen-
cies for Multilingual Universal Dependency Parsing.
In Proceedings of the CoNLL 2018 Shared Task,
pages 65–73.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
Weight Decay Regularization. In Proceedings of
ICLR.

Anh Tuan Nguyen, Mai Hoang Dao, and Dat Quoc
Nguyen. 2020. A Pilot Study of Text-to-SQL Se-
mantic Parsing for Vietnamese. In Findings of
EMNLP 2020, pages 4079–4085.

Dat Quoc Nguyen. 2019. A neural joint model for Viet-
namese word segmentation, POS tagging and depen-
dency parsing. In Proceedings of ALTA, pages 28–
34.

Dat Quoc Nguyen and Anh Tuan Nguyen. 2020.
PhoBERT: Pre-trained language models for Viet-
namese. In Findings of EMNLP 2020, pages 1037–
1042.

Dat Quoc Nguyen, Dai Quoc Nguyen, and Son Bao
Pham. 2017. Ripple Down Rules for Question An-
swering. Semantic Web, 8(4):511–532.

Dat Quoc Nguyen, Dai Quoc Nguyen, Son Bao Pham,
Phuong-Thai Nguyen, and Minh Le Nguyen. 2014.
From Treebank Conversion to Automatic Depen-
dency Parsing for Vietnamese. In Proceedings of
NLDB, pages 196–207.

Dat Quoc Nguyen and Karin Verspoor. 2018. An
improved neural network model for joint POS tag-
ging and dependency parsing. In Proceedings of the
CoNLL 2018 Shared Task, pages 81–91.

6

Huyen Nguyen, Quyen Ngo, Luong Vu, Vu Tran, and
Hien Nguyen. 2019. VLSP Shared Task: Named
Entity Recognition. Journal of Computer Science
and Cybernetics, 34(4):283–294.

Phuong-Thai Nguyen, Xuan-Luong Vu, Thi-Minh-
Huyen Nguyen, Van-Hiep Nguyen, and Hong-
Phuong Le. 2009. Building a Large Syntactically-
Annotated Corpus of Vietnamese. In Proceedings
of LAW, pages 182–185.

Adam Paszke, Sam Gross, et al. 2019. PyTorch: An
Imperative Style, High-Performance Deep Learning
Library. In Proceedings of NeurIPS 2019, pages
8024–8035.

Peng Qi, Timothy Dozat, Yuhao Zhang, and Christo-
pher D. Manning. 2018. Universal Dependency
parsing from scratch. In Proceedings of the CoNLL
2018 Shared Task, pages 160–170.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
python natural language processing toolkit for many
human languages. In Proceedings of ACL: System
Demonstrations, pages 101–108.

Sebastian Ruder. 2019. Neural Transfer Learning for
Natural Language Processing. Ph.D. thesis, Na-
tional University of Ireland, Galway.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of ACL, pages
1715–1725.

Huong Duong To and Phuc Do. 2020. Extracting
triples from vietnamese text to create knowledge
graph. In Proceedings of KSE, pages 219–223.

Viet Hong Tran, Huyen Thuong Vu, Thu Hoai Pham,
Vinh Van Nguyen, and Minh Le Nguyen. 2016. A
reordering model for Vietnamese-English statistical
machine translation using dependency information.
In Proceedings of RIVF, pages 125–130.

Diem Truong, Duc-Thuan Vo, and Uyen Trang Nguyen.
2017. Vietnamese open information extraction. In
Proceedings of SoICT, page 135–142.

Thanh Vu, Dat Quoc Nguyen, Dai Quoc Nguyen, Mark
Dras, and Mark Johnson. 2018. VnCoreNLP: A
Vietnamese Natural Language Processing Toolkit.
In Proceedings of NAACL: Demonstrations, pages
56–60.

Thomas Wolf, Lysandre Debut, et al. 2020. Transform-
ers: State-of-the-Art Natural Language Processing.
In Proceedings of EMNLP 2020: System Demon-
strations, pages 38–45.

7

Proceedings of NAACL-HLT 2021: Demonstrations, pages 8–17
June 6–11, 2021. ©2021 Association for Computational Linguistics

Machine-Assisted Script Curation

Manuel R. Ciosici Joseph Cummings, Mitchell DeHaven, Alex Hedges, Yash Kankanampati,
Dong-Ho Lee, Ralph Weischedel, Marjorie Freedman

manuelc@isi.edu, weisched@isi.edu, mrf@isi.edu
Information Sciences Institute, University of Southern California

Abstract

We describe Machine-Aided Script Cura-
tor (MASC), a system for human-machine col-
laborative script authoring. Scripts produced
with MASC include (1) English descriptions
of sub-events that comprise a larger, complex
event; (2) event types for each of those events;
(3) a record of entities expected to participate in
multiple sub-events; and (4) temporal sequenc-
ing between the sub-events. MASC automates
portions of the script creation process with sug-
gestions for event types, links to Wikidata, and
sub-events that may have been forgotten. We
illustrate how these automations are useful to
the script writer with a few case-study scripts.

1 Introduction

Scripts have been of interest for encoding procedu-
ral knowledge and understanding stories for over
40 years (Schank and Abelson, 1977). In the form
of checklists, recording procedural knowledge has
revolutionized fields like medicine and aviation by
encoding expert knowledge and best practices (De-
gani and Wiener, 1993; Gawande, 2010). In the last
few years, researchers have turned their attention
to automatic script discovery from text (Chambers,
2013; Weber et al., 2020, 2018). However, ex-
clusively data-driven sub-event discovery methods
face the challenge that narrative descriptions often
omit common knowledge.1

We aim for a process for building a library of
scripts through human-machine collaboration lever-
aging NLP techniques to augment human back-
ground knowledge. The resulting demonstration
system serves two related purposes. First, it is a
knowledge acquisition tool that supports the de-
velopment of a repository of scripts for use by
downstream applications. Second, it is an anno-
tation tool that supports the creation of a library to

1Common knowledge might be missing from narrative
descriptions due to the quantity and relevance maxims (Grice,
1975).

aid our understanding of how people create scripts.
Such a library can inform and/or benchmark future
script discovery approaches. Each script includes
a natural language description of the steps in the
complex event with links to an ontology. Events
within a script are connected by (a) temporal order
(e.g., negotiating the price of a car happens before
buying the car) and (b) by shared argument (e.g.,
the person buying a car is also the person who ne-
gotiated its price). We designed Machine-Aided
Script Curator (MASC), our script-creation tool, to
be used by non-NLP experts.

While approaches to script discovery suffer from
the incompleteness of text, human attempts to
write machine-interpretable scripts suffer from the
writer’s own tendency to omit steps and, where
required, the challenge of mapping to a formal on-
tology. To assist the script creators, MASC makes
three types of suggestions: (1) the ontological type
for each event; (2) a fine-grained ontological type
for suggested arguments; and (3) steps that the cu-
rator might have forgotten.

In the following sections, we describe the pro-
cess of creating a script in MASC and the NLP
components that support suggestions.2 While a
large-scale script repository is beyond this paper’s
scope, we have created five sample scripts, which
we use as case studies for understanding the script
creation process and the suggestion capabilities. In
Section 4, we use these scripts to measure the utility
of MASC’s suggestion capabilities. In Section 5,
we describe the scripts’ characteristics.

2 Related Work

Schank and Abelson (1977) proposed organizing
knowledge about human behavior using scripts. Re-
cent approaches attempt to “induce” scripts from

2A video of MASC is available at https://youtu.
be/slvZWAYkRmA, and the source code and the sam-
ple scripts are at https://github.com/isi-vista/
MASC.

8

Figure 1: Adding events to the buying a car script.

large amounts of data rather than write scripts man-
ually (Rudinger et al., 2015; Weber et al., 2018).
Although improving year over year, these models
still perform poorly (Recall@100 of ~7%, Weber
et al., 2020) at predicting next events, given a set
of preceding events - a necessary building block
of scripts. These models’ training data was ob-
tained by asking human annotators to decide if
event B happened because of event A. In contrast,
the scripts produced by our curation tool incorpo-
rate the complexities of many different events in
various causal orderings.

Both symbolic and neural approaches suffer
from the lack of generic knowledge to “fill-in-the-
blanks” or reject impossible events. Training sys-
tems to incorporate common-sense knowledge (Lin
et al., 2019; Shwartz et al., 2020) has not yet ad-
dressed script creation. Another source of informa-
tion for script discovery could be extraction from
multiple languages and modalities. While some
extraction systems have incorporated these other
sources (Li et al., 2020), such extractions have not
yet fed into script discovery. Resolving the co-
occurrence of events or entities between languages
and modalities often relies on a common mapping,
e.g., a structured ontology, such as ACE (Walker
et al., 2006) or ERE (Song et al., 2015). While
our Machine-Aided Script Curator (MASC) does
employ a structured ontology, it does not currently
incorporate multi-modal or non-English sources.
However, the limited ontology allows the event-
sequencing background knowledge we encode to
be used as a supplement to state-of-the-art infor-
mation extraction systems, like OneIE (Lin et al.,
2020) and DYGIE++ (Wadden et al., 2019), provid-
ing connections between otherwise disconnected
extractions.

3 Overview of Script Creation

The curator initiates script creation by providing a
name and description for the script and then enters,
as text, the events in the script (Figure 1). Step
entry is free-form, but we have noticed a tendency
for curators to enter short, imperative sentences
around a central agent’s actions (e.g., go to a car
dealership, take a test drive). Currently, script cre-
ation, unlike traditional annotation, is decoupled
from any particular document. In cases where the
curator is not familiar with a topic, we have used ex-
ternal resources to provide context (e.g., a Wikihow
page open in a different window). In this setting,
curation is akin to annotation that encourages the
annotator to use both the material they read and
prior knowledge.

The curators assign an ontology type to the main
event in each step (e.g., Movement for both go
to a car dealership and take a test drive). The
ontology is configurable and can be replaced. We
include a project-specific ontology with MASC’s
source code. When saved, scripts include both the
curators’ description and the selected ontology type
(described in Section 4.1). This choice allows type
decisions to be revisited if the ontology changes
and limits the degree to which the small number of
event types constrains the script’s expressiveness.
Downstream applications can choose whether to
use the linguistic representation of the events or the
normalized ontology types.

After the curators finish entering events, they
encode connections between the events (Figure 2).
There are two ways to connect events: the first,
traditionally the focus of scripts, is temporal or-
der; and the second is shared arguments (e.g., the
same person is the agent of both Movement events
go to a car dealership and take a test drive). To
add sequential order, the curators enter pairwise
before relations. Alternatively, they select multi-
ple events and anchor them as coming before or
after a single event. The latter method is conve-
nient when the complete order is under-defined.3

The curators add shared arguments to the script
by selecting multiple events with the same argu-
ment, naming the argument (e.g., buyer, seller in
Figure 2), and assigning an entity type (e.g., PER
in Figure 2) and ontological role to each argument

3For example, after arriving at the car dealership, the
potential buyer is likely to both walk around looking at cars
and talk to a salesperson, but there is no defined order between
the walking and talking.

9

Figure 2: Adding details to events. For each event on the left, curators can add arguments. On the right side, curators
can establish temporal order and visualize the script as an interactive graph.

(e.g., Identifier, Researcher in Figure 2). While
this process is mostly manual, MASC uses the on-
tology’s constraints to limit the available label op-
tions. In addition to project-specific entity types,
MASC suggests links to the much larger set of
types available using Wikidata entities (e.g., sug-
gesting Q786803 for car dealership). These links
provide a connection to an extensive knowledge
graph and can provide additional information when
the scripts are applied.

Finally, the curators review events that are au-
tomatically generated based on the manually en-
tered description and initial script (described in
Section 4.3). The suggestions can add intermediate
steps that the curators may have missed, complete
a script that was intentionally unfinished by the
curator, or suggest alternative related paths (e.g.,
leasing instead of purchasing a car).

4 Suggestion Capabilities

To aid script creation, MASC incorporates three
suggestion capabilities: suggestions for the onto-
logical event type, suggestions for links to Wiki-
data, and suggestions for additional events to incor-
porate in the script. Below, we describe the models
behind these capabilities and, for each model, re-
port the accuracy using the five sample scripts cre-
ated for this paper. Given the small sample size, the
five sample scripts are best thought of as case stud-
ies, not a benchmark. Table 1 provides per-script

analysis.

4.1 Event Type Classification

Each sub-event is ontologized with one of 41 event
types through a semi-automated process. The on-
tology labels support connecting information to
extraction engines and thus allow a script to pro-
vide potential event-event relations given informa-
tion extraction output. Furthermore, the ontology
labels provide language- and media-independent
knowledge for identifying potential instances of
the scripts.

There has been much work on automatic de-
tection of event types (and triggers) in text (e.g.,
Bronstein et al. (2015); Lin et al. (2020); Peng
et al. (2016)). Here, our input data (and goals) are
slightly different. The ontology we use, while over-
lapping with ACE (Walker et al., 2006), introduces
several new event types for which we do not have
annotated training examples. Instead, the ontology
provides a short definition and template for each
event type. The curator’s input events tend to be
short imperative sentences with different linguistic
characteristics than the text annotated in, e.g., ACE.
Unlike standard information extraction, we need
not identify a specific trigger phase.4 Thus, we use
a different approach to event labeling.

4Triggers are often used as a means to identify arguments
of interest. But here, partly because of the telegraphic nature of
the text entries, the arguments are often missing and, therefore,
explicitly added.

10

To map from the curators’ description of an
event to the ontology, we use a version of Sentence-
RoBERTa (Reimers and Gurevych, 2019)5 to es-
timate the similarity of the curators’ text input to
the prose description of each action in the ontology.
For example, for the user input go to a car deal-
ership, the action description Explicit mention of
granting or allowing entry or exit from a location
receives the highest similarity score, and the cor-
responding action type Movement.Transportation
becomes one of the recommendations. MASC sug-
gests the three ontology actions most similar to
the user’s description. The user can accept one of
the suggestions or pick a different type from the
ontology (Figure 1, second column).

As mentioned earlier, the event type similarity
depends on the ontology event type definitions and
the event type templates. In preliminary experi-
ments, we found using both together outperformed
using either only the definitions or only the tem-
plates. While MASC’s event type classification
does not require training data, it depends on both
the presence of templates and definitions in the
ontology and their quality.

Performance on Case-Study Scripts The five
scripts contain 58 events. We measure how often
the model correctly predicts the event type that the
curator selects. Accuracy of the top-1, -3, and -5
are 24, 48, and 55, respectively.6 MASC presents
the top-three suggestions to the curator; thus, accu-
racy at top-3 most closely relates to the curator’s
experience.

4.2 KGTK
In Section 2, we describe identifying the key re-
peating arguments of script events and labeling
those arguments with their entity type and their
role in each event using an ontology. That on-
tology provides only coarse distinctions between
entities (e.g., a single category for facilities that
does not distinguish a car dealership from a school
or a bank). To support finer-grained distinctions
and, in the future, leverage external knowledge
sources, we incorporate connections to Wikidata7

using KGTK (Ilievski et al., 2020). MASC’s links
aim to ground descriptive noun phrases (e.g., car

5Our Sentence-RoBERTa model is trained on more data.
We use the two data sets in the original paper, SNLI (Bowman
et al., 2015) and MNLI (Williams et al., 2018), and add the
newer ANLI (Nie et al., 2020).

6The mean reciprocal rank (MRR, Radev et al., 2002)
was 0.35 on the top three model predictions.

7https://www.wikidata.org

Figure 3: Reviewing the Wikidata link suggestions.

dealership) in the large Wikidata ontology and do
not require grounding specific, named entities (e.g.,
Toyota).

KGTK is an open-source toolkit that simplifies
searching and interacting with various knowledge
graphs, including Wikidata. KGTK provides a sim-
ple API for searching Wikidata entries, via Elastic-
search,8 based on their titles and aliases (e.g., the
Wikidata entry motor car also has the aliases auto,
automobile, and car). KGTK also provides filtering
functionality for candidate Wikidata entries. Since
we are not interested in grounding specific named
entities, we only return Wikidata entries represent-
ing Wikidata classes. Within MASC, KGTK allows
users to link terms used in events to Wikidata. Dur-
ing argument creation, the curator provides a text
label for each key argument. A background process
then queries KGTK using the text label assigned
to each argument. Candidates from KGTK are
reranked using the Sentence-RoBERTa model to
generate similarity scores between the label strings
and the candidate Wikidata text descriptions. Be-
fore finishing a script, for each term in the script,
the curator can select one of the candidates from
KGTK or None of the above (Figure 3).

Performance on Case-Study Scripts. To eval-
uate entity linking, we treat the scripts created by
the curators (and the mapping from the reference
variables to Wikidata) as the labels. This is neces-
sary since we do not have a ground-truth mapping
from strings to Wikidata entities, and curators can
use the same string to reference different entities.
For example, car can refer to an automobile, a rail-
way carriage, or a streetcar. The metric we use
measures the ratio of reference variables linked to
a specific Wikidata entity to the total number of

8https://www.elastic.co/
elasticsearch/

11

Figure 4: GPT-2 recommendations for buying a car.

reference variables used. We find that curators link
67% of the unique reference variables to Wikidata
(e.g., buyer in Figure 3). We have not measured
the ceiling on using Wikidata as an argument ontol-
ogy. However, we suspect that refining the linking
approach could yield more connections to Wiki-
data. Even at this low level of recall, at least a few
concept-specific elements match for most scripts.
In the future, these connection points could sup-
port script augmentation using common-sense and
domain knowledge from Wikidata.

4.3 Event Recommendations

Since even the most experienced curators may over-
look an action in an event script, we explored hy-
pothesizing omitted events using GPT-2 (Radford
et al., 2019) without any fine-tuning.

The first challenge is formulating input to GPT-2.
We provide the title/name of the schema (e.g., buy-
ing a car), a description of the complex event (e.g.,
Purchasing a car is a large investment that requires
careful documentation and consideration of trans-
portation requirements.), and a request (e.g., De-
scribe steps of buying a car.), followed by the first
few events of the script. In the initial version, we
used a form of the events as First, Identify your
needs. Then, Decide on your budget. Next, Identify
car models you can afford. However, a numeri-
cal formulation proved much more effective (e.g.,
1. Identify your needs 2. Decide on your budget
3. Identify car models you can afford 4.) and re-
sulted in more coherent events.

To filter undesirable or redundant output, we
pass GPT-2 outputs through a sequence of filters.
We remove undesired strings characteristic of neu-
ral text generation, like empty strings (Stahlberg
and Byrne, 2019), and outputs that are invalid in the
context of schema creation: strings of less than two
words and those with sequences of non-alphabetic

characters. We address duplicated output, a con-
siderable concern for GPT-2, especially given the
short and similar inputs.9 The filters eliminate
strings with duplicates in the alternatives or the
human-curated schema. To account for semantic
duplicates, such as go to dealership and go to the
car dealership, we use a variant of Gestalt Pattern
Matching (Ratcliff and Metzener, 1988) through
Python’s difflib. For usability, we suggest at most
12 sub-events per script. Figure 4 shows the inter-
face for reviewing event recommendations.

Performance on Case Studies. We measure the
performance of GPT-2 recommendations in two
ways. First, we generate recommendations for five
scripts created by curators and ask the curators
to accept relevant GPT-2 recommendations. We
instruct curators to accept recommendations even
if the recommended events represent alternative
paths (or are semantically redundant). With these
instructions, the curators accept 98% of GPT-2’s
recommendations. The high acceptance rate in-
dicates that even with our simple setup for event
recommendation using a language model, the sys-
tem suggests domain-relevant events.

For the second evaluation, we instruct the cura-
tors to accept only those GPT-2 recommendations
that add to their existing script. In other words, they
only accept events that add details to the scripts or
supply some missing information. We instruct cu-
rators to reject recommendations for alternative
script scenarios. With these instructions, curators
accept 23% of GPT-2’s recommendations. This
result illustrates the feasibility of supplementing
human knowledge with generations from language
models. Since MASC uses GPT-2 after the human
felt the script was complete, the machine identifies
events previously overlooked by the human.

Mixed-Initiative script curation. Given the
success of GPT-2 recommendations after script cu-
ration, a natural next step is for curators to work
with GPT-2 interactively. In the mixed-initiative
mode, a curator specifies a script’s name, defini-
tion, and first step. GPT-2 then suggests multiple
options for the next step. The curator can use one
of the suggestions, edit it, or ignore all the sugges-
tions and manually input the next step. Every time
the curator adds a step to the script, GPT-2 follows
with suggestions for the next step. We found that

9GPT-2 often generates strings with a similar meaning,
but lexically different, e.g., for a script on buying a car, it
might generate buy, buy the car, and purchase the car. It is
superfluous to show users all three suggestions.

12

Figure 5: Mixed-Initiative: GPT-2’s suggestions for the
script buying a car, given the first step Identify your
needs.

automated step generation took less than 3 seconds
in the slowest case on modern hardware (NVIDIA
GeForce RTX2080Ti).

To evaluate the effectiveness of mixed-initiative
mode, we asked four curators to create a total of
twelve scripts using the mode. We instructed the
curators to accept event suggestions only when
they are a natural continuation of the script. Out of
GPT-2’s 105 suggestion sets, the curators accepted
an event from 50 sets (48% acceptance rate). In six
more cases, the curators used a GPT-2 suggestion
as a starting point and edited the suggestions to
suit the script better. We found the mixed-initiative
scripts to be just as comprehensive as the scripts
detailed in Table 1, where GPT-2 suggested miss-
ing events only after the curators created an initial
script.

5 Discussion and Future Work

With this demonstration system, we provide an ap-
proach to human-machine collaboration for build-
ing a repository of scripts. Having such a repos-
itory, for a diverse set of events, will allow us to
investigate how procedural knowledge introduced
to the AI community 40 years ago (Schank and
Abelson, 1977) can be broadly applied. By facili-
tating the human creation of scripts, we can better
understand what is required to develop automatic
script discovery approaches.

While we have not yet created a large reposi-
tory of scripts, we have created five scripts with
which we start this analysis. The scripts cover top-
ics with varying degree of “common knowledge”:
Planning and Managing an Evacuation (EVAC),
Ordering Food at a Restaurant (FOOD), Finding
and Starting a New Job (JOB), Obtaining Medical
Treatment (MED), and Corporate Merger or Acqui-
sition (MERGER). A single curator created these
scripts, which we use to illustrate future directions
for MASC and interesting properties of the scripts
themselves. Having multiple curators for even a
small number of scripts would provide insights into

the diversity, prior knowledge, and level of detail
a script author uses. In our analysis, we have seen
that the scripts created with MASC encode knowl-
edge that is uncommon in news-like data sets. For
example, our curator included sign confidentiality
agreement as an event in the script for a MERGER.
While news frequently reports the final step of a
merger, the full process is rarely described.

Table 1 summarizes the key characteristics of
each of these scripts. They vary in (a) the number
of steps initially created (row 1), with only 5 steps
for MED and 16 for both EVAC and JOB; and
(b) the time required for initial script creation (row
6). The script that took the longest was not the
one with the most steps (or the most arguments).
Instead, it was the domain that the curator knew
the least about (and thus chose to research). For all
five scripts, there were cases where the event type
suggestions were correct, but for three of the five,
MASC suggested the correct type less than half the
time, suggesting that better automatic event typing
could increase the curators’ speed.

All scripts contain entities that play a role in mul-
tiple events (row 3, first and second numbers). For
example, in EVAC, the evacuation manager plays
some role in all events, while the evacuee plays a
role in most but not all. While some arguments
cannot be linked to Wikidata, all five scripts con-
tain at least one argument that can be linked (row
3, last number). Future work could both improve
linking accuracy and use Wikidata as a source of
knowledge to provide additional context (and sug-
gestions) to the curator.

While the prototypical script is a timeline with
complete order between all pairs of events, we see
sub-graphs with unordered steps in our data. Three
of the five sample scripts display this behavior; for
example, in JOB, searching for open positions and
notifying network that they are looking for a job
are unordered. The visualization of the schema
in Figure 2 illustrates this pattern with no order
between E2 and E3.

MASC incorporates machine suggestions of un-
recorded events. In four of the five scripts, the
curator accepted at least one suggestion. Interest-
ingly, the curator incorporated more suggestions
for two events that one thinks of as everyday ex-
periences (FOOD and MED) than they did for the
script they were unfamiliar with (MERGER). This
suggests that the recommendation functionality can
be useful even in a familiar domain; by capturing

13

EVAC FOOD JOB MED MERGER
1 # Events in initial script 16 9 16 5 12
2 Accuracy at top-1, 3, 5 for event types 25/44/50 11/33/67 13/44/44 20/60/60 50/67/67

3
Entity instances, occurrences of those
entities, and unique links to Wikidata

2/26/1 5/18/3 2/24/2 3/11/3 3/24/2

4
Event suggestions selected for single
script and all relevant (max. 12 per script)

4/8 3/12 0/11 5/12 2/12

5 Non-linear path Y Y Y N N
6 Self-reported time 1.5 hrs 0.5 hr 1 hr 0.5 hr 2.5 hrs

Table 1: Characteristics of five sample scripts.

what the curator omits through forgetfulness or be-
cause they assume common knowledge. Further
exploration of how a machine can aid a person
whose knowledge may be incomplete or may for-
get to be explicit seems promising. Examples of
possible research directions include incorporating
suggestions from approaches that discover scripts
(e.g., Rudinger et al. (2015); Weber et al. (2018,
2020)) and leveraging background knowledge (e.g.,
Wikidata).

6 Ethical Considerations

Many technological innovations require ethical con-
siderations, even more so for those involving ma-
chine learning while also being a demonstration
paper that provides working technology. Below we
address the review questions raised in the NAACL
Ethics Review Questions.10

Bias. The bias in generative language models
has been well documented. In general, using a
human-in-the-loop process means that rather than
treating an automatically generated label or event
as correct, we treat it as a suggestion that the curator
can ignore. Still, the suggestions can influence the
curator. Thus it is vital that the metrics reported in
this paper be interpreted with an understanding of
the potential for bias and any use of MASC account
for bias.

MASC incorporates both a predefined ontology
and the ability to link to an extensive external re-
source (Wikidata). Given the size of the predefined
ontology is small, to apply MASC to a new domain,
users would likely need to update the ontology.
MASC’s approach to aligning English descriptions
to the ontology makes adding new event classes
easy. Wikidata, while much larger and growing, is
also subject to the bias of Wikidata’s editors, their
knowledge, and their choices about what to include.

10https://2021.naacl.org/ethics/
review-questions/

Wikidata over-represents some issues, while some
socially important ones are under-represented or
missing. Wikidata linking is optional; thus in a
domain that is not well covered, a curator can skip
the linking step or replace Wikidata with a domain-
relevant resource.

The suggestion capabilities described in Sec-
tion 4 use pretrained language models (GPT-2 and
RoBERTa). The bias of these algorithms, measur-
ing that bias, and mitigating it is an active area
of work. Recent work has provided data sets for
measuring bias (Nadeem et al., 2020) and meta-
studies of the approaches taken to study and ad-
dress bias (Blodgett et al., 2020). Much work
has focused on bias as it impacts demographic
groups. MASC focuses on events, not individu-
als. The publicly available GPT-2 models have
learned from data that might not cover current
events (e.g., GPT-2 was trained before the COVID-
19 epidemic), represents only English dialects from
the inner-circle (Dunn and Adams, 2020), and con-
tains toxic language (Gehman et al., 2020). In our
immediate context, we mitigate against the chal-
lenge presented by language model bias by requir-
ing manual review of all automatically suggested
output. If the ideas in this paper were extended to
a fully automatic approach, language model and
domain-specific studies of the impact of bias on
LM-based suggestions would be necessary.

Data Set. To understand how the tool is used and
future research directions, we created five sample
scripts which we included in the supplementary ma-
terial. These scripts provide interesting examples
of what we could learn from a larger scale data set;
however, they are not large enough themselves to
serve as a new benchmark. The five scripts were
created by full-time research staff compensated fol-
lowing US state and federal law. The scripts were
created by a single individual and represent that
individual’s pre-existing knowledge (and their im-

14

plicit biases). To counter bias in a large-scale script
repository, we recommend that the curator work-
force is diverse and that any given activity is repre-
sented in scripts written by multiple people. Any
released repository should have sufficient reporting
about the data set creators to provide users with
an understanding of data bias. The paper reports
empirical results based on this five script sample.
However, the paper acknowledges that the sample
is small and treats these results as case studies for
MASC, not a new benchmark.

Intended Use. The most immediate use of
MASC is to create a repository of script informa-
tion – either broadly available to researchers or
within a specific research community. In some
cases, e.g., the steps to plan a rescue operation,
both the generation of the script and its application
are generally understood as positive. In other cases,
e.g., the steps in grooming an individual for human
trafficking, the script’s conclusion is negative, but
understanding the process is necessary to prevent
the activity. As AI’s ability to discover and apply
such knowledge increases, it will be necessary to
regularly audit the use cases to ensure the focus
remains a benefit to society. If the human-in-the-
loop approaches used here were integrated into a
fully automated system, further auditing of bias
(and accuracy) would be necessary.

Compute Time and Power. Most of the mod-
els used for this demonstration are pretrained and
publicly available. The pretraining and fine tuning
described in Section 4.1 took less than 20 hours
using a single GPU.

Acknowledgment

This material is based on research supported by
DARPA under agreement number FA8750-19-2-
0500. The U.S. Government is authorized to re-
produce and distribute reprints for Governmental
purposes notwithstanding any copyright notation
thereon. The views and conclusions contained
herein are those of the authors and should not be
interpreted as necessarily representing the official
policies or endorsements, either expressed or im-
plied, of DARPA or the U.S. Government.

References
Su Lin Blodgett, Solon Barocas, Hal Daumé III, and

Hanna Wallach. 2020. Language (technology) is
power: A critical survey of “bias” in NLP. In Pro-
ceedings of the 58th Annual Meeting of the Asso-

ciation for Computational Linguistics, pages 5454–
5476, Online. Association for Computational Lin-
guistics.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Ofer Bronstein, Ido Dagan, Qi Li, Heng Ji, and Anette
Frank. 2015. Seed-based event trigger labeling: How
far can event descriptions get us? In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 372–376, Beijing,
China. Association for Computational Linguistics.

Nathanael Chambers. 2013. Event schema induction
with a probabilistic entity-driven model. In Proceed-
ings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 1797–1807,
Seattle, Washington, USA. Association for Computa-
tional Linguistics.

Asaf Degani and Earl L. Wiener. 1993. Cockpit check-
lists: Concepts, design, and use. Human Factors,
35(2):345–359.

Jonathan Dunn and Ben Adams. 2020. Geographically-
Balanced Gigaword Corpora for 50 Language Va-
rieties. In Proceedings of The 12th Language Re-
sources and Evaluation Conference, pages 2521–
2529, Marseille, France. European Language Re-
sources Association.

Atul Gawande. 2010. The checklist manifesto: how to
get things right. Metropolitan Books, New York.

Samuel Gehman, Suchin Gururangan, Maarten Sap,
Yejin Choi, and Noah A. Smith. 2020. RealToxi-
cityPrompts: Evaluating neural toxic degeneration
in language models. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
3356–3369, Online. Association for Computational
Linguistics.

H Paul Grice. 1975. Logic and conversation, syntax and
semantics. Speech Acts, 3:41–58.

Filip Ilievski, Daniel Garijo, Hans Chalupsky,
Naren Teja Divvala, Yixiang Yao, Craig Rogers, Ron-
peng Li, Jun Liu, Amandeep Singh, Daniel Schwabe,
and Pedro Szekely. 2020. KGTK: A toolkit for large
knowledge graph manipulation and analysis. In The
Semantic Web – ISWC 2020, pages 278–293, Cham.
Springer International Publishing.

Manling Li, Alireza Zareian, Ying Lin, Xiaoman Pan,
Spencer Whitehead, Brian Chen, Bo Wu, Heng Ji,
Shih-Fu Chang, Clare Voss, Daniel Napierski, and
Marjorie Freedman. 2020. GAIA: A fine-grained

15

multimedia knowledge extraction system. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics: System Demon-
strations, pages 77–86, Online. Association for Com-
putational Linguistics.

Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and Xiang
Ren. 2019. KagNet: Knowledge-aware graph net-
works for commonsense reasoning. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2829–2839, Hong Kong,
China. Association for Computational Linguistics.

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
A joint neural model for information extraction with
global features. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7999–8009, Online. Association for
Computational Linguistics.

Moin Nadeem, Anna Bethke, and Siva Reddy. 2020.
StereoSet: Measuring stereotypical bias in pretrained
language models.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2020. Adversarial
NLI: A new benchmark for natural language under-
standing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4885–4901, Online. Association for Computa-
tional Linguistics.

Haoruo Peng, Yangqiu Song, and Dan Roth. 2016.
Event detection and co-reference with minimal su-
pervision. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Process-
ing, pages 392–402, Austin, Texas. Association for
Computational Linguistics.

Dragomir R. Radev, Hong Qi, Harris Wu, and Weiguo
Fan. 2002. Evaluating web-based question answering
systems. In Proceedings of the Third International
Conference on Language Resources and Evaluation
(LREC’02), Las Palmas, Canary Islands - Spain. Eu-
ropean Language Resources Association (ELRA).

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

John W Ratcliff and David E Metzener. 1988. Pattern-
matching - the gestalt approach. Dr Dobbs Journal,
13(7):46.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Rachel Rudinger, Pushpendre Rastogi, Francis Ferraro,
and Benjamin Van Durme. 2015. Script induction as
language modeling. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1681–1686, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Roger C Schank and Robert P Abelson. 1977. Scripts,
plans, goals, and understanding: An inquiry into
human knowledge structures. Lawrence Erlbaum
Associates.

Vered Shwartz, Peter West, Ronan Le Bras, Chandra
Bhagavatula, and Yejin Choi. 2020. Unsupervised
commonsense question answering with self-talk. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4615–4629, Online. Association for Computa-
tional Linguistics.

Zhiyi Song, Ann Bies, Stephanie Strassel, Tom Riese,
Justin Mott, Joe Ellis, Jonathan Wright, Seth Kulick,
Neville Ryant, and Xiaoyi Ma. 2015. From light
to rich ERE: Annotation of entities, relations, and
events. In Proceedings of the The 3rd Workshop on
EVENTS: Definition, Detection, Coreference, and
Representation, pages 89–98, Denver, Colorado. As-
sociation for Computational Linguistics.

Felix Stahlberg and Bill Byrne. 2019. On NMT search
errors and model errors: Cat got your tongue? In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3356–
3362, Hong Kong, China. Association for Computa-
tional Linguistics.

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5784–
5789, Hong Kong, China. Association for Computa-
tional Linguistics.

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2006. ACE 2005 Multilin-
gual Training Corpus LDC2006T06. Web Download.
Philadelphia: Linguistic Data Consortium.

Noah Weber, Rachel Rudinger, and Benjamin
Van Durme. 2020. Causal inference of script knowl-
edge. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 7583–7596, Online. Association for
Computational Linguistics.

Noah Weber, Leena Shekhar, Niranjan Balasubrama-
nian, and Nathanael Chambers. 2018. Hierarchi-
cal quantized representations for script generation.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages

16

3783–3792, Brussels, Belgium. Association for Com-
putational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

17

Proceedings of NAACL-HLT 2021: Demonstrations, pages 18–25
June 6–11, 2021. ©2021 Association for Computational Linguistics

NAMER: A Node-Based Multitasking Framework for Multi-Hop
Knowledge Base Question Answering

Minhao Zhang1 Ruoyu Zhang1 Lei Zou1,2 Yinnian Lin1 Sen Hu1

1Peking University, China;
2National Engineering Laboratory for Big Data Analysis Technology and Application (PKU), China;

{zhangminhao,ry_zhang,zoulei,linyinnian,husen}@pku.edu.cn

Abstract

We present NAMER, an open-domain Chinese
knowledge base question answering system
based on a novel node-based framework that
better grasps the structural mapping between
questions and KB queries by aligning the
nodes in a query with their corresponding men-
tions in question. Equipped with techniques
including data augmentation and multitasking,
we show that the proposed framework outper-
forms the previous SoTA on CCKS CKBQA
dataset. Moreover, we develop a novel data
annotation strategy that facilitates the node-to-
mention alignment, a dataset1 with such strat-
egy is also published to promote further re-
search. An online demo of NAMER2 is pro-
vided to visualize our framework and supply
extra information for users, a video illustra-
tion3 of NAMER is also available.

1 Introduction

With the rapid popularization of knowledge bases
(KB), knowledge base question answering (KBQA)
(Unger et al., 2014) has witnessed much research
effort to fulfill a robust system to simplify users’ ac-
cess to KBs. For any given factoid question in natu-
ral language, KBQA system utilizes its background
KB for answers. Recently, many SoTA KBQA sys-
tems adopt a semantic parsing (Kwiatkowski et al.,
2013; Yih et al., 2014) framework, in which they
convert the question to a KB query (e.g. SPARQL,
Prud’hommeaux, 2008) to get answers.

Since queries are highly structured, a robust
KBQA system needs to grasp the structural map-
ping (Figure 1) between a question and its query.
However, most previous works either adopted an
end-to-end model that failed to directly use such
mappings (Ge et al., 2019; Ji et al.) or devised a
template or rule-based pipeline (Hu et al., 2018;

1https://github.com/ridiculouz/CKBQA
2http://kbqademo.gstore.cn
3https://youtu.be/yetnVye_hg4

Structural�Mapping�

Original�Question�
�

Which�school�did�Yao�Ming's
daughter�graduate�from?

SPARQL�
�

select�?y�where�{�
<Yao_Ming>�<daughter>�?x.�
?x�<graduates_from>�?y.�}

?y

?x
<daughter>

Query�Graph

select

<Yao_Ming>

<graduates_from>

Figure 1: Structural mapping between a question and
its corresponding SPARQL query.

Cui et al., 2017) that may lose generality in real-
world applications. To preserve generality, Shen
et al. (2019) incorporated a pointer generator (See
et al., 2017) into the pipeline to learn the mapping
between an entity and its mention. Nevertheless,
the system failed to utilize the mappings of vari-
ables, literals, and types in a query.

In this paper, we argue that learning the com-
plete question-query mapping (i.e. the alignments
of all nodes to their mention, as in Figure 1) aids
the system to achieve better performance. Hence,
we supplement an open-domain complex Chinese
KBQA dataset with annotations of all node men-
tions. Based on the additional data, we propose
a novel node-based multi-hop KBQA framework
that fully grasps the mappings of entities, variables,
literals, and types. Unlike prior works, we generate
the pointer of all query nodes to their mention to
represent the mapping and exploit such mappings
in downstream relation extraction task. Also, we
explore techniques including multitasking to fur-
ther improve model performance. Based on the
framework, we implement a publicly available Chi-
nese KBQA system, NAMER, for users to query
KBs by natural language, which offers convenience
for non-expert users to use KB and is thus fairly
useful in practice. In short, the contributions of this
work are: 1) we propose a novel KBQA framework
with a strong ability to grasp structural mapping,

18

Node�Extraction

Mention
Detection

Entity�
Linking�

Relation�Extraction

Candidate
Relation�Generator

Relation
Ranking�

�
select�?⼥⼉�where�{�<姚明>�<⼥⼉>�?⼥⼉.�}

SPARQL

�
Amy_（姚明⼥⼉）
Answer

Query�Generation

Node�Mention�Pointer�Generator�

Node�Type�Classifier�
Transformer
Decoder�

�
姚明的⼥⼉是谁？�
(Who�is�Yao�Ming's

daughter?)

Input�Question

Knowledge�Base

PKUBASE

UserInput�Question Intermediate�Results SPARQL�&�Answer(s)

NAMER�KBQA�System

Figure 2: Architecture of the proposed system

the approach reaches SoTA results on a Chinese
KBQA dataset, 2) we present a new data annotation
format to better train KBQA models and publish
a supplementary dataset of this format to prompt
future research and 3) we implement an online
demonstration of NAMER that can visualize our
framework and aid users to explore KBs.

2 System Overview

This section explains the overall architecture of the
proposed framework and the UI of the system.

2.1 Framework Architecture

Figure 2 illustrates the architecture of our frame-
work. Basically, the framework can be divided
into three modules, namely node extraction (NE),
query generation (QG) and relation extraction (RE).
Given a natural language question, NE extracts
mentions of entities, variables, literals, types and
performs entity linking. Meanwhile, QG generates
a node sequence (i.e. vertices in the KB query, see
Section 3.1 and 3.2 for more details) corresponding
to the given question. Each node generated in QG
consists of its type and the pointer to its mention
in the input question, such pointer is replaced by
the node extracted in NE when fusing NE and QG
results. Up to now, we can generate the vertices
of a SPARQL query, i.e. the head and tail of all
its triples; to form a complete SPARQL output,
RE (Section 3.3) is introduced to decide the edges
(i.e. the relation of all triples). For each pair of
nodes given by NE+QG, RE takes the raw question
and mentions of the head and tail node as inputs
to decide the relation between them. Combining

all three modules, a SPARQL query is finally com-
posed and sent to a knowledge base to get answers.

2.2 User Interface

An example of the interaction between users and
our system is illustrated in Figure 3. With this
UI, users can not only consult NAMER to answer
their questions but also acquire more information
around their interested entities and understand how
NAMER works to compose the generated query.

3 Model

Consider the question "Where was Yao Ming’s
daughter born?", the following section elaborates
how each module process the question to com-
pose the correct SPARQL "select ?y where {
<Yao_Ming> <daughter> ?x. ?x <place_of_birth>
?y. }".

3.1 Node Extraction (NE)

We define nodes as entities, variables, literals
and types in a SPARQL query, namely the entity
<Yao_Ming> and the variable ?x and ?y in the case
above. The NE module aims to detect mentions of
all nodes in a question, i.e. "Yao Ming", "daugh-
ter", and "where" respectively. To achieve this, we
utilize a transformer (Vaswani et al., 2017) encoder
with a sequence-tagging head of tag space {O, Eb,
Ei, Vb, Vi, VTb, VTi, Tb, Ti, VLb, VLi, Lb, Li}
(VL/VT denotes variable-literal/variable-type since
mentions of multiple nodes may overlap) to tag the
question. Afterward, NE performs entity linking
on extracted entities via a mention-to-entity dic-
tionary corresponding to the KB. For each entity

19

Figure 3: The user interface of NAMER. By entering a question and setting up a few parameters, a user can
receive the output SPARQL and answer with intermediate results to visualize our framework. For instance, a
user can check "Triples in the SPARQL" for the structure of the generated triples. Besides, after clicking the
"Show Candidate Relations" button of each triple, its top score candidate relations would be displayed below; after
clicking the "Show Candidate Entities", the scores of candidate entities in entity linking are also provided.

mention, we select its longest substring that ap-
pears in the dictionary and view the entities linked
to such substring as candidate entities.

3.2 Query Generation (QG)

In QG, we want to generate the node sequence
of the expected SPARQL, i.e. [?y, <Yao_Ming>,
?x, ?x, ?y] for the instance above (the first node is
the selected variable). One direct method to do so
is to adopt a decoder that directly generates such
sequence. However, as mentioned before, such
an approach poses difficulties for models to grasp
the query-question mapping. Hence, we adopt a
pointer network (See et al., 2017) to generate a
sequence of <type (entity, variable, etc.), pointer>
to represent node sequence.

More specifically, QG model is based on a trans-
former encoder and decoder. Let HE ∈ Rn×dh be
the encoder output given the question as input, let
T ∈ N q be the previously generated node types
(n is the question length, dh denotes hidden di-
mension, q is the length of the node sequence) by
the decoder. At each decoding step, hidden vector
hq of the current node is generated, which is then
fed to an FFN to represent the type of next node

Tnext ∈ {E, V, L, T, Start, End}. We concate-
nate Tnext to T for the next decoding step.

hq = Decoder(T,HE) ∈ Rdh

Pnext = softmax(FFN(hq)) ∈ R6

Tnext = argmax
i

Pnext

An attention matrix W att ∈ Rdh×dh is trained to
calculate attention score of each input token and
the pointer Ptrcur being the input with max score.

Scur = hq ∗W att ∗HT
E ∈ Rn

Ptrcur = argmax
i

Scur

When combining NE and QG results, we can re-
place each pointer with the node it points to given
by NE, e.g. replacing <var, 5> with a variable
node "?daughter" with mention "daughter". Con-
sequently, the expected node sequence [?where,
<Yao_Ming>, ?daughter, ?daughter, ?where] can
now be formed.

3.3 Relation Extraction (RE)
RE module aims to determine the relation of each
node pair generated in QG, i.e. determining the

20

System Dev Set Test Set

P R F1 P R F1

Team JCHL / / .707 .742 .752 .736
gAnswer .593 .598 .589 .554 .560 .549

NAMER .774 .770 .761 .772 .771 .757

Table 1: Performance on CCKS CKBQA dataset. The
official metrics are average answer-level F1 while we
also report Precision and Recall. "Team JCHL" refers
to the contest winner whose dev P&R wasn’t published.

relation <daughter> between <Yao_Ming> and ?x
and <place_of_birth> between ?x and ?y for the
aforementioned case. We complete this in a rank-
ing manner, which is, we first generate candidate
relations for each node pair n1 and n2 (next para-
graph), then, we concatenate each candidate with
the raw question and the mentions of head and tail
nodes to form model input. Such input is encoded
by a transformer encoder and converted to a num-
ber S ∈ [0, 1] to represent the score of such candi-
date relation. RE module selects top-scored candi-
dates of each node pair to form output SPARQL.
More specifically, since relations are directional in
KB, we obtain candidates of both positive (from
n1 to n2) and reversed (from n2 to n1) directions,
marked as Rpos and Rrev respectively. Suppose a
positive relation r∗ is the correct choice and q is the
question, for each r1/r2 in Rpos/Rrev excluding
r∗, we construct (q, n1, n2, r1)/(q, n2, n1, r2) as
negative samples and (q, n1, n2, r

∗) as a positive
sample to train our model.

For each node pair, we query KB to obtain can-
didate relations. For pairs with an entity, literal
or type (deterministic) node in it, we view those
relations around that node in KB as candidates; for
pairs merely consist of variables, we trace back
the route from these variables to any deterministic
node and view the relations k-hop away from the
deterministic node as candidates. For instance, if
three pairs (<Yao_Ming>, ?x), (?x, ?y) and (?y, ?z)
are generated, their candidates are 1, 2 and 3-hop
away from entity <Yao_Ming> in KB respectively.

Additionally, we propose an augmentation
method when training RE model. Back to the case
above, we also add (q, n2, n1, r1)/(q, n1, n2, r2)
and (q, n2, n1, r

∗) to negative samples when train-
ing. Consequently, the model learns the effects
of mention order to the prediction, through which
it may learn a better scoring policy. See further
analysis in Section 4.4.

3.4 Multitasking
Clearly, since all modules above have an encoder,
we can share it across different models in the hope
of better comprehension and less error propaga-
tion. Let lossNE , losstype, lossptr, lossRE be the
losses of NE, QG-type, QG-pointer, and RE respec-
tively, we can co-train the models by minimizing
the weighted sum over all losses.

loss = γ ∗ lossNE + α ∗ losstype
+β ∗ lossptr + θ ∗ lossRE

We can also multitask on a subset of modules by
setting some hyperparameters (γ, α, β, θ) to zero.

4 Experiments

4.1 Experimental Setup
Dataset We utilize the dataset published in
CCKS Chinese KBQA Contest4 for evaluation.
The dataset consists of various Chinese open-
domain complex (multi-hop) questions that require
deep comprehension of questions and strong gener-
alization ability, its background KB is PKUBASE5,
a Chinese KB based on Baidu Baike. We follow the
raw separation of 2.2k/0.76k/0.76k train/dev/test
data, note that no information in dev or test set are
used when training.

Annotations We manually label the mention of
all SPARQL nodes in the question required by our
framework in the train and dev set. When mul-
tiple mentions co-refer a node, all mentions are
accepted but we recommend annotators to choose
a more informative one, e.g. for the question "Who
is Yao Ming’s daughter?" and SPARQL "select
?x where {<Yao_Ming> <daughter> ?x.}", both
"daughter" and "who" refer to ?x, but the former is
preferred. When no mention refers to a node, anno-
tators leave the mention as "None". We perform a
brief double-check on 420 randomly selected ques-
tions and >93% of which are annotated correctly.
See more details of the annotation process in Ethi-
cal Considerations.

Baselines We compare our results with the top
ranking team "jchl"6(Luo et al., 2019) in the contest
and a competitive KBQA system gAnswer7 (Hu

4https://www.biendata.xyz/competition/
ccks_2019_6/data/

5A KB endpoint: http://pkubase.gstore.cn/
6Team "luoxiao1" was disqualified in final ranking so we

compare with the team that won the contest
7https://github.com/pkumod/gAnswer

21

Methods NE QG RE Overall F1

P R F1 EM Acc. Actual Acc. Hit@5 MRR Dev Set Test Set

Separate .840 .855 .843 .654 .773 .971 .895 .730 .715
NE+QG+RE .839 .862 .846 .668 .795 .957 .866 .726 .705

NE+QG .843 .861 .847 .678 .792 .971 .895 .761 .757

Table 2: Performance details of different multitasking strategies. "Methods" refer to co-trained modules, "Sepa-
rate" means no multitasking. Metrics in NE refers to the P/R/F1 of the extracted node list. In QG, EM (exact-match)
and Actual Acc. means the accuracy of generated node sequence (yield of NE&QG); the former counts when the
generated sequence is identical to gold sequence while the latter counts when two sequences are equivalent semanti-
cally, e.g. when gold and generated sequence are [?daughter, <Yao_Ming>, ?daughter] and [?who, <Yao_Ming>,
?who], EM Acc. does not count due to false pointer of the variable but they are semantically equal since the name
of a variable does not effect query results. For RE, Hit@5 denotes the ratio of node pairs whose score of gold
relation is among top-5 in all candidates; MRR was defined in Craswell, 2009. Overall F1 is explained in Table 1.
We evaluate all NE, QG, and RE-related metrics on dev set.

et al., 2018) that reached first place in QALD-9
(Ngomo, 2018). Since the NE and RE module in
gAnswer does not officially support Chinese, we
replace them with those in our system. Hence,
the gAnswer evaluated can be partly viewed as
our system with a rule-based QG module and its
comparison with us indicates the effectiveness of
our generative QG module.

Setup We adopt Chinese RoBERTa-large (Cui
et al., 2020) in transformers library (Wolf et al.,
2020) released by HFL8 as encoder and a 6-layer
8-head transformer as decoder. For our best results,
we co-train the NE and QG models, remaining
RE as a separate model. For NEQG, we train the
encoder and decoder with learning rate 1e-6 and
4e-6 respectively with an Adam (Kingma and Ba,
2015) optimizer, setting hyperparameters to γ =
1, α = β = 2.5, θ = 0 and batch size to 40. For
RE model, we set the learning rate and batch size
to 1e-5 and 96 respectively with γ = α = β =
0, θ = 1. Both models are trained until no progress
on validation accuracy for at most 10k steps.

4.2 Overall Performance Evaluation

Table 1 compares the performance of our system
and the baselines on official F1 metrics as well as
precision and recall. As shown, our system consis-
tently outperforms the contest winner "jchl" on dev
and test set while significantly surpass the modified
version of gAnswer, setting up a new state-of-the-
art performance on the evaluated dataset.

We attribute the improvement to the effective-

8Pretrained weights: https://github.com/
ymcui/Chinese-BERT-wwm

ness of the proposed framework. With the coop-
eration of NE and QG, NAMER learns the direct
mapping between question and query, making it
possible for models to deeply grasp their supervi-
sion signals even in case of complex questions and
insufficient training data, which is exactly the case
for the current dataset. Since the evaluated gAn-
swer can be viewed as replacing QG with a rule-
based subgraph matching module, our advantage
over it also implies the superiority of a trainable
generative module in KBQA which, we speculate,
has better generalization ability facing the highly
diversified questions. Finally, based on NEQG, our
RE module can naturally deal with complex multi-
hop questions by processing a triple (instead of a
question) at a time, resulting in an accurate relation
scoring for every node pair.

4.3 Analysis of Multitasking

In his section, we try to discuss the impact of dif-
ferent multitasking strategies (Section 3.4) on the
framework performance. The results of each mod-
ule and the overall metrics are given in Table 2.
Evidently, multitasking NE and QG consistently
improves performance over no multitasking; this is
probably due to the shared supervise signals across
NE and QG offer extra information for models to
better comprehend their tasks. E.g., the supervision
in NE tells QG model the semantics of a pointer
(since it provides the node mention of a pointer)
which assists QG to predict pointers. However,
when multitasking all three modules, the perfor-
mance fails to improve. In detail, although NE
and QG metrics resemble our best results, RE en-
counters a considerable drop on both metrics. We

22

Methods RE Overall F1

Hit@5 MRR Dev-set Test-set

Ours .971 .895 .761 .757
w/o Aug. .943 .863 .736 .740

Table 3: Effects of RE data augmentation. "w/o Aug."
denotes the RE model trained without augmentation.

Methods n1 to n2 n2 to n1
Relation Score Relation Score

Ours Elder_Brother .998 Younger_Brother .801
w/o Aug. Elder_Brother .999 Elder_Brother .999

Table 4: A case study for the top-scored relation in both
directions between a node pair. False answer is in bold.

speculate that the different input format of NEQG
and RE results in a different semantic space on
the tasks, which harms the performance when we
forcibly co-train them. Anyway, multitasking no-
tably reduces the storage cost of our system by
sharing one encoder across various tasks, which is
significant for a system in practice.

4.4 Analysis of Data Augmentation
A data augmentation technique is introduced in Sec-
tion 3.3, we inspect its effect in Table 3 and provide
further discussion in this section. As illustrated, re-
moving augmentation from RE results in a drop on
both RE metrics and overall performance, indicat-
ing the positive effect of augmentation. To explain,
we perform a case study on the question What’s
the nickname of Tom’s elder brother?9. Consider
the node pair n1 = Tom, n2 = elder brother, we
compare the top-scored relation from n1 to n2 and
from n2 to n1 given by the model with and without
augmentation. As shown in Table 4, the augmented
model outputs two antonymous relations in two
directions while its counterpart makes two same
predictions. Hence, we argue that the augmented
training data help the model to concurrently learn
1) the topic-level relationship between a relation
and a node pair in question and 2) the effect of
node direction to relation (i.e. r∗ is only the correct
choice from n1 to n2, not conversely). The extra
supervise signal enables a deeper comprehension
of RE which, in turn, improves model performance.

Interestingly, we find a similar discussion in Lan
et al. (2019) on the advantage of SOP over NSP,
since sentence order provides additional supervi-

9We translate raw Chinese input to English in this case.

sion on discourse-level coherence (which largely
resembles the coherence between node direction
and relation in our case). Thus, we speculate that
similar augmentation methods may work in more
scenarios in future research.

5 Related Work

Semantic parsing-based KBQA A semantic
parser in KBQA converts a question to a KB query.
Previously, some works (Petrochuk and Zettle-
moyer, 2018; Mohammed et al., 2018) only fo-
cus on answering one-hop questions. To process
multi-hop questions, Cui et al. (2017) proposed
a template-based pipeline in which a question is
converted to a template to further decide its predi-
cate. Hu et al. (2018) and Jin et al. (2019) adopted
a subgraph-matching-based model in the pipeline
to form a query graph. Ge et al. (2019) used a
seq2seq transformer to directly generate queries.
To help models directly comprehend the structural
mapping, Wang et al. adopted a query template
generator as well as an entity and relation extractor
to represent the mentions of entities and relations;
however, they failed to utilize the mention of vari-
ables and literals. Similar to our approach, Shen
et al. (2019) used a pointer-generator and entity
extractor to grasp the mapping between an entity
and its mention, but the mappings of other types
of nodes are omitted in their work, also, unlike us,
the mappings failed to directly assist downstream
RE task. Different from the above, we propose a
framework that grasps the mappings of all node
types and use them to aid downstream tasks.

Public KBQA systems Prior to us, several on-
line KBQA systems are available for the public.
However, most systems focused on domain-specific
KBs, e.g. E-commerce (Li et al., 2019) and food
(Haussmann et al., 2019). On open-domain KBs,
Cui et al. (2016) published a system that can an-
swer complex questions and visualize their answers.
However, few systems on open-domain Chinese
KBQA provide a publicly available web page with
detailed visualization of the framework pipeline as
in NAMER.

6 Conclusion

We present a robust Chinese KBQA system,
NAMER, based on a novel node-based multitask-
ing framework. With three cooperative modules,
our system grasps the structural mapping between

23

a question and its corresponding query. Hence,
NAMER reaches superior performance compared
to previous SoTA on an open-domain Chinese com-
plex KBQA dataset. Further experiments also
demonstrate the effectiveness of the architecture
and the techniques adopted in NAMER. As a sys-
tem intended for easier access to KB for all users,
the UI of NAMER provides not only the answers
to a given question but also the query structure ac-
companied by a series of intermediate results (e.g.
candidates & scores), assisting users to visualize
our system pipeline and explore more KB informa-
tion to their interest.

For the future, we will incorporate more visual-
ization functions into NAMER to further reduce the
barrier to KB for nonspecialist users. Since extra
data annotations are required to support NAMER,
we also plan to study the effects of the scale of
annotated data on system performance. Moreover,
we expect to implement and optimize NAMER in
multilingual scenarios.

Ethical Considerations

Data Collection

Annotation Guideline SPARQL queries usually
include several triples, restricting the range of tar-
get answers. Nodes are defined as the entities, vari-
ables, literals, and types in a SPARQL (including
the select variable). For instance, the SPARQL se-
lect ?x where {<Yao_Ming> <daughter> ?x.} cor-
responds to the node sequence [?x, <Yao_Ming>,
?x]. Given a natural language question "Who is Yao
Ming’s daughter?" and its corresponding SPARQL,
annotators are asked to annotate the mention span
of every node in the question, i.e. "Yao Ming" for
<Yao_Ming> and "daughter" for ?x.

Annotation Details The questions were dis-
tributed evenly to seven annotators with substantial
knowledge of NLP. To ensure that the annotators
were comfortable with the task, annotation guid-
ance was given before the task began. After the
primary annotation, two annotators double-checked
the annotation to ensure consistency. All annotators
worked part-time on the task.

System Output

We provide an online Chinese KBQA system as
shown in Figure 3. The system uses PKUBASE as
its supportive KB and accepts Chinese questions
as possible input. Despite our efforts to eliminate

biased and offensive output, NAMER retains the
potential to generate answers that may be wrong
or trigger offense. This failure may be induced
by the deficiency of PKUBASE, implicit bias of
the pretrained model and the limitation of training
data. These are known issues in current state-of-
the-art neural network-based language models and
automatically constructed knowledge base. In no
case should inappropriate answers generated by
NAMER be construed to reflect the views or values
of the authors.

Acknowledgements

We would like to thank Yanzeng Li and Wenjie Li
for the valuable assistance on system design and
implementation. We also appreciate anonymous
reviewers for their insightful and constructive com-
ments. This work was supported by NSFC un-
der grants 61932001, 61961130390, U20A20174.
This work was also partially supported by Bei-
jing Academy of Artificial Intelligence (BAAI).
The corresponding author of this work is Lei Zou
(zoulei@pku.edu.cn).

References
Nick Craswell. 2009. Mean reciprocal rank. Encyclo-

pedia of database systems, 1703.

Wanyun Cui, Yanghua Xiao, Haixun Wang, Yangqiu
Song, Seung-won Hwang, and Wei Wang. 2017.
Kbqa: Learning question answering over qa corpora
and knowledge bases. Proceedings of the VLDB En-
dowment, 10(5).

Wanyun Cui, Yanghua Xiao, and Wei Wang. 2016.
Kbqa: An online template based question answering
system over freebase. In IJCAI, volume 16, pages
09–15.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shi-
jin Wang, and Guoping Hu. 2020. Revisiting pre-
trained models for Chinese natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
Findings, pages 657–668, Online. Association for
Computational Linguistics.

Donglai Ge, Junhui Li, and Muhua Zhu. 2019. A
transformer-based semantic parser for nlpcc-2019
shared task 2. In CCF International Conference on
Natural Language Processing and Chinese Comput-
ing, pages 772–781. Springer.

Steven Haussmann, Yu Chen, Oshani Seneviratne,
Nidhi Rastogi, James Codella, Ching-Hua Chen,
Deborah L McGuinness, and Mohammed J Zaki.
2019. Foodkg enabled q&a application. In ISWC
Satellites, pages 273–276.

24

S. Hu, L. Zou, J. X. Yu, H. Wang, and D. Zhao.
2018. Answering natural language questions by
subgraph matching over knowledge graphs. IEEE
Transactions on Knowledge and Data Engineering,
30(5):824–837.

Guangxi Ji, Shujun Wang, Ding Zhang, Xiaowang
Zhang, and Zhiyong Feng. A fine-grained complex
question translation for kbqa.

Hai Jin, Yi Luo, Chenjing Gao, Xunzhu Tang, and Ping-
peng Yuan. 2019. Comqa: Question answering over
knowledge base via semantic matching. IEEE Ac-
cess, 7:75235–75246.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke
Zettlemoyer. 2013. Scaling semantic parsers with
on-the-fly ontology matching. In Proceedings of the
2013 conference on empirical methods in natural
language processing, pages 1545–1556.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learning
of language representations. In International Con-
ference on Learning Representations.

Feng-Lin Li, Weijia Chen, Qi Huang, and Yikun Guo.
2019. Alime kbqa: Question answering over struc-
tured knowledge for e-commerce customer service.
In China Conference on Knowledge Graph and Se-
mantic Computing, pages 136–148. Springer.

Jinchang Luo, Cunxiang Yin, Xiaohui Wu, Lifang
Zhou, and Huiqiang Zhong. 2019. Hunhe yuyi xi-
angsidu de zhongwen zhishitupu wenda xitong [a
chinese knowledge base question answering system
based on mixed semantic similarity]. Proceedings
of the 2019 China Conference on Knowledge Graph
and Semantic Computing: Evaluation Papers.

Salman Mohammed, Peng Shi, and Jimmy Lin. 2018.
Strong baselines for simple question answering over
knowledge graphs with and without neural networks.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 291–296.

Ngonga Ngomo. 2018. 9th challenge on question an-
swering over linked data (qald-9). language, 7(1).

Michael Petrochuk and Luke Zettlemoyer. 2018. Sim-
plequestions nearly solved: A new upperbound and
baseline approach. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 554–558.

Eric Prud’hommeaux. 2008. Sparql query language
for rdf, w3c recommendation. http://www. w3.
org/TR/rdf-sparql-query/.

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083.

Tao Shen, Xiubo Geng, QIN Tao, Daya Guo, Duyu
Tang, Nan Duan, Guodong Long, and Daxin Jiang.
2019. Multi-task learning for conversational ques-
tion answering over a large-scale knowledge base.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2442–
2451.

Christina Unger, André Freitas, and Philipp Cimiano.
2014. An introduction to question answering over
linked data. In Reasoning Web International Sum-
mer School, pages 100–140. Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Shujun Wang, Jie Jiao, Yuhan Li, Xiaowang Zhang,
and Zhiyong Feng. Answering questions over rdf
by neural machine translating.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Wen-tau Yih, Xiaodong He, and Christopher Meek.
2014. Semantic parsing for single-relation question
answering. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 643–648.

25

Proceedings of NAACL-HLT 2021: Demonstrations, pages 26–34
June 6–11, 2021. ©2021 Association for Computational Linguistics

DiSCoL: Toward Engaging Dialogue Systems through Conversational
Line Guided Response Generation

Sarik Ghazarian,1 Zixi Liu,1 Tuhin Chakrabarty,2
Xuezhe Ma,1 Aram Galstyan,1 Nanyun Peng1, 3

1 University of Southern California / Information Sciences Institute
2 Computer Science Department of Columbia University

3 Computer Science Department of University of California, Los Angeles
{sarik, zixiliu, xuezhema, galstyan}@isi.edu

tuhin.chakr@cs.columbia.edu violetpeng@cs.ucla.edu

Abstract

Having engaging and informative conversa-
tions with users is the utmost goal for open-
domain conversational systems. Recent ad-
vances in transformer-based language models
and their applications to dialogue systems have
succeeded in generating fluent and human-like
responses. However, those systems still lack
control over the generation process toward pro-
ducing contentful responses and achieving en-
gaging conversations. To address this, we
present DiSCoL (Dialogue Systems through
Coversational Line guided response genera-
tion). DiSCoL is an open-domain dialogue sys-
tem that leverages conversational lines (briefly
convlines) as controllable and informative
content-planning elements to guide the gen-
eration model in producing engaging and in-
formative responses. Two primary modules
in DiSCoL’s pipeline are conditional genera-
tors trained for 1) predicting relevant and infor-
mative convlines for dialogue contexts and 2)
generating high-quality responses conditioned
on the predicted convlines. Users can also
change the returned convlines to control the di-
rection of the conversations toward topics that
are more interesting for them. Through auto-
matic and human evaluations, we demonstrate
the efficiency of the convlines in producing en-
gaging conversations.

1 Introduction

Over the past decade, users have actively engaged
with dialogue systems to fulfill a wide range of
requirements. Task-oriented dialogue systems have
assisted users in accomplishing specific tasks such
as finding apartments (Gustafson et al., 2000) and
restaurants (Gruenstein and Seneff, 2007) or even
booking movie tickets (Li et al., 2017). While,
Open-domain dialogue systems have been exten-
sively leveraged for psychotherapy counseling, en-
tertainment, and even teaching foreign languages
to users (Zhou et al., 2020; Oh et al., 2017; Sarosa

Dialogue Context: what do you think about Game of Thrones?

DialoGPT

DiSCoL
game of thrones game of lions love the game favorite show favorite character show lol

game of thrones game of lions adventure genre favorite show many genres show lol

Game of Thrones is my favorite show. I like many genres of TV, but I think I like
the Adventure genre the most. How about you? Do you have a favorite show
or do you like the adventure genre?

I love the game of thrones! My favorite show lol! Game of lions is also my
favorite show, who is your favorite character?

I like Game of Thrones. I have not seen the latest season. I have seen the first
two seasons.

Figure 1: A dialogue context and its three responses
generated based on DialoGPT and our proposed DiS-
CoL system using originally inferred and manipulated
convlines, respectively. DiSCoL leverages convlines
(depicted in colored boxes) to guide the generation
model to encapsulate those informative contents. Our
demo enables the user to edit or remove the inferred
convlines (shown in blue for edits and red for removal)
to guide the conversation towards its desired directions.

et al., 2020). In this work, we focus on the second
group.

In the context of open-domain dialogue systems,
neural-network-based generative models have out-
performed retrieval-based systems by generating
diverse and novel responses. More recently, large-
scale language models with transformer-based ar-
chitectures, such as GPT-2 (Radford et al., 2019)
and BART (Lewis et al., 2019), have advanced the
state of the art in Natural Language Generation
and Dialogue Systems. Such models can be fur-
ther enhanced by fine-tuning them on task-specific
data, as it is the case of DialoGPT (dialogue gener-
ative pre-trained transformer) (Zhang et al., 2019),
a neural conversational response generation model,
trained on 147M conversation-like exchanges ex-
tracted from Reddit. Although responses generated
by such models are fluent and locally coherent, they
usually suffer from content poverty (e.g., generat-
ing non-informative content), which can negatively
impact user engagement. Furthermore, these mod-
els do not allow the users to exert control on the
generation process and guide the conversation to-

26

Figure 2: A snapshot of the proposed DiSCoL system

ward users’ desired direction. The first block in Fig-
ure 1 depicts an example of a generated response
by DialoGPT.

To alleviate this issue, here we propose DiSCoL,
an open-domain dialogue system, which leverages
convlines as primary elements to add control for
generating informative and content-rich responses.
Convlines are abstract representations of utterances
in the dialogues that can be used as content plan-
ning elements to form high-level content of an
utterance and guide the generator to incorporate
these informative units in the generation (See col-
ored boxes in Figure 1). Content planning has
been shown to be beneficial in the story generation
task. These abstract representations known as sto-
rylines or story plots have been successful to guide
the language models produce more coherent and
fluent stories (Yao et al., 2019; Goldfarb-Tarrant
et al., 2019; Fan et al., 2019; Goldfarb-Tarrant et al.,
2020; Rashkin et al., 2020; Brahman et al., 2020).

DiSCoL is composed of four main neural-
network-based modules (See Figure 3). The first
two modules are designed to extract entities and
topics of the dialogue context. The third module
is a fine-tuned conditional generator that learns to
take the dialogue context and previously extracted
information and predict convlines that would be
leveraged in the response generator module. Sim-
ilar to convline generator, response generator is
a conditional auto-regressive language model that
generates response conditioned on the dialogue
context and its convlines, entities, and topics ex-

tracted from previous modules. The middle block
of Figure 1 exhibits the generated response for the
inferred convlines shown in green boxes. In the in-
teractive setting of our devised demo from which a
snapshot is shown in Figure 2, we provide the users
with the facility to manipulate the predicted con-
vlines to direct the conversation toward its topics
of interest. The last block in Figure 1 depicts the
removed and edited convlines (red and blue boxes)
that led the generator to generate a slightly differ-
ent response by taking into account the applied
adjustments.

We validate DiSCoL on the Topical chat dataset
(Gopalakrishnan et al., 2019) using both human
and automatic evaluations. Our results demonstrate
the superiority of DiSCoL over DialoGPT in terms
of generating higher quality responses, thus indi-
cating the usefulness of convlines as dialogue con-
trol mechanisms for generating more engaging re-
sponses. We release the source code and trained
models to facilitate the future dialogue research. 1

2 system Architecture

The architecture of our proposed DiSCoL demo
system and its modules are depicted in Figure 3. A
user converses with the system by writing an utter-
ance as an input. This utterance passes through all
the modules and in each module some new informa-
tion such as its extracted entities, topics, and con-
vlines are augmented. The last module, response

1Github Link: https://github.com/
PlusLabNLP/Dialogue_System_Hackathon

27

General Entertainment

Game of Thrones

Topic classifier

Entity Extractor

Convline Generator
User Utterance:

Response Generator

what do you think about
Game of Thrones? game of thrones, game of lions, love the game,

favorite show, favorite character, show lol

I love the game of thrones! My favorite
show lol! Game of lions is also my favorite
show, who is your favorite character?

Figure 3: Architecture of DiSCoL system

generator, incorporates all this information to gen-
erate a response as the output of the system. In this
section, we explain each module in detail.

2.1 Entity Extractor

One of the principal components in the conversa-
tional systems is the set of entities that both in-
terlocutors are interested to converse about. It is
crucial that the system can identify the main enti-
ties from the dialogue context and try to continue
the conversation by providing more relevant infor-
mation or even expressing its opinions and impres-
sions regarding them. Therefore, in DiSCoL we
take the user’s utterance as the dialogue context and
extract its entities. This task is known as a named
entity recognition (NER) task, where each token
in the text is classified into one of the predefined
classes such as a person, organization, location or
other.

Toward this goal, we leverage the BERT model
(Devlin et al., 2019) fine-tuned on CoNLL-2003
dataset (Sang and De Meulder, 2003), which is a
well-known corpus for NER task.2 We detokenize
the output of the fine-tuned BERT model to get the
original version of entities’ tokens and disregard
the predefined classes of entities since in our case
they do not augment additional benefits. As shown
in Figure 3, all entities with labels other than O are
returned from the entity extractor module.

2.2 Topic Classifier

Knowing the topic that the user is enthusiastic to
discuss is essential for the dialogue system to gen-
erate utterances about that specific topic. The blue
box in Figure 3 represents the topic classifier that
takes the user’s utterance and predicts the most rel-
evant topics from a predefined set. These topics

2We leverage fine-tuned BERT model provided by
Huggingface (https://github.com/huggingface/
transformers).

are later used for predicting convlines and conse-
quently generating responses.

Due to the proven effectiveness of the BERT
model (Devlin et al., 2019) and its wide applicabil-
ity in many classification tasks, we incorporate it
into the topic classifier module of DiSCoL. We fine-
tune BERT model on pairs of utterances and their
aligned topics with the main goal of minimizing
the cross-entropy loss.

2.3 Convline Generator

DiSCoL’s main contribution is in the convline gen-
erator module that is depicted as the purple box in
Figure 3. Convlines are abstract representations
or content plans of utterances throughout the con-
versation. These representations, which are also
known as storylines or story plots in the context
of story generation, have recently posited their ef-
ficiency in generating higher quality stories (Yao
et al., 2019; Fan et al., 2019; Goldfarb-Tarrant et al.,
2020; Rashkin et al., 2020). Story generation mod-
els leverage plan-and-write framework that is suc-
cessful in generating fluent and informative stories
by the intervention of storylines as an intermediate
step. In this work, we follow the same idea but in
the context of conversational systems. In particular,
we aim to show that the controlled generation of
high-quality utterances by planning in advance and
leveraging useful abstract-level convlines can be
beneficial for dialogue systems as well.

To compose the convlines as the main compo-
nent in the convline generator module, we extract
sequences of important words in each utterance
from existing human-human conversational data.
We use the YAKE (Campos et al., 2018) method
that relies on the text’s statistical features to extract
the most important keywords of an utterance, as
it has shown its superiority over other state-of-the-
art unsupervised approaches such as TF-IDF and
RAKE (Rose et al., 2010).

28

To train the convline generator, we extract pairs
of (ui, ri) as a set of consecutive pairs of dialogue
context utterances and their corresponding ground-
truth responses in the human-human conversational
data. For each dialogue context utterance (ui), we
extract its entities (ei) and topics (ti) using the en-
tity extractor and topic classifier modules. Each
response (ri) is replaced by its convlines (ci) ob-
tained by the YAKE algorithm. The constructed
input data are in (ui, ei, ti, ci) format.

The convline generator is a conditional model
that generates the most probable convlines given
the provided dialogue context utterance together
with its entities and topics. To this end, we apply
BART (Lewis et al., 2019), which is a state-of-
the-art pre-trained sequence-to-sequence genera-
tive model. It combines a bidirectional encoder as
that of BERT (Devlin et al., 2019) to encode the
input and a GPT like (Radford et al., 2018) auto-
regressive decoder model to generate convlines as
the output. The top block in Figure 4 encapsulates
the training process of the convlines module. We
fine-tune BART on the constructed training data
with the objective of minimizing the negative log
likelihood shown in Equation (1).

Lline_gen = −log
n∑

i=1

P (ci|ui, ti, ei) (1)

During inference, the fine-tuned BART model takes
the user’s utterance augmented with its inferred
entities and topics to predict the most probable
convlines, as depicted in the bottom block of Figure
4. We use top-k sampling (Fan et al., 2019) with
k = 5 and a temperature of 0.7 for the generation.

2.4 Response Generator
The last module in DiSCoL system’s pipeline is
the response generator that is identical to convline
generator except for the type of inputs and outputs.
The response generator takes the dialogue context
utterance, its convlines and topics as inputs and
generates response conditioned on those data.

Lresp_gen = −log
n∑

i=1

P (ri|ui, ti, ci) (2)

During training, we provide utterances, their topics
and convlines extracted from YAKE to the BART
model and fine-tune this pre-trained conditional
generator. As it is shown in Equation (2), the train-
ing objective is to maximize the probability of gen-
erating ground-truth responses given their context
utterances, topics, and the convlines.

During inference, the generator attempts to pro-
duce the most probable responses that include con-
vlines returned by the convline generator module.

3 System Implementation

We test our system on Topical-Chat dataset
(Gopalakrishnan et al., 2019) that includes
knowledge-grounded human-human conversations
covering a set of 8 different topics. This dataset
has been collected by employing Amazon Mechan-
ical Turk (AMT) workers who have been provided
with specific entities and some external knowledge
(Wikipedia lead sections, Washington Post articles,
or some Reddit fun facts) to chat about. There-
fore, each utterance in the conversation is either
based on provided knowledge sources or the user’s
personal knowledge. Overall, 261 popular entities
spanning 8 various topics (Fashion, Sports, Books,
Politics, General Entertainment, Music, Science
& Technology and Movies) have been selected for
the dataset collection. We add General topic for
utterances (e.g. greetings) that do not include any
specific contents such as "hi, how are you today?".

3.1 Topic Classification Data

Although each utterance in the Topical-Chat dataset
comes from either provided external knowledge
or interlocutor’s personal knowledge about some
specified entities, it lacks determined topic labels,
which are necessary for DiSCoL modules. To in-
fer topics, we first manually match all 261 entities
in the external knowledge to one of the topics in
the predefined set (Fashion, Sports, Books, Poli-
tics, and etc.). Next, we label all utterances talking
about those entities to their corresponding topics.
This simple labeling scheme produces topics for
about 78% of the 188,378 (easy_set) total utter-
ances. As an example, the utterance "Do you know
Tom Brady" is about "Tom Brady" entity that is
an indication of the "Sports" topic. Therefore, we
label this utterance with the "Sports" topic.

The remaining challenging utterances are mainly
the continuation of the dialogue history without di-
rectly containing any entities. Take "I guess they
live up to their name then!" as an example of such
utterances with no mentioned entities. We pur-
sue the following context-based heuristics to la-
bel such challenging_set utterances with their rele-
vant topics. If the utterance’s neighbors (utterances
right before or after the current utterance) are from
easy_set and both share the same entity, we assign

29

BART

Sports <EOT> Are you an NFL fan? <EOU> NFL <EOE>
Books <EOT> Nice. Do you like Shakespeare? <EOU> Shakespeare <EOE>

yes. I am from Chicago so I am a bears fan.
Yes I do. Do you know that he popularized many phrases

YAKE
bears fan # chicago

popularized many phrases

EncoderInput

Decoder

Output

𝑟! 𝑐!

𝑡! <EOT> 𝑢! <EOU> 𝑒! <EOE>

Sports <EOT> Hi do you like football? <EOU> <EOE>
General Entertainment <EOT> I've never see Pokemon, and I don't think I ever will. <EOU> Pokemon <EOE>

𝑡! <EOT> 𝑢! <EOU> 𝑒! <EOE>

BART

watch the nfl # nfl games # favorite sport
watch the simpsons

𝑐!

Figure 4: Architecture of the convline generator during training and inference time

Uttr. Easy_set Challenging_set General_uttr.
188,378 146,370 5,323 5,966

Table 1: Statistics of different groups of utterances
(uttr.) in the Topical chat dataset

that entity’s topic to the current utterance, while in
the case of neighbors containing different entities,
we label the given utterance with both utterances’
topics. If the previous rules do not apply to an
utterance in the challenging_set, we use the most
frequent topic in the dialog as its topic.

In parallel to the above heuristics and in or-
der to improve the quality of assigned topics, we
also apply a keyword-based classifier that classi-
fies challenging_set utterances with appropriate
topics. The keyword-based classifier retrieves the
most similar entity from the overall 261 entities to
each utterance’s keywords using their BERT em-
beddings. Then, the manually matched topics for
the retrieved entity are assigned to the utterance.
We only consider 5323 challenging_set utterances
that their adapted labels based on both approaches:
1) context-based heuristics and 2) keyword-based
classifier are the same (See statistics in Table 1).

The remaining utterances shown in the last col-
umn of Table 1 are mainly general utterances for
starting or ending conversations without any spe-
cific content such as "Good Morning! How are you
today?" or "It was nice chatting with you!". We
fine-tune the BERT model as the topic classifier
for 10 epochs and get an accuracy of 85.55 on the
validation set.

3.2 Convline Generator Data

Convlines are the central components in the train-
ing of the DiSCoL system. We leverage YAKE
(Campos et al., 2018) for retrieving discourse key-
words representing convlines. YAKE assigns an

Dialogue Context Annotators Kappa Pearson
100 33 0.44 0.5

Table 2: Statistics and inter-annotator agreements of
AMT evaluations on DiSCoL and DialoGPT perfor-
mances.

importance score to tokens in a text by following
an unsupervised approach that builds upon features
extracted from the text (Campos et al., 2018). In
this model, a set of features are computed for each
term in the text. Subsequently, a list of candidates
(n-grams of tokens) is created. Next, the Leven-
shtein distance is used to remove duplicate key-
words. Finally, the aggregation of token scores in
each keyword is used to represent the keyword’s
score. Keywords with lower scores are returned as
the text’s salient convlines. We use YAKE to gen-
erate a contiguous sequence of 1, 2, and 3-grams
candidate convlines. We extract 3-grams convlines,
followed by extracting 2-grams and 1-gram that are
not included in the previously returned keywords.
We fine-tune BART-large for both convlines and
response generator models for 3 epochs and check-
point the best epoch based on validation perplex-
ity.3

4 Experimental Results

We evaluate the performance of DiSCoL system
against DialoGPT, which is one of the strongest
recent baselines that has shown its efficiency in
generating consistent and relevant responses.

4.1 Metrics

To explore the efficiency of our proposed controlled
response generation, we apply both automatic and
human evaluations.

3We fine-tune BART model using https://github.
com/pytorch/fairseq

30

Diversity Bleu Relevancy Engagement
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
S

co
re

s
DialoGPT
DiSCoL

Figure 5: Automatic evaluations on responses gener-
ated by DiSCoL and DialoGPT systems

4.2 Automatic Evaluations

Due to the multi-faceted nature of dialogue quality,
it is necessary to do the evaluation from different as-
pects (See et al., 2019; Mehri and Eskenazi, 2020).
To this end, we compare the quality of DiSCoL and
DialoGPT generated responses through computing
different metrics. We conduct automatic evalua-
tions and compute evaluation metrics on 23,530
consecutive utterance pairs (dialogue context ut-
terances and their ground-truth responses) of the
Topical chat test set. The measured metrics are
averaged over all utterance pairs within the test
set. We compute BLEU-3 (Papineni et al., 2002)
to evaluate the similarity of generated responses
to ground-truth responses based on the 3-grams
overlaps. Due to the one-to-many essence of open-
domain dialogue systems and the imperfection of
such word-overlap metrics (Liu et al., 2016; Ghaz-
arian et al., 2019; Mehri and Eskenazi, 2020), we
also focus on three main aspects: diversity, rele-
vancy, and engagingness as better indications of
systems performances.

Diversity measures the percentage of distinct
generated tokens by each model. Li et al. (2015)
proposed distinct-2 that computes distinct bi-grams
divided by the total number of generated words.
Relevancy utilizes both dialogue context utterance
and the generated response to deliberate how much
it is relevant to the given utterance (Tao et al., 2018;
Ghazarian et al., 2019). We use the contextualized
Ruber metric for this purpose (Ghazarian et al.,
2019). At the end, since in open-domain dialogue
systems, it is necessary to have both relevant and
interesting responses to make the user feel satis-
fied (Ghazarian et al., 2020), we further validate
systems based on the engagingness of responses.
We compute engagingness as the probability score
of the engaging class predicted by Ghazarian et al.
(2020)’s proposed engagement classifier.

Figure 6: Human evaluations on responses generated
by DiSCoL and DialoGPT systems

4.3 Human Evaluations

We extend our evaluations by running AMT experi-
ments to report human judgments on the quality of
system-generated responses. We randomly select
100 dialogue context utterances from the Topical
chat test set. For each given dialogue context utter-
ance, we ask three AMT workers to rate DiSCoL
and DialoGPT’s generated responses by keeping
these systems anonymous. Participants rate the rel-
evancy, engagingness, and overall quality of each
response on a 5-point Likert scale (1 indicating ir-
relevant/not engaging and low-quality response).
The statistics of the AMT experiment are shown in
Table 2.

4.4 Results

Automatic Evaluation. Figure 5 depicts the av-
erage scores of diversity, BLEU, relevancy, and
engagingness resulted from automatic evaluation
metrics for all the generated responses of DiSCoL
and DialoGPT systems. The strength of DiSCoL is
noticeable from its higher BLEU score and more
diverse, relevant, and engaging responses. Overall,
the diversity is low due to the limited distinct topics
considered in the Topical chat dataset. The BLEU
metric is low for both systems which shows its in-
adequacy in the open-domain evaluations; where a
response can be super appropriate and at the same
time not similar to the ground-truth response.

Human Evaluation. The bars in Figure 6
demonstrate the average of human annotations for
different qualities of generated utterances. Each
response’s score is the mean aggregation of three
annotators’ ratings. According to Figure 6, annota-
tors appraise responses generated by DiSCoL with
higher scores in terms of relevancy, engagingness,
and overall quality. This could be an evidence for
the positive impact of incorporating convlines to

31

guide the dialogue system towards generating con-
trollable, relevant, and contentful responses that
infuse the user to converse for a longer time.

5 Conclusion

We have introduced DiSCoL, an open domain di-
alogue system that leverages convline as an inter-
mediate step toward generating more informative
and controllable responses in dialogues. The con-
vlines are predicted and subsequently leveraged in
the response generation process. Additionally, DiS-
CoL allows users to manipulate convlines towards
their favorite conversational direction. Our findings
show that in contrast to other transformer-based
dialogue systems that do not incorporate content
planning, DiSCoL takes the advantage of such a
principled structure to generate better and more
engaging conversations with users.

In the future, we imagine an open path of possi-
ble research in the controllable conversations which
would guide the dialogue toward having pleasant
features such as empathy and bias-free or even per-
sonalized convlines to generate dialogues with such
aspects. It is also expecting to train dialogue mod-
els to converse by following specific styles such
as generating formal conversations by predicting
more formal convlines.

6 Ethics

Through the entire phases of the conducted re-
search and developed DiSCoL system, all co-
authors were agreed and adhered to ACM Code
of Ethics. Our effort was to ensure we stuck to the
conscience of the profession and considered the
Code principles. We certify that this system and all
the presented evaluations are compatible with the
provided code. In the following, we discuss two
main spots in the development and evaluation of
our system that could be targeted for encompass-
ing abusive and improper conversations and having
biased evaluations.

DiSCoL System’s Development The main con-
tribution of our proposed DiSCoL system is to aug-
ment controllable response generation with the in-
tervention of convlines that leads the generation
towards producing more relevant and interesting
responses. Indeed, DiSCoL provides an oppor-
tunity for users to manipulate the convlines and
guide the system to continue the conversation in
the user’s favorite direction. All DiSCoL’s modules

leverage pre-trained large language models such as
BART (Lewis et al., 2019) and fine-tune them on re-
cently proposed Topical chat dataset (Gopalakrish-
nan et al., 2019). One potential harm that DiSCoL
could cause is its feasibility to generate improper
responses conditioned on the inferred convlines
with abusive contents. Since the convline and re-
sponse generators are BART models finetuned on
human-human conversations that do not encompass
profanity and inappropriate content ((Gopalakrish-
nan et al., 2019)), hence the convlines that indeed
are important informative units of the utterances
would be free of bias and obscene content. How-
ever, there still is a possibility of dual-usage attacks
by augmenting conversations with offensive lan-
guages to fine-tune the generators and teach them
to generate such inappropriate content. The identi-
fication of such attacks that could occur in almost
all learnable models and the way to overcome them
by itself is a distinct and huge research area that is
out of this paper’s scope.

DiSCoL System’s Evaluation Alongside the au-
tomatic evaluation for demonstrating the efficiency
of controllable generations using convlines, we fur-
ther collected human annotations by conducting
Amazon Mechanical Turk (AMT) experiments. We
provided different systems responses for given ut-
terances while keeping systems anonymous and
asked users to rate responses by considering differ-
ent aspects that had been explained in the AMT sur-
veys. We estimated the average time users would
spend on each survey and fairly compensated them
according to the hourly wage.

We kept the privacy of all AMT turkers who par-
ticipated in the experiments. Our experiments did
not have the requisite to know the user’s personal
information, therefore their personal information
including their genre, ethnicity, and etc. are not re-
vealed. This fades the necessity for IRB approvals.

At the end, we want to note that our system’s tar-
get is NLP open-domain conversational AI commu-
nity with the main goal of achieve engaging conver-
sations with the incorporation of convlines and in-
creasing the user’s ability to control the generation
process. Likewise other proposed dialogue systems,
we anticipate specific failure modes specifically for
novel conversations on new topics. Lifelong learn-
ing in dialogue systems which is not the focus of
this work is a research area that attempts to en-
hance conversation systems’ ability to deal with
such novel scenarios.

32

Acknowledgment

This work is supported by the CwC program un-
der the Contract W911NF-15-1-0543 with the
US Defense Advanced Research Projects Agency
(DARPA) and is the result of a hackathon in PLUS-
lab from USC/UCLA. We would like to thank all
members of PLUSlab from USC/UCLA, specifi-
cally Johnny Wei, and Zhubo Deng for their con-
structive help. We also want to appreciate the
anonymous reviewers for their helpful comments.

References
Faeze Brahman, Alexandru Petrusca, and Snigdha

Chaturvedi. 2020. Cue me in: Content-inducing ap-
proaches to interactive story generation. In Asia-
Pacific Chapter of the Association for Computa-
tional Linguistics (AACL).

Ricardo Campos, Vítor Mangaravite, Arian Pasquali,
Alípio Mário Jorge, Célia Nunes, and Adam Jatowt.
2018. Yake! collection-independent automatic key-
word extractor. In European Conference on Informa-
tion Retrieval, pages 806–810. Springer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In North American Chapter of the Association
for Computational Linguistics (NAACL-HLT).

Angela Fan, Mike Lewis, and Yann Dauphin. 2019.
Strategies for structuring story generation. In Asso-
ciation for Computational Linguistics (ACL).

Sarik Ghazarian, Johnny Tian-Zheng Wei, Aram Gal-
styan, and Nanyun Peng. 2019. Better automatic
evaluation of open-domain dialogue systems with
contextualized embeddings. In Proceedings of the
Methods for Optimizing and Evaluating Neural Lan-
guage Generation (NeuralGen workshop of NAACL-
HLT).

Sarik Ghazarian, Ralph M Weischedel, Aram Galstyan,
and Nanyun Peng. 2020. Predictive engagement:
An efficient metric for automatic evaluation of open-
domain dialogue systems. In AAAI, pages 7789–
7796.

Seraphina Goldfarb-Tarrant, Tuhin Chakrabarty, Ralph
Weischedel, and Nanyun Peng. 2020. Content plan-
ning for neural story generation with aristotelian
rescoring. In Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Seraphina Goldfarb-Tarrant, Haining Feng, and
Nanyun Peng. 2019. Plan, write, and revise: an
interactive system for open-domain story generation.
In 2019 Annual Conference of the North American
Chapter of the Association for Computational
Linguistics (NAACL-HLT 2019), Demonstrations
Track, volume 4, pages 89–97.

Karthik Gopalakrishnan, Behnam Hedayatnia,
Qinglang Chen, Anna Gottardi, Sanjeev Kwatra,
Anu Venkatesh, Raefer Gabriel, Dilek Hakkani-Tür,
and Amazon Alexa AI. 2019. Topical-chat: Towards
knowledge-grounded open-domain conversations.
In INTERSPEECH.

Alexander Gruenstein and Stephanie Seneff. 2007. Re-
leasing a multimodal dialogue system into the wild:
User support mechanisms. In Proceedings of the
8th SIGdial Workshop on Discourse and Dialogue,
pages 111–119.

Joakim Gustafson, Linda Bell, Jonas Beskow, Johan
Boye, Rolf Carlson, Jens Edlund, Björn Granström,
David House, and Mats Wirén. 2000. Adapt—a mul-
timodal conversational dialogue system in an apart-
ment domain. In The Sixth International Conference
on Spoken Language Processing (ICSLP), Beijing,
China, pages 134–137.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. In Association for Computational
Linguistics (ACL).

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2015. A diversity-promoting ob-
jective function for neural conversation models. In
North American Chapter of the Association for Com-
putational Linguistics (NAACL-HLT).

Xiujun Li, Yun-Nung Chen, Lihong Li, Jianfeng Gao,
and Asli Celikyilmaz. 2017. End-to-end task-
completion neural dialogue systems. In Interna-
tional Joint Conference on Natural Language Pro-
cessing (IJCNLP).

Chia-Wei Liu, Ryan Lowe, Iulian V Serban, Michael
Noseworthy, Laurent Charlin, and Joelle Pineau.
2016. How not to evaluate your dialogue system:
An empirical study of unsupervised evaluation met-
rics for dialogue response generation. In Empirical
Methods in Natural Language Processing (EMNLP).

Shikib Mehri and Maxine Eskenazi. 2020. Unsuper-
vised evaluation of interactive dialog with dialogpt.
In Proceedings of the 21th Annual Meeting of the
Special Interest Group on Discourse and Dialogue.

Kyo-Joong Oh, Dongkun Lee, Byungsoo Ko, and Ho-
Jin Choi. 2017. A chatbot for psychiatric counsel-
ing in mental healthcare service based on emotional
dialogue analysis and sentence generation. In 2017
18th IEEE International Conference on Mobile Data
Management (MDM), pages 371–375. IEEE.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318.

33

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Hannah Rashkin, Asli Celikyilmaz, Yejin Choi, and
Jianfeng Gao. 2020. PlotMachines: Outline-
conditioned generation with dynamic plot state
tracking. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Stuart Rose, Dave Engel, Nick Cramer, and Wendy
Cowley. 2010. Automatic keyword extraction from
individual documents. Text mining: applications
and theory, 1:1–20.

Erik F Sang and Fien De Meulder. 2003. Intro-
duction to the conll-2003 shared task: Language-
independent named entity recognition. arXiv
preprint cs/0306050.

M Sarosa, M Kusumawardani, A Suyono, and MH Wi-
jaya. 2020. Developing a social media-based chat-
bot for english learning. In IOP Conference Series:
Materials Science and Engineering, page 012074.
IOP Publishing.

Abigail See, Stephen Roller, Douwe Kiela, and Jason
Weston. 2019. What makes a good conversation?
how controllable attributes affect human judgments.
In North American Chapter of the Association for
Computational Linguistics (NAACL-HLT).

Chongyang Tao, Lili Mou, Dongyan Zhao, and Rui
Yan. 2018. Ruber: An unsupervised method for au-
tomatic evaluation of open-domain dialog systems.
In Proceedings of the AAAI Conference on Artificial
Intelligence.

Lili Yao, Nanyun Peng, Weischedel Ralph, Kevin
Knight, Dongyan Zhao, and Rui Yan. 2019. Plan-
and-write: Towards better automatic storytelling. In
The Thirty-Third AAAI Conference on Artificial In-
telligence (AAAI-19).

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen,
Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing
Liu, and Bill Dolan. 2019. Dialogpt: Large-scale
generative pre-training for conversational response
generation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguis-
tics.

Li Zhou, Jianfeng Gao, Di Li, and Heung-Yeung Shum.
2020. The design and implementation of xiaoice, an
empathetic social chatbot. Computational Linguis-
tics, 46(1):53–93.

34

Proceedings of NAACL-HLT 2021: Demonstrations, pages 35–41
June 6–11, 2021. ©2021 Association for Computational Linguistics

FITAnnotator: A Flexible and Intelligent Text Annotation System

Yanzeng Li, Bowen Yu, Quangang Li, Tingwen Liu∗

Institute of Information Engineering, Chinese Academy of Sciences
School of Cyber Security, University of Chinese Academy of Sciences

{liyanzeng, yubowen, liquangang, liutingwen}@iie.ac.cn

Abstract

In this paper, we introduce FITAnnotator, a
generic web-based tool for efficient text an-
notation. Benefiting from the fully modular
architecture design, FITAnnotator provides a
systematic solution for the annotation of a va-
riety of natural language processing tasks, in-
cluding classification, sequence tagging and
semantic role annotation, regardless of the lan-
guage. Three kinds of interfaces are developed
to annotate instances, evaluate annotation qual-
ity and manage the annotation task for anno-
tators, reviewers and managers, respectively.
FITAnnotator also gives intelligent annotations
by introducing task-specific assistant to support
and guide the annotators based on active learn-
ing and incremental learning strategies. This
assistant is able to effectively update from the
annotator feedbacks and easily handle the in-
cremental labeling scenarios. 1

1 Introduction

Manually-labeled gold standard annotations are the
first prerequisite for the training and evaluation of
modern Natural Language Processing (NLP) meth-
ods. With the development of deep learning, neu-
ral networks have achieved state-of-the-art perfor-
mance in a variety of NLP fields. These impressive
achievements rely on large-scale training data for
supervised training. However, building annotation
requires a significant amount of human effort and
incurs high costs, and can place heavy demands
on human annotators for maintaining annotation
quality and consistency.

To improve annotation productivity and reduce
the financial cost of annotation, many text annota-
tion softwares are developed by constraining user
actions and providing an effective interface. In
the early days, platforms for linguistic annotations
such as O’Donnell (2008), BART (Stenetorp et al.,

∗Corresponding author
1A video demonstration of FITAnnotator is available at

https://vimeo.com/499446008

2012), WebAnno-13 (Yimam et al., 2013) mainly
focused on providing a visual interface for user
labeling process, making annotation accessible to
non-expert users. Recently, integrating active learn-
ing into annotation systems for providing sugges-
tions to user has became mainstream (TextPro (Pi-
anta et al., 2008), WebAnno-14 (Yimam et al.,
2014), Active DOP (van Cranenburgh, 2018), IN-
CEpTION (Klie et al., 2018), etc), but most of these
works focus on English text and rarely consider the
multi-lingual setting, which is necessary due to
the growing demand for annotation in other lan-
guages. In addition to the interface and efficiency,
incremental annotation is also necessary in real-
world scenarios since the pre-defined annotation
standards and rules cannot handle rapidly emerg-
ing novel classes in the real world, while being less
addressed in existing annotation tools.

To address the challenges above, we propose
FITAnnotator, a generic web-based tool for text an-
notation, which fulfills the following requirements:

• Extremely flexible and configurable: our sys-
tem architecture is fully modular, even the
user interface is a replaceable module. Which
means it is model-agnostic and supports anno-
tation on a variety of linguistic tasks, includ-
ing tagging, classification, parsing, etc.

• Active learning: learning from small amounts
of data, and selecting by itself what data it
would like the user to label from an unlabeled
dataset. Annotators label these selected in-
stances and add them to the training set. A
new model is automatically trained on the up-
dated training set. This process repeats and
results in dramatic reductions in the amount
of labeling required to train the NLP model.

• Expansible data provider: the previous an-
notation tools are compatible with the static
corpus for annotation, which is not convenient

35

Data

Human Model

sch
em
a a
da
pte
d

Active Learning

Incremental Learning

Crowdsourcing

schema design

Human-in-AI-loop

Figure 1: The interaction of the three major elements of
the intelligent annotation system

for annotating from sketch and expansion. FI-
TAnnotator sets up an independent data loader
and data provider, which can continuously im-
port data to the corpus in bulk. The flexible
data provider also brings new problems, such
as dynamic labeling schema, which should be
solved by incremental learning.

• Incremental learning: creating a prototype for
each category and enabling the prototypes of
the novel categories far from the prototypes
of the original categories while maintaining
features to cluster near the corresponding cat-
egory prototypes, which makes the tool suit-
able for annotating with new classes added
incrementally.

• Collaboration & crowdsourcing: the system
is designed for the multi-user scenario, where
multiple annotators can work collaboratively
at the same time. When multiple users coop-
erate in annotation, the dismountable crowd-
sourcing algorithm interface can be used to
allocate overlapping data in apiece task pack-
ages, for evaluating the annotation quality of
each user. Also, the system provides a manual
review interface, which can perform sampling
inspection and evaluation on various users’
annotation.

Figure 1 reflects our design philosophy and com-
prehension of the interaction between the three
major elements in our annotation system.

2 Related Works

In recent years, the NLP community has developed
several annotation tools (Neves and Ševa, 2019).
Yedda (Yang et al., 2018b) provides an easy-to-use
and lightweight GUI software for collaborative text

annotation, and provides certain administrator anal-
ysis for evaluating multi-annotators. FLAT2 intro-
duces generalised paradigm and well-defined anno-
tation format defined in folia (van Gompel, 2012),
and provides web-based annotation interface. Doc-
cano (Nakayama et al., 2018) is an open-source,
web-based text annotation tool that provides col-
laboration, intelligent recommendation functions,
and includes a user-friendly annotation interface.
INCEpTION (Klie et al., 2018) is a comprehensive
text annotation system, which is also web-based
and open-source, integrates active learning algo-
rithms and provides various interfaces for different
annotation tasks, and it is developing for more tasks
(de Castilho et al., 2018), more convenient (Boul-
losa et al., 2018) and low-resource scenarios (Klie
et al., 2020).

In addition, commercial annotation tools such
as prodigy3, tagtog4 , LightTag5 also provide pow-
erful active learning support, team-collaboration
functions, efficient user interfaces, and provide
more related commercial solutions, which have
gained appreciable business achievement.

All of these intelligent text annotation tools have
several common features: supporting active learn-
ing and a rich variety of tasks. And commercial
annotation tools pay more attention to user experi-
ence and collaboration.

3 Architecture

The architecture of FITAnnotator is influenced by
the ideas of functional programming and, in par-
ticular, by the desire to combine functional with
object-oriented programming. The adherence to
the programming principles such as immutability
and modularity, FITAnnotator is developed by hy-
brid programming language Python. An overview
of our system is shown in Figure 2, which has four
main modules:

1. core module controls all data flow and pro-
vides the gateway for other modules. Tasks
and projects are stored in the database of this
module, and there are some fields to specify
the URI of each related module. The system
is based on these URIs to transfer and pro-
cess data between modules. This module also

2http://github.com/proycon/flat
3https://prodi.gy/
4http://www.tagtog.net
5https://www.lighttag.io/

36

Data
Management

Task
Management

Model
Management

Project
Management

Queue&CacheFileManagement

Dataloader Module

Tokenizer Dataloader

Intelligent Annotation

Pre-trained
LanguageModel

Downstream
Model

Task-Specific Model

Active Learning
Score&Rank Strategy

Core Module

DatabaseAPI gateway

Interface Module

Reviewer
Interface

Annotator
Interface

Administrator
Interface

Data
Expansion

Active Learning
Annotation Cycle

Incremental Learning
and Data Expansion

Data provider

Crowdsourcing Learning
Related modules

Figure 2: The overall architecture of the system

provides an administrator control panel for
managing the system and database.

2. data-loader module contains fundamen-
tal tokenizer and data-loader of specific ma-
chine learning model. By deploy multifari-
ous data-loader module with different tokeniz-
ers, we can adapt this system to different lan-
guages and tasks. In addition, we also provide
data expansion function in this module. Ex-
panded data would be cleaned in this module
and passed to core module.

3. intelligent annotation module
acts as the assistant which provides a pre-built
machine learning model according to the
type of tasks. This model could be simple
as FastText (Joulin et al., 2017) or complex
as BERT (Devlin et al., 2019). With such
a model, we can obtain automatic labeling
results for unlabeled data, and calculate
their ranking scores according to the active
learning strategy. By reordering the unlabeled
data before pushing them to annotators,
the annotation speed could be accelerated.
Besides, incremental learning is also im-
plemented in this module. We describe the
details of this module in Section 4.

4. interface module contains three separate
web interfaces: annotator, reviewer and ad-
ministrator. The annotator interface presents
the ranked unlabeled instances based on the
recommendation score provided by the active
learning module. Upon annotating a new sen-
tence, the annotator is presented with the most
probable labels recommended by the active
learning model (see Figure 4). When the anno-

tators make a decision for confirming model
recommendation or altering the labels, the op-
erations will be fed back to the backend sys-
tem and update the parameters of the active
learning model. In the reviewer interface, the
users monitor the progress of the annotation
and see statistics such as the number of anno-
tated instances, and the remaining unlabeled
data. The reviewers can also review these
already annotated instances and introduce cor-
rections if necessary. In the administrator in-
terface (shown in Figure 3), the project man-
ager defines the annotation standards and sets
all parameters for the annotation process, in-
cluding the configures of active learning mod-
els, the management of annotators and review-
ers, the assignment of tasks and so on.

The system is written with a modular de-
sign intended to be easily modifiable. Mod-
ules and interfaces (except core module and
administrator interface) can be re-
placed easily for specific requirements. The flex-
ibility it easy to adapt to multiple tasks and lan-
guages. FITAnnotator has three built-in annota-
tion templates now: text classification, sequence
tagging and semantic structure annotation, which
cover most common NLP tasks, including sentence
classification, sentence pair matching, named entity
recognition and semantic role annotation. Users
can also migrate to other tasks through simple mod-
ification of the framework.

4 Intelligent Annotation

Creating high-quality annotated corpora is a labo-
rious process and requires experts who are highly
familiar with the annotation schemes and stan-

37

Figure 3: Screenshot of administrator interface

(a) Text classification.

(b) Named entity recognition.

(c) Sequence tagging.

Figure 4: Screenshots of annotator interface for different
tasks.

dards. To accelerate the annotation process, we
introduce the intelligent assistant that incorporates
task-specific neural networks which actively as-
sist and guide annotators. The cores of intelligent
annotation are two adaptive learning mechanisms:
active learning and incremental learning.

4.1 Active Learning

A framework where a model learns from small
amounts of data, and optimizes the selection of the
most informative or diverse sample to annotate in
order to maximize training utility value, is referred
to as active learning (Gal et al., 2017; Schröder and
Niekler, 2020). In particular, we employ a fused
active learning method as a default strategy for
evaluating, re-ranking and re-sampling data, which
considers uncertainty and diversity at the same time
(Zhou et al., 2017; Lutnick et al., 2019). Using such
a strategy, the most difficult and diverse instances
will be annotated first, which are more valuable
for model learning with respect to the rest of the
corpus. After the instances have been selected by
active learning, the system displays them in the
annotator interface with the highlighted suggestion
labels. The annotator can then accept or modify
the suggestion. The choices are stored and passed
to the active learning module as new training data
to update the parameters.

For analyzing the effectiveness of active learn-
ing strategies in FITAnnotator, we conduct a simple
but representative comparative experiment based
on the IMDb movie reviews sentiment classifica-
tion task (Maas et al., 2011). In this experiment, we
respectively explore the effectiveness of the uncer-
tainty sampling and the diversity sampling in active

38

A

Re
pr

es
en

ta
tio

n
M

od
el

Traditio
nal

cla
ssi

fie
r

Prototype learning

classifier

train

train new label

Hard to increase the number
of categories

𝑚

Figure 5: 2-dim sketch of prototype-based incremental learning

learning (Fu et al., 2013), and employ a random
sampling strategy as the baseline method. Two
kinds of popular text classification models (Fast-
Text (Joulin et al., 2017) and BERT (Devlin et al.,
2019)) are respectively implemented as the back-
bone of active learning. We use accuracy+ as the
indicator to measure the performance (Lu et al.,
2019):

accuracy+ =
TPH + TNH + TPM + TNM

N

where N is the size of dataset, H and M repre-
sent the human-annotated labels and the model-
predicted labels respectively. The evaluation is con-
tinuously carried out with the annotation process
of the IMDb training set. Every 100 new anno-
tation samples are generated, the performance of
the backbone is evaluated on the standard test set.
The results are shown in Figure 6. Apparently, the
BERT-based active learning method outperforms
the FastText-based method. In terms of training
convergence speed, the sampling strategy based on
the uncertainty criterion is similar to the diversity
criterion, but both of them are obviously faster than
the random sampling baseline. After plenty of sam-
ples are labeled, the accuracy of those sampling
methods tends to be approximate. This observation
demonstrates that our system is able to accelerate
the training process of the models by introducing
active learning algorithms, so as to provide users
with label recommendations more quickly and ac-
curately.

4.2 Incremental Learning
Existing annotation tools focus on labeling in-
stances based on a fixed annotation scheme. How-
ever, the pre-defined standards may not cover all
the cases met in the annotation process, especially

Figure 6: Results of different active learning strategies
and models over imdb dataset. Curves start from 10 at
along x-axis.

for the classification task with constantly updated
source data. Take the case of aspect category clas-
sification (ACC). In E-commerce platforms, online
reviews are valuable resources for providers to get
feedback for their services. ACC aims to identify
all the aspects discussed in a given review. Yet
in the real world, new reviews and products are
rapidly emerging, and it is impossible to annotate
reviews with a pre-defined set of aspect categories
once to cover all aspects (Toh and Su, 2015; Wu
et al., 2018).

Considering the enormous cost of re-labeling
the entire corpus, in an ideal annotation system, the
new classes should be integrated into the existing
labeled instances, sharing the previously learned
parameters of active learning. To this end, we in-
troduce an incremental learning mechanism into
our annotation system. As Figure 5 shown, by
creating a prototype for each category, the clas-
sification problem is converted into a problem of
matching the samples to the prototypes (Yang et al.,

39

Figure 7: Results of different classifier (softmax-based
and prototype-based) in class-incremental scenario.

2018a). During the training process, the loss func-
tion is designed to minimize the distance between
the sample and the prototype (m in Figure 5 is the
minimal margin between prototypes) and maximize
the distance between prototypes. Thus the space of
representation is sparse and clear outside of proto-
type clusters, a new prototype of the category can
be added easily (Rebuffi et al., 2017).

To verify the effectiveness of FITAnnotator com-
bined with incremental learning, we conduct exper-
iments on the AG News dataset6, which is collected
from the news corpus with four classes. In order
to simulate the real-world scenario, we first use
samples belonging to three of the four categories
for annotation. After labeling 1000 samples, we
import the data of the fourth category, and use the
class-incremental function provided by FITAnno-
tator to change the annotation schema. For eval-
uation, we construct a word-level LSTM + CNN
representation model with glove word embedding
(Pennington et al., 2014) as the encoder, and com-
pare our prototype-based method with the classic
softmax-based classifier. The micro-F1 score is
chosen as the evaluation metric.

Figure 7 illustrates the experimental results. In
the ordinary text classification task, the perfor-
mance of the softmax-based classifier and the
prototype-based classifier is relatively approximate.
After introducing the fourth class (new class), the
performance of the softmax-based classifier oc-
curs a catastrophic recession. On the contrary, the
prototype-based method shows impressive results
in the class-incremental scenario, and the negative
effect of the newly introduced class is negligible.

6http://groups.di.unipi.it/~gulli/AG_
corpus_of_news_articles.html

5 Conclusion

In this paper, we present FITAnnotator, a web-
based system for interactive NLP annotation. In
order to reduce the workload of annotators, we in-
tegrate an active learning strategy in our system
recommendation part, and introduce an incremen-
tal learning strategy to facilitate the rapid annota-
tion of incessantly emerging novel categories. It
supports a range of annotation types, and analyz-
ing, assessing, and managing the annotations. In
future work, FITAnnotator will integrate more ad-
vanced incremental learning and active learning
algorithms, and be enhanced to develop more task
templates.

Acknowledgement

This work is supported by the Strategic Priority Re-
search Program of Chinese Academy of Sciences,
Grant No. XDC02040400.

References
Beto Boullosa, Richard Eckart de Castilho, Naveen Ku-

mar, Jan-Christoph Klie, and Iryna Gurevych. 2018.
Integrating knowledge-supported search into the in-
ception annotation platform. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, volume Demo Papers, pages
127–132.

Richard Eckart de Castilho, Jan-Christoph Klie, Naveen
Kumar, Beto Boullosa, and Iryna Gurevych. 2018.
Linking text and knowledge using the inception anno-
tation platform. In Proceedings of the 14th eScience
IEEE International Conference, pages 327–328.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL-HLT 2019: Annual Conference of
the North American Chapter of the Association for
Computational Linguistics, pages 4171–4186.

Yifan Fu, Xingquan Zhu, and Bin Li. 2013. A survey
on instance selection for active learning. Knowledge
and information systems, 35(2):249–283.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. 2017.
Deep bayesian active learning with image data. In In-
ternational Conference on Machine Learning, pages
1183–1192.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient text
classification. In Proceedings of the 15th Confer-
ence of the European Chapter of the Association for
Computational Linguistics: Volume 2, Short Papers,
volume 2, pages 427–431.

40

Jan-Christoph Klie, Michael Bugert, Beto Boullosa,
Richard Eckart de Castilho, and Iryna Gurevych.
2018. The inception platform: Machine-assisted and
knowledge-oriented interactive annotation. In Pro-
ceedings of the 27th International Conference on
Computational Linguistics: System Demonstrations,
pages 5–9. Association for Computational Linguis-
tics.

Jan-Christoph Klie, Richard Eckart de Castilho, and
Iryna Gurevych. 2020. From Zero to Hero: Human-
In-The-Loop Entity Linking in Low Resource Do-
mains. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
6982–6993, Online. Association for Computational
Linguistics.

Jinghui Lu, Maeve Henchion, and Brian Mac Namee.
2019. Investigating the effectiveness of representa-
tions based on word-embeddings in active learning
for labelling text datasets. arXiv, pages arXiv–1910.

Brendon Lutnick, Brandon Ginley, Darshana Govind,
Sean D. McGarry, Peter S. LaViolette, Rabi Yacoub,
Sanjay Jain, John E. Tomaszewski, Kuang-Yu Jen,
and Pinaki Sarder. 2019. An integrated iterative an-
notation technique for easing neural network training
in medical image analysis. Nature Machine Intelli-
gence, 1(2):112–119.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Hiroki Nakayama, Takahiro Kubo, Junya Kamura, Yasu-
fumi Taniguchi, and Xu Liang. 2018. doccano: Text
annotation tool for human. Software available from
https://github.com/doccano/doccano.

Mariana Neves and Jurica Ševa. 2019. An extensive
review of tools for manual annotation of documents.
Briefings in Bioinformatics.

Mick O’Donnell. 2008. Demonstration of the uam
corpustool for text and image annotation. In Pro-
ceedings of the ACL-08: HLT Demo Session, pages
13–16.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543.

Emanuele Pianta, Christian Girardi, and Roberto Zanoli.
2008. The textpro tool suite. In LREC.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. 2017. icarl: In-
cremental classifier and representation learning. In
Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 2001–2010.

Christopher Schröder and Andreas Niekler. 2020.
A survey of active learning for text classifica-
tion using deep neural networks. arXiv preprint
arXiv:2008.07267.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. brat: a web-based tool for nlp-assisted text
annotation. In Proceedings of the Demonstrations
at the 13th Conference of the European Chapter of
the Association for Computational Linguistics, pages
102–107.

Zhiqiang Toh and Jian Su. 2015. Nlangp: Supervised
machine learning system for aspect category classifi-
cation and opinion target extraction. In Proceedings
of the 9th International Workshop on Semantic Eval-
uation (SemEval 2015), pages 496–501.

Andreas van Cranenburgh. 2018. Active dop: A con-
stituency treebank annotation tool with online learn-
ing. In Proceedings of the 27th International Confer-
ence on Computational Linguistics: System Demon-
strations, page 38.

Maarten van Gompel. 2012. Folia: Format for linguistic
annotation. CLIN22, Tilburg.

Chuhan Wu, Fangzhao Wu, Sixing Wu, Zhigang Yuan,
and Yongfeng Huang. 2018. A hybrid unsupervised
method for aspect term and opinion target extraction.
Knowledge-Based Systems, 148:66–73.

Hong-Ming Yang, Xu-Yao Zhang, Fei Yin, and Cheng-
Lin Liu. 2018a. Robust classification with convo-
lutional prototype learning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 3474–3482.

Jie Yang, Yue Zhang, Linwei Li, and Xingxuan Li.
2018b. Yedda: A lightweight collaborative text span
annotation tool.

Seid Muhie Yimam, Chris Biemann, Richard Eckart
de Castilho, and Iryna Gurevych. 2014. Automatic
annotation suggestions and custom annotation layers
in webanno. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 91–96.

Seid Muhie Yimam, Iryna Gurevych, Richard Eckart
de Castilho, and Chris Biemann. 2013. Webanno: A
flexible, web-based and visually supported system for
distributed annotations. In Proceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 1–6.

Zongwei Zhou, Jae Shin, Lei Zhang, Suryakanth
Gurudu, Michael Gotway, and Jianming Liang.
2017. Fine-tuning convolutional neural networks
for biomedical image analysis: Actively and incre-
mentally. In 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), volume 2017,
pages 4761–4772.

41

Proceedings of NAACL-HLT 2021: Demonstrations, pages 42–55
June 6–11, 2021. ©2021 Association for Computational Linguistics

Robustness Gym: Unifying the NLP Evaluation Landscape

Karan Goel∗†
Stanford University

Nazneen Rajani†
Salesforce Research

Jesse Vig
Salesforce Research

Zachary Taschdjian
Salesforce Research

Mohit Bansal
UNC Chapel-Hill

Christopher Ré
Stanford University

Abstract

Despite impressive performance on stan-
dard benchmarks, natural language process-
ing (NLP) models are often brittle when de-
ployed in real-world systems. In this work,
we identify challenges with evaluating NLP
systems and propose a solution in the form of

Robustness Gym (RG),1 a simple and ex-
tensible evaluation toolkit that unifies 4 stan-
dard evaluation paradigms: subpopulations,
transformations, evaluation sets, and adver-
sarial attacks. By providing a common plat-
form for evaluation, RG enables practitioners
to compare results from disparate evaluation
paradigms with a single click, and to easily de-
velop and share novel evaluation methods using
a built-in set of abstractions. Robustness Gym
is under active development and we welcome
feedback & contributions from the community.

1 Introduction

Advances in natural language processing (NLP)
have led to models that achieve high test accuracy
on independent and identically distributed (i.i.d.)
data. However, analyses suggest that models are
not robust to data corruptions (Belinkov and Bisk,
2018), distribution shifts (Hendrycks et al., 2020;
Miller et al., 2020), and harmful data manipula-
tions (Jia and Liang, 2017), and rely on spuri-
ous patterns (McCoy et al., 2019b). In practice,
these vulnerabilities hinder deployment of trust-
worthy systems, as seen in public-use systems that
were later revealed to be systematically biased,
such as chatbots (Stuart-Ulin, 2018) and recruit-
ing tools (Hamilton, 2018).

While practitioners know of these problems, it
remains common to evaluate solely on i.i.d. data.
Ideally, the goal of evaluation is to perform a broad

∗E-mail: kgoel@cs.stanford.edu
† Equal contribution.

1 https://github.com/robustness-gym/
robustness-gym

assessment of a model’s capabilities on the types
of examples that it is likely to see when deployed.
This process is complex for practitioners, since ex-
isting tools cater to a specialized set of evaluations
for a task, and provide no clear way to leverage or
share findings from prior evaluations. Thus, current
evaluation practices face two challenges:

1. Idiomatic lock-in (Section 2.1). We identify
4 distinct evaluation types or idioms supported
by existing tools and research – subpopulations,
transformations, adversarial attacks and evalu-
ation sets. Existing tools use bespoke abstrac-
tions to serve a subset of these idioms (e.g., ad-
versarial attacks on words), requiring users to
glue together tools to perform a broad evaluation
that mixes idioms.

2. Workflow fragmentation (Section 2.2). As
practitioners evaluate, they need to save
progress, report findings and collaborate to un-
derstand model behavior. Existing solutions
to save progress are tool- and idiom-specific,
lack versioning, and provide limited support for
sharing. Existing reporting templates are free-
form, and have not successfully incentivized
users to report findings e.g. only 6% of Hug-
gingface (Wolf et al., 2020b) models report eval-
uation information.

In response to these challenges, we introduce Ro-
bustness Gym (RG), a simple, extensible and uni-
fied toolkit for evaluating robustness and sharing
findings (Figure 1). RG users can:

1. Create slices (Section 3.1) of data in RG. Each
slice is a collection of examples, built using
one or more evaluation idioms. RG scaffolds
users in a two-stage workflow, separating the
storage of side-information about examples
(CachedOperation) from the nuts and bolts of
programmatically building slices using this in-
formation (SliceBuilder). This workflow helps

42

Type Instantiation Examples
R

ul
e-

ba
se

d Filters
HasPhrase Subpopulation that contains negation.
HasLength Subpopulation that is in the {X} percentile for length.
Position Subpopulation that contains {TOKEN} in position {N}.

Logic
IFTTT recipes If example ends in {ING} then transform with backtranslation.
Symmetry Switch the first and last sentences of a source document to create a new eval set.
Consistency Adding “aaaabbbb" at the end of every example as a form of attack.

Template Checklist Generate new eval set using examples of the form “I {NEGATION} {POS_VERB}.”

M
ac

hi
ne

Classifier HasScore Subpopulation with perplexity {>X} based on a LM.
HasTopic Subpopulation belonging to a certain topic.

Tagger* POS Subpopulation that contains {POS_NOUN} in position {N}.
NER Subpopulation that contains entity names with non-English origin.
SRL Subpopulation where there is no {AGENT}.
Coref Subpopulation that contains the pronouns for a particular gender.

Parser* Constituency Transform with all complete subtrees of {POS_VP} in the input.
Dependency Subpopulation that has at least 2 {POS_NP} dependent on {POS_VP}.

Generative Backtranslation Using a seq2seq model for transformation using backtranslation.
Few-shot Using GPT3 like models for creating synthetic eval sets.

Perturbation Paraphrasing Synonym substitution using EDA.
TextAttack Perturbing input using TextAttack recipes.

H
um

an
or

H
um

an
-i

n-
th

e-
lo

op

Filtering Figurative text Using humans to identify subpopulation that contains sarcasm.

Curation Evaluation sets Building datasets like ANLI, Contrast sets, HANS, etc.
Data validation Using human-in-the-loop for label verification.

Adversarial Invariant Perturbing text in a way that the expected output does not change.
Directional Perturbing text in a way that the expected output changes.

Transformation Counterfactual Transforming to counterfactuals for a desired target concept.

Table 1: Sample of slice builders and corresponding data slices along with example use cases that can either be
used out-of-the-box or extended from Robustness Gym. → subpopulations, → transformations, → adversarial
attacks and → evaluation sets. ∗ marked are CachedOperations and the rest are SliceBuilders.

users quickly implement new ideas, minimize
boilerplate code and seamlessly integrate exist-
ing tools.

2. Consolidate evaluations (Section 3.2) and
findings for community sharing. RG users add
slices into a TestBench that can be versioned
and shared, allowing users to collaboratively
build benchmarks and track progress. For stan-
dardized reporting, RG provides Robustness
Reports that can be auto-generated from test-
benches and included in paper appendices.

We close with a discussion of how Robustness Gym
can benefit practitioners2 (Section 4), describing
how users with varying expertise – novice, inter-
mediate, expert – can evaluate a natural language
inference (NLI) model in RG.

2 The Landscape of Evaluation Tools

We describe two challenges facing evaluation today,
and situate them in the context of existing work.

2See 2 minute supplementary demo video.

2.1 Challenge 1: Idiomatic Lock-In
When practitioners decide what they want to eval-
uate, they can suffer from lock-in to a particular
idiom or type of evaluation after they adopt a tool.
Our analysis suggests that most tools and research
today serve a subset of four evaluation idioms:

1. Subpopulations. Identify subpopulations of a
dataset where the model may perform poorly.

Example: short reviews (< 50 words) in the
IMDB sentiment dataset (Maas et al., 2011).

2. Transformations. Perturb data to check that
the model responds correctly to changes.

Example: substitute words with their synonyms
in the IMDB dataset.

3. Attacks. Perturb data adversarially to exploit
weaknesses in a model.

Example: add “aabbccaa" to the end of reviews,
making the model predict positive sentiment.

4. Evaluation Sets. Use existing datasets or au-
thor examples to test generalization and perform
targeted evaluation.

43

Evaluation Idiom Tools Available Research Literature (focusing on NLI)

Subpopulations
Snorkel (Ratner et al., 2017), Hard/easy sets (Gururangan et al., 2018)
Errudite (Wu et al., 2019) Compositional-sensitivity (Nie et al., 2019)

Transformations
NLPAug (Ma, 2019) Counterfactuals (Kaushik et al., 2019), Stress test (Naik et al., 2018),

Bias factors (Sanchez et al., 2018), Verb veridicality (Ross and Pavlick, 2019)

Attacks
TextAttack (Morris et al., 2020), Universal Adversarial Triggers (Wallace et al., 2019a),
OpenAttack (Zeng et al., 2020) Adversarial perturbations (Glockner et al., 2018),
Dynabench (Kiela, 2020) ANLI (Nie et al., 2020)

Evaluation Sets

SuperGLUE diagnostic sets FraCaS (Cooper et al., 1994), RTE (Dagan et al., 2005), SICK (Marelli et al., 2014),
(Wang et al., 2019) SNLI (Bowman et al., 2015), MNLI (Williams et al., 2018),
Checklist (Ribeiro et al., 2020) HANS (McCoy et al., 2019b), Quantified NLI (Geiger et al., 2018),

MPE (Lai et al., 2017), EQUATE (Ravichander et al., 2019), DNC (Poliak et al., 2018),
ImpPres (Jeretic et al., 2020), Systematicity (Yanaka et al., 2020)
ConjNLI (Saha et al., 2020), SherLIiC (Schmitt and Schütze, 2019)

Table 2: Evaluation tools and literature, focusing on NLI as a case study. Some tools support multiple types of
evaluations, e.g., TextAttack supports both augmentations and attacks. For additional related work, see Section 5.

Example: author new movie reviews in the style
of a newspaper columnist.

We note that these idioms are not exhaustive. In
Table 2, we use this categorization to summarize
the tools and research available today, using the
well-studied natural language inference (NLI) task
as a case study. As an example, TextAttack (Mor-
ris et al., 2020) users can perform attacks, while
CheckList (Ribeiro et al., 2020) users author exam-
ples using templates, but cannot perform attacks.

Tools vary in whether they provide scaffolding to
let users build on new evaluation ideas easily. They
often provide excellent abstractions for particular
idioms, e.g., TextAttack (Morris et al., 2020) scaf-
folds users to easily write new adversarial attacks.
However, no tool that we are aware of addresses
this for evaluation that cuts across multiple idioms.

All of these limitations make it difficult for prac-
titioners, who are forced to glue together a combi-
nation of tools. Each tool meets different developer
needs, and has its own abstractions and organizing
principles, which takes away time from users to
inject their own creativity and expertise into the
evaluation process.

We address these challenges with Robustness
Gym (Section 3.1), which uses an open-interface
design to support all 4 evaluation idioms, and pro-
vides a simple workflow to scaffold users.

2.2 Challenge 2: Workflow Fragmentation
As practitioners evaluate, they need to keep track
of progress and communicate findings. Evaluation
tools today let users save their progress, but pro-
vide no support for semantic versioning (Preston-
Werner, 2013) and sharing findings. This is made
more difficult when consolidating evaluations and

results across multiple tools. General-purpose data
storage solutions (McKerns et al., 2012) solve this
problem, but require significant user effort to cus-
tomize and manage.

Reporting findings can be difficult since there
is no consensus on how to report when perform-
ing evaluation across multiple idioms. To study
whether existing tools incentivize reporting, we
scraped model cards for all available Huggingface
models (Wolf et al., 2020a). Model cards (Mitchell
et al., 2019) are free-form templates for standard-
ized reporting that contain an entry for “Evalua-
tion" or “Results", but leave the decision of what
to report to the user. Huggingface provides tools
for users to create model cards when submitting
models to their model hub.

Our findings are summarized in Table 3. Only a
small fraction (6.0%) of models carry model cards
with any evaluation information. Qualitatively, we
found low consistency in how users report findings,
even for models trained on the same task. This
suggests that it remains difficult for users to report
evaluation information consistently and easily.

In Section 3.2, we describe the support that Ro-
bustness Gym provides for versioning evaluations
in testbenches, and easily exporting and reporting
findings with reports.

Model Cards % of Models

Total 2133 64.6%
Non-empty 922 27.9%
Any evaluation info 197 6.0%

Models 3301 100.0%

Table 3: Prevalence of evaluations in model cards on the
HuggingFace Model Hub (huggingface.co/models).

44

Datasets

Model

Eval Sets QA

NLI

SubpopulationsTransformationsAttacks

Slices

Test Bench

Cached
Operations

TasksSlice Builders

LaTex ReportInteractive AnalysisRobustness Report

Evaluation and Reporting

Dialog

Sentiment

Summarization

Figure 1: Robustness Gym system design and workflow.

3 Robustness Gym

We address the challenges highlighted in Section 2
with Robustness Gym (RG). We describe how users
can build evaluations in Section 3.1, and version
evaluations and report findings in Section 3.2. Fig-
ure 1 provides a visual depiction of the system de-
sign and workflow in RG, while Python examples
for RG are in Tables 4, 5 and 6 of the appendix.

3.1 Evaluation Workflow

As highlighted in Section 2.1, practitioners can get
locked into a single tool that supports only a few
evaluation idioms. By contrast, RG enables broad
evaluations across multiple idioms. At a high level,
RG breaks evaluation into a two-stage workflow:

1. Caching information. First, practitioners typi-
cally perform a set of common pre-processing
operations (e.g., tokenization, lemmatization)
and compute useful side information for each
example (e.g., entity disambiguation, corefer-
ence resolution, semantic parsing) using exter-
nal knowledge sources and models, which they
cache for future analysis. An example is running
the spaCy pipeline, and caching the Doc object
that is generated for downstream analysis.

A large part of practitioner effort goes into gen-
erating this side information – which can be
expensive to compute – and into standardizing
it to a format that is convenient for analysis.

RG Support. CachedOperation is an abstrac-
tion in RG to derive useful information or gen-
erate side information for each example in a

dataset by (i) letting users run common oper-
ations easily and caching the outputs of these
operations e.g., running spaCy (Honnibal et al.,
2020); (ii) storing this information alongside the
associated example so that it can be accessed
conveniently; (iii) providing a simple abstrac-
tion for users to write their own operations.

2. Building slices. Second, practitioners use the
examples’ inputs and any available cached in-
formation to build slices, which are collections
of examples used for evaluation based on any
of the 4 evaluation idioms. These slices are de-
rived from a loaded dataset by applying one of
the evaluation idioms, e.g. filtering a dataset
based on some criteria to construct a subpopula-
tion.

RG Support. SliceBuilder is an abstraction to
retrieve information for an example and cre-
ate slices of data from them by (i) providing
retrieval methods to access inputs and cached in-
formation conveniently when writing custom
code to build slices; (ii) providing special-
ized abstractions for specific evaluation idioms:
transformations, attacks and subpopulations.

Robustness Gym includes wrappers for libraries
such as TextAttack and nlpaug that provide
specialized support for constructing adversar-
ial attacks and data transformations respectively.
This allows users the ability to utilize external
libraries in a unified toolkit and workflow.

This breakdown naturally separates the process
of gathering useful information from the nuts and

45

90.2

93.2

90.8

79.5

90.9

88.2

87.7

90.5

92.7High Lexical Overlap (McCoy, 2019)

Low Lexical Overlap (McCoy, 2019)

Temporal Preposition @ hypothesis (Chen, 2020)

Quantifier @ hypothesis (Chen, 2020)

Possessive Preposition @ hypothesis (Chen, 2020)

Negation @ premise (Naik, 2018)

Negation @ hypothesis (Naik, 2018)

High Constituency Tree Overlap (McCoy, 2019)

Low Constituency Tree Overlap (McCoy, 2019) 89.7

92.2

86.0

79.5

90.9

88.3

86.0

89.6

91.9

2.1K

1.99K

109

39

585

170

106

2.04K

1.98K

80.3BAE (Garg, 2019) 78.4 2.92K

82.3

65.8

75.4Synonym Substitution (Ma, 2019)

Keyboard Character Errors (Ma, 2019)

Easy Data Augmentation (Wei, 2019) 82.2

65.4

75.1

9.84K

9.14K

9.84K

90.9

0 100

SNLI (Bowman, 2015) 90.9

0 100 E N C E N C

9.84K

Accuracy F1 Class Dist Pred Dist Size

subpopulation
attack

transform
evalset

20 39 41

53 24 23

22 17 61

31 38 31

39 34 27

38 34 28

13 61 25

20 33 47

52 29 19

20 39 41

51 24 25

23 13 64

38 26 36

36 35 29

39 34 28

13 61 25

20 33 46

51 30 20

13 58 29 12 48 40

34 33 33

34 33 33

34 33 33

28 36 36

24 33 44

24 36 40

34 33 33 33 33 34

Figure 2: Robustness Report for Natural Language Inference using bert-base on SNLI.

bolts of using that information to build slices. Ta-
ble 1 contains examples of CachedOperations and
SliceBuilders that can be supported by RG.

RG relies on a common data interface provided
by the datasets library from HuggingFace (Wolf
et al., 2020a), which is backed by Apache Ar-
row (Foundation, 2019). This ensures that all opera-
tions in RG interoperate with HuggingFace models.

3.2 Testbenches and Reports
As highlighted in Section 2.2, users may find them-
selves consolidating evaluation results across sev-
eral tools and evaluation idioms. RG addresses
this fragmentation by providing users a TestBench
abstraction for storing and versioning evaluations,
and a Report abstraction for sharing findings.

• Versioning evaluations. Users can assemble
and version a collection of slices into a Test-
Bench, which represents a suite of evaluations.
A TestBench contains the slices created by the
user, and users can interact with a TestBench to
evaluate models and store metrics. Each Test-
Bench has an associated semantic version that
can be “bumped" as changes are made, e.g. if a
user adds a new set of slices, they can change the
version to indicate that the TestBench has been
modified.

RG tracks the provenance or history of slices,
making it easy to identify the (i) slice’s origi-
nal data source; (ii) sequence of SliceBuilders

by which a slice was created. This makes it
easy for another user to reproduce evaluations
when given a TestBench, even without the origi-
nal code. They can simply inspect the slices in
the TestBench to look at provenance information,
and use it to reproduce their evaluation process.

• Sharing findings. Users can create a Robustness
Report for any model on a TestBench (Figure 2),
or standalone reports for evaluations that are not
performed in RG, using the Report abstraction.
To incentivize standardized reporting, RG sup-
ports Standard Reports for several tasks. The
Standard Report is comprehensive, static and is
backed by a TestBench that contains slices from
all evaluation idioms. It can be generated in a
PDF or LATEX format to be added to the appendix
of a paper3. Reports reduce user burden in com-
municating findings, and make it easier to stan-
dardize reporting in the community.

RG supports an interactive Streamlit tool4 for
generating standard reports, which will be ex-
panded in the future to allow users to pick slices
based on their evaluation needs.

4 User Personas in Robustness Gym

Next, we discuss how users with varying expertise
can use RG. We describe how 3 user personas—
beginner, intermediate, and advanced—can use RG

3See Figure 3 in the appendix.
4Screenshot in Figure 4 of the appendix.

46

to analyze the performance of an natural language
inference (NLI) model. In NLI, the goal is to deter-
mine whether a premise sentence entails, is neutral
to, or contradicts a hypothesis sentence.

4.1 Scenario I: Beginner User

Description. Users new to NLP and robustness,
lack knowledge to choose or write specific slices.

Example Goal. Exploratory robustness testing.

RG support:

• Visual Interface. The user creates a report with a
few clicks in the Streamlit interface5. They select
“Standard Report”, “SNLI” (dataset)6, “Ternary
Natural Language Inference” (task), “BERT-
Base” (model), and click “Generate Report”.

• Standard Reports. The Standard Report, shown
in Figure 2 provides a detailed snapshot of
various robustness tests for NLI. The tests
may include Subpopulations (e.g., HASNEGA-
TION, LEXICALOVERLAP), Transformations
(e.g., SYNONYMAUG, KEYBOARDAUG) (Ma,
2019), Attacks (TEXTATTACK) (Morris et al.,
2020; Garg and Ramakrishnan, 2020), and Eval-
uation Sets (Bowman et al., 2015). The user
gleans several initial insights from this report.
For example, their model is vulnerable to typing
mistakes due to low accuracy on the KEYBOAR-
DAUG slice; the predicted class distribution col-
umn reveals that this noise causes the model to
predict contradiction more frequently than
entailment or neutral. The user is able to
easily share the generated PDF of this report.

4.2 Scenario II: Intermediate User

Description. Users familiar with NLP and robust-
ness, willing to write minimal code.

Example Goal. Explore gender bias when gen-
dered pronouns are present in the input.

RG support:

• Built-in SliceBuilders. Apply the existing HAS-
PHRASE SliceBuilder to create subpopulations
with female pronouns in the hypothesis:
subpopulations = HasPhrase([’her’, ’she’])
slices = subpopulations(snli, [’hypothesis’])

• Testbenches. Put slices into a TestBench and
make it available on GitHub for collaboration.

5See supplementary demo video for example usage.
6The Stanford Natural Languge Inference dataset (Bow-

man et al., 2015).

• Reports. Generate Robustness Reports for any
model from the TestBench.

4.3 Scenario III: Advanced User

Description. NLP experts, need to write custom
code for their task and research.

Example Goal. Evaluate whether NLI models
rely on surface-level spurious similarities between
premise and hypothesis.

RG support:

• CachedOperations. Run the spaCy pipeline for
tokenization.

• Custom SliceBuilders. Utilize the SCORESUB-
POPULATION class to construct subpopulations
with arbitrary scoring functions. Write a custom
scoring function len_diff that returns the ab-
solute difference in length between the tokenized
hypothesis and premise. Then, find examples
that score in the top 10% as follows:
s = ScoreSubpopulation(

intervals=[(’90%’,’100%’)], score_fn=len_diff)

• Transformations. Transform data using classes
such as EASYDATAAUGMENTATION (Wei and
Zou, 2019). Compose this transformation with
the custom SCORESUBPOPULATION described
earlier to create a larger slice.

• Testbench. Publish a new TestBench on GitHub
for others to reuse and refine the evaluations.

• Report. Generate a report for immediate anal-
ysis and a LATEX appendix to share results in a
research paper (see Figure 3 in appendix).

5 Related Tools and Work

We highlight additional related work for evaluation
and reporting, including work on interpretability.

Evaluation and error-analysis. Tools for eval-
uation and error analysis support users in under-
standing where their models fail. In contrast to
RG, existing tools support only a subset of eval-
uations and analyses. Errudite (Wu et al., 2019),
Snorkel (Ratner et al., 2017) support subpopula-
tions, TextAttack (Morris et al., 2020) adversarial
attacks, nlpaug (Ma, 2019) transformations, and
CrossCheck (Arendt et al., 2020), Manifold (Zhang
et al., 2018) focus on visualization and analysis for
model comparison.

Interpretability. Tools for interpretability enable
a better understanding of model behavior. These

47

tools serve complementary objectives to Robust-
ness Gym, e.g., explaining why a model makes a
certain prediction, rather than performing broad
evaluations. Tools include the recent Language
Interpretability Tool (LIT) (Tenney et al., 2020),
IBM’s AI Explainability 360 (Arya et al., 2019),
AllenNLP Interpret (Wallace et al., 2019b), Inter-
pretML (Nori et al., 2019), Manifold (Zhang et al.,
2018), Pytorch Captum (Narine Kokhlikyan and
Reblitz-Richardson), DiCE (Mothilal et al., 2020),
What-if (Wexler et al., 2019), FairVis (Cabrera
et al., 2019), and FairSight (Ahn and Lin, 2019).
Many of these tools focus on interactive visualiza-
tion, which limits their scope to interpreting small
numbers of examples and makes their use suscepti-
ble to subjectivity and selection bias. By contrast,
Robustness Gym can scale to large datasets, while
testbenches ensure reproducibility of analyses.

6 Conclusion

We introduced Robustness Gym, an evaluation
toolkit that supports a broad set of evaluation id-
ioms, and can be used for collaboratively building
and sharing evaluations and results. Robustness
Gym is under active development and we welcome
feedback and contributions from the community.

Acknowledgements

This work was part of a collaboration between Stan-
ford, UNC, and Salesforce Research and was sup-
ported by Salesforce AI Research grants to MB
and CR. We are thankful to Samson Tan, Jason Wu,
Stephan Zheng, Caiming Xiong, Han Guo, Lau-
rel Orr, Jared Dunnmon, Chris Potts, Marco Tulio
Ribeiro, Shreya Rajpal for helpful discussions and
feedback. CR also gratefully acknowledges the sup-
port of NIH under No. U54EB020405 (Mobilize),
NSF under Nos. CCF1763315 (Beyond Sparsity),
CCF1563078 (Volume to Velocity), and 1937301
(RTML); ONR under No. N000141712266 (Uni-
fying Weak Supervision); the Moore Foundation,
NXP, Xilinx, LETI-CEA, Intel, IBM, Microsoft,
NEC, Toshiba, TSMC, ARM, Hitachi, BASF, Ac-
centure, Ericsson, Qualcomm, Analog Devices, the
Okawa Foundation, American Family Insurance,
Google Cloud, Swiss Re, Total, the HAI-AWS
Cloud Credits for Research program, and mem-
bers of the Stanford DAWN project: Facebook,
Google, and VMWare. The U.S. Government is
authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copy-

right notation thereon. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the authors and do not neces-
sarily reflect the views, policies, or endorsements,
either expressed or implied, of NIH, ONR, or the
U.S. Government.

References
Yongsu Ahn and Yu-Ru Lin. 2019. Fairsight: Visual

analytics for fairness in decision making. IEEE
transactions on visualization and computer graphics,
26(1):1086–1095.

Dustin Arendt, Zhuanyi Huang, Prasha Shrestha, E. Ay-
ton, Maria Glenski, and Svitlana Volkova. 2020.
Crosscheck: Rapid, reproducible, and interpretable
model evaluation. ArXiv, abs/2004.07993.

Vijay Arya, Rachel K. E. Bellamy, Pin-Yu Chen, Amit
Dhurandhar, Michael Hind, Samuel C. Hoffman,
Stephanie Houde, Q. Vera Liao, Ronny Luss, Alek-
sandra Mojsilović, Sami Mourad, Pablo Pedemonte,
Ramya Raghavendra, John Richards, Prasanna Sat-
tigeri, Karthikeyan Shanmugam, Moninder Singh,
Kush R. Varshney, Dennis Wei, and Yunfeng Zhang.
2019. One explanation does not fit all: A toolkit and
taxonomy of ai explainability techniques.

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic
and natural noise both break neural machine transla-
tion. ArXiv, abs/1711.02173.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large annotated
corpus for learning natural language inference. arXiv
preprint arXiv:1508.05326.

Ángel Alexander Cabrera, Will Epperson, Fred
Hohman, Minsuk Kahng, Jamie Morgenstern, and
Duen Horng Chau. 2019. Fairvis: Visual analytics
for discovering intersectional bias in machine learn-
ing. In 2019 IEEE Conference on Visual Analytics
Science and Technology (VAST), pages 46–56. IEEE.

Vincent Chen, Sen Wu, Alexander J Ratner, Jen Weng,
and Christopher Ré. 2019. Slice-based learning: A
programming model for residual learning in critical
data slices. In Advances in neural information pro-
cessing systems, pages 9392–9402.

Robin Cooper, Dick Crouch, Jan Van Eijck, Chris Fox,
Johan Van Genabith, Jan Jaspars, Hans Kamp, David
Milward, Manfred Pinkal, Massimo Poesio, and et al.
Pulman, Stephen. 1994. Using the framework. Tech-
nical report, Deliverable D6.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment chal-
lenge. In Machine Learning Challenges Workshop,
pages 177–190. Springer.

Apache Software Foundation. 2019. Arrow: A cross-
language development platform for in-memory data.

48

Siddhant Garg and Goutham Ramakrishnan. 2020. Bae:
Bert-based adversarial examples for text classifica-
tion. ArXiv, abs/2004.01970.

Atticus Geiger, Ignacio Cases, Lauri Karttunen,
and Christopher Potts. 2018. Stress-testing neu-
ral models of natural language inference with
multiply-quantified sentences. arXiv preprint
arXiv:1810.13033.

Max Glockner, Vered Shwartz, and Yoav Goldberg.
2018. Breaking nli systems with sentences that re-
quire simple lexical inferences. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
650–655.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy,
Roy Schwartz, Samuel R Bowman, and Noah A
Smith. 2018. Annotation artifacts in natural language
inference data. arXiv preprint arXiv:1803.02324.

Isobel Asher Hamilton. 2018. Amazon built an AI tool
to hire people but had to shut it down because it was
discriminating against women.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav
Kadavath, Frank Wang, Evan Dorundo, Rahul Desai,
Tyler Zhu, Samyak Parajuli, Mike Guo, et al. 2020.
The many faces of robustness: A critical analysis
of out-of-distribution generalization. arXiv preprint
arXiv:2006.16241.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.

Paloma Jeretic, Alex Warstadt, Suvrat Bhooshan, and
Adina Williams. 2020. Are natural language infer-
ence models imppressive? learning implicature and
presupposition. arXiv preprint arXiv:2004.03066.

Robin Jia and Percy Liang. 2017. Adversarial examples
for evaluating reading comprehension systems. In
EMNLP.

Divyansh Kaushik, Eduard Hovy, and Zachary C Lipton.
2019. Learning the difference that makes a differ-
ence with counterfactually-augmented data. arXiv
preprint arXiv:1909.12434.

Douwe Kiela. 2020. Rethinking AI Benchmarking.

Alice Lai, Yonatan Bisk, and Julia Hockenmaier. 2017.
Natural language inference from multiple premises.
In Proceedings of the Eighth International Joint Con-
ference on Natural Language Processing (Volume 1:
Long Papers), pages 100–109, Taipei, Taiwan. Asian
Federation of Natural Language Processing.

Edward Ma. 2019. NLP Augmentation.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the

Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raf-
faella Bernardi, Stefano Menini, and Roberto Zam-
parelli. 2014. SemEval-2014 task 1: Evaluation of
compositional distributional semantic models on full
sentences through semantic relatedness and textual
entailment. In Proceedings of the 8th International
Workshop on Semantic Evaluation (SemEval 2014),
pages 1–8, Dublin, Ireland. Association for Compu-
tational Linguistics.

R. T. McCoy, Ellie Pavlick, and Tal Linzen. 2019a.
Right for the wrong reasons: Diagnosing syntac-
tic heuristics in natural language inference. ArXiv,
abs/1902.01007.

R Thomas McCoy, Ellie Pavlick, and Tal Linzen. 2019b.
Right for the wrong reasons: Diagnosing syntac-
tic heuristics in natural language inference. arXiv
preprint arXiv:1902.01007.

M. McKerns, Leif Strand, T. Sullivan, Alta Fang, and
M. A. G. Aivazis. 2012. Building a framework for
predictive science. ArXiv, abs/1202.1056.

J. Miller, Karl Krauth, B. Recht, and L. Schmidt. 2020.
The effect of natural distribution shift on question
answering models. ArXiv, abs/2004.14444.

Margaret Mitchell, Simone Wu, Andrew Zaldivar,
Parker Barnes, Lucy Vasserman, Ben Hutchinson,
Elena Spitzer, Inioluwa Deborah Raji, and Timnit
Gebru. 2019. Model cards for model reporting. In
Proceedings of the conference on fairness, account-
ability, and transparency, pages 220–229.

John X Morris, Eli Lifland, Jin Yong Yoo, and Yanjun
Qi. 2020. Textattack: A framework for adversarial at-
tacks in natural language processing. arXiv preprint
arXiv:2005.05909.

Ramaravind K Mothilal, Amit Sharma, and Chenhao
Tan. 2020. Explaining machine learning classifiers
through diverse counterfactual explanations. In Pro-
ceedings of the 2020 Conference on Fairness, Ac-
countability, and Transparency, pages 607–617.

Aakanksha Naik, Abhilasha Ravichander, Norman
Sadeh, Carolyn Rose, and Graham Neubig. 2018.
Stress test evaluation for natural language inference.
arXiv preprint arXiv:1806.00692.

Miguel Martin Edward Wang Jonathan Reynolds
Alexander Melnikov Natalia Lunova Nar-
ine Kokhlikyan, Vivek Miglani and Orion
Reblitz-Richardson. Pytorch captum.

Yixin Nie, Yicheng Wang, and Mohit Bansal. 2019.
Analyzing compositionality-sensitivity of nli models.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 6867–6874.

49

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2020. Adversarial
nli: A new benchmark for natural language under-
standing. In ACL.

Harsha Nori, Samuel Jenkins, Paul Koch, and Rich
Caruana. 2019. Interpretml: A unified framework
for machine learning interpretability. arXiv preprint
arXiv:1909.09223.

Adam Poliak, Aparajita Haldar, Rachel Rudinger, J. Ed-
ward Hu, Ellie Pavlick, Aaron Steven White, and
Benjamin Van Durme. 2018. Collecting diverse nat-
ural language inference problems for sentence rep-
resentation evaluation. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 67–81, Brussels, Belgium.
Association for Computational Linguistics.

Tom Preston-Werner. 2013. Semantic versioning 2.0. 0.
línea]. Available: http://semver. org.

Alexander Ratner, Stephen H Bach, Henry Ehrenberg,
Jason Fries, Sen Wu, and Christopher Ré. 2017.
Snorkel: Rapid training data creation with weak su-
pervision. In Proceedings of the VLDB Endowment.
International Conference on Very Large Data Bases,
volume 11, page 269. NIH Public Access.

Abhilasha Ravichander, Aakanksha Naik, Carolyn Rose,
and Eduard Hovy. 2019. EQUATE: A benchmark
evaluation framework for quantitative reasoning in
natural language inference. In Proceedings of the
23rd Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 349–361, Hong
Kong, China. Association for Computational Lin-
guistics.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of nlp models with checklist. In
Association for Computational Linguistics (ACL).

Alexis Ross and Ellie Pavlick. 2019. How well do nli
models capture verb veridicality? In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2230–2240.

Swarnadeep Saha, Yixin Nie, and Mohit Bansal. 2020.
Conjnli: Natural language inference over conjunctive
sentences. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 8240–8252.

Ivan Sanchez, Jeff Mitchell, and Sebastian Riedel. 2018.
Behavior analysis of NLI models: Uncovering the in-
fluence of three factors on robustness. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1975–1985, New Orleans, Louisiana.
Association for Computational Linguistics.

Martin Schmitt and Hinrich Schütze. 2019. SherLIiC: A
typed event-focused lexical inference benchmark for
evaluating natural language inference. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 902–914, Florence,
Italy. Association for Computational Linguistics.

Chloe Rose Stuart-Ulin. 2018. Microsoft’s politically
correct chatbot is even worse than its racist one.

Ian Tenney, James Wexler, Jasmijn Bastings, Tolga
Bolukbasi, Andy Coenen, Sebastian Gehrmann,
Ellen Jiang, Mahima Pushkarna, Carey Radebaugh,
Emily Reif, et al. 2020. The language interpretability
tool: Extensible, interactive visualizations and analy-
sis for nlp models. arXiv preprint arXiv:2008.05122.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gard-
ner, and Sameer Singh. 2019a. Universal adversarial
triggers for nlp. arXiv preprint arXiv:1908.07125.

Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay
Subramanian, Matt Gardner, and Sameer Singh.
2019b. Allennlp interpret: A framework for ex-
plaining predictions of nlp models. arXiv preprint
arXiv:1909.09251.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. In Advances in Neural Information
Processing Systems, pages 3266–3280.

Jason W Wei and Kai Zou. 2019. Eda: Easy
data augmentation techniques for boosting perfor-
mance on text classification tasks. arXiv preprint
arXiv:1901.11196.

James Wexler, Mahima Pushkarna, Tolga Bolukbasi,
Martin Wattenberg, Fernanda Viégas, and Jimbo Wil-
son. 2019. The what-if tool: Interactive probing of
machine learning models. IEEE transactions on vi-
sualization and computer graphics, 26(1):56–65.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112–1122. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020a. Hugging-
face’s transformers: State-of-the-art natural language
processing.

50

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020b. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Tongshuang Wu, Marco Tulio Ribeiro, J. Heer, and
Daniel S. Weld. 2019. Errudite: Scalable, repro-
ducible, and testable error analysis. In ACL.

Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, and
Kentaro Inui. 2020. Do neural models learn system-
aticity of monotonicity inference in natural language?
arXiv preprint arXiv:2004.14839.

Guoyang Zeng, Fanchao Qi, Qianrui Zhou, Tingji
Zhang, Bairu Hou, Yuan Zang, Zhiyuan Liu, and
Maosong Sun. 2020. Openattack: An open-source
textual adversarial attack toolkit. arXiv preprint
arXiv:2009.09191.

Jiawei Zhang, Yang Wang, Piero Molino, Lezhi Li, and
David S Ebert. 2018. Manifold: A model-agnostic
framework for interpretation and diagnosis of ma-
chine learning models. IEEE transactions on visual-
ization and computer graphics, 25(1):364–373.

A Appendix

Code. We provide example code snippets for Ro-
bustness Gym in Tables 4 (CachedOperation), 5
(SliceBuilder), and 6 (TestBench, Report), below.

LATEX Report. Figure 3 is an example of a report
generated in a LATEX format. The code for the
figure was auto-generated and the figure was simply
included in the appendix.

Streamlit Application. Figure 4 is a screenshot of
our streamlit application for generating standard
reports.

51

Goal Code Snippet

C
ac

hi
ng

Create

Create Spacy cached operation

spacy = Spacy()

Create Stanza cached operation

stanza = Stanza()

Create a custom cached opera-
tion

cachedop = CachedOperation(
apply_fn=my_custom_fn,
identifier=Identifier(’MyCustomOp’),

)

Run a cached operation

dataset = cachedop(dataset, columns)

Retrieve

Retrieve all Spacy info cached

Spacy.retrieve(dataset, columns)

Retrieve Spacy tokens

Spacy.retrieve(batch, columns, ’tokens’)

Retrieve Stanza entities

Stanza.retrieve(
batch,
columns,
Stanza.entities

)

Retrieve any cached operation
info after processing

CachedOperation.retrieve(
batch,
columns,
my_proc_fn,
’MyCustomOp’

)

Table 4: Code for the CachedOperation abstraction in Robustness Gym.

52

Goal Code Snippet

Sl
ic

e
B

ui
ld

in
g

Subpopulations

Create a subpopulation that gen-
erates three slices based on raw
lengths in [0, 10], [10, 20] and
[20,∞)

length_sp = Length(
[(0, 10), (10, 20), (20, np.inf)]

)

Create a subpopulation that gen-
erates two slices based on bot-
tom 10% and top 10% length
percentiles

length_sp = Length(
[(’0%’, ’10%’), (’90%’, ’100%’)]

)

Create a custom subpopulation
by binning the outputs of a scor-
ing function custom_sp = ScoreSubpopulation(

[(’0%’, ’10%’), (’90%’, ’100%’)],
my_scoring_fn

)

Transformations

Create EasyDataAugmentation

eda = EasyDataAugmentation()

Create any NlpAug transforma-
tion

nlpaug_trans = NlpAugTransformation(
pipeline=nlpaug_pipeline

)

Create a custom transformation

custom_trans = Transformation(
Identifier(’MyTransformation’),
my_transformation_fn

)

Attacks

Create TextAttack recipe

attack = TextAttack.from_recipe(recipe, model)

Evaluation Sets

Create a slice from a dataset

sl = Slice(dataset)

Slice Builders

Run any SliceBuilder

dataset, slices, membership = slicebuilder(
batch_or_dataset=dataset,
columns=columns,

)

Table 5: Code for the SliceBuilder abstraction in Robustness Gym.

53

Goal Code Snippet

R
ep

or
tin

g

Testbench

Create a testbench

testbench = TestBench(
identifier=Identifier(’MyTestBench’),
version=’0.1.0’

)

Add slices to testbench

testbench.add_slices(slices)

Fuzzy search testbench for slices

top_k_matched_slices = testbench.search(’len’)

Bump testbench minor version

testbench.bump_minor()

Save and load a testbench

testbench.save(path)
testbench.load(path)

Report

Evaluate model on slices and
generate report

testbench.create_report(model)

Create a custom report

report = Report(
dataframe_with_metrics,
report_columns,

)

Generate figure from report

figure = report.figure()

Generate LATEXreport

latex = report.latex()

Table 6: Code for the TestBench and Report abstractions in Robustness Gym.

54

90.2

93.2

90.8

79.5

90.9

88.2

87.7

90.5

92.7High Lexical Overlap (McCoy, 2019)

Low Lexical Overlap (McCoy, 2019)

Temporal Preposition @ hypothesis (Chen, 2020)

Quantifier @ hypothesis (Chen, 2020)

Possessive Preposition @ hypothesis (Chen, 2020)

Negation @ premise (Naik, 2018)

Negation @ hypothesis (Naik, 2018)

High Constituency Tree Overlap (McCoy, 2019)

Low Constituency Tree Overlap (McCoy, 2019) 89.7

92.2

86.0

79.5

90.9

88.3

86.0

89.6

91.9

2.1K

1.99K

109

39

585

170

106

2.04K

1.98K

80.3BAE (Garg, 2019) 78.4 2.92K

82.3

65.8

75.4Synonym Substitution (Ma, 2019)

Keyboard Character Errors (Ma, 2019)

Easy Data Augmentation (Wei, 2019) 82.2

65.4

75.1

9.84K

9.14K

9.84K

90.9

0 100

SNLI (Bowman, 2015) 90.9

0 100 E N C E N C

9.84K

Accuracy F1 Class Dist Pred Dist Size

subpopulation
attack

transform
evalset

20 39 41

53 24 23

22 17 61

31 38 31

39 34 27

38 34 28

13 61 25

20 33 47

52 29 19

20 39 41

51 24 25

23 13 64

38 26 36

36 35 29

39 34 28

13 61 25

20 33 46

51 30 20

13 58 29 12 48 40

34 33 33

34 33 33

34 33 33

28 36 36

24 33 44

24 36 40

34 33 33 33 33 34

Figure 3: Robustness report for textattack/bert-base-uncased-snli model on SNLI dataset. The report lays out scores
for each evaluation, broken out by category. Citations: (Chen et al., 2019; Naik et al., 2018; McCoy et al., 2019a;
Wei and Zou, 2019; Ma, 2019; Bowman et al., 2015).

Note: the LATEX figure and caption above is auto-generated using “report.latex()".

Figure 4: Screenshot of our interactive Streamlit application for creating standard reports. Users can choose a
task, dataset and model on the left side, and a standard report spanning all 4 evaluation idioms – subpopulations,
transformations, attacks and evaluation sets – is auto-generated on the right side.

55

Proceedings of NAACL-HLT 2021: Demonstrations, pages 56–65
June 6–11, 2021. ©2021 Association for Computational Linguistics

EventPlus: A Temporal Event Understanding Pipeline

Mingyu Derek Ma1∗ Jiao Sun2∗ Mu Yang3 Kung-Hsiang Huang2

Nuan Wen2 Shikhar Singh2 Rujun Han2 Nanyun Peng1,2

1 Computer Science Department, University of California, Los Angeles
2 Information Sciences Institute, University of Southern California

3 Texas A&M University
{ma,violetpeng}@cs.ucla.edu

{jiaosun,kunghsia,nuanwen,ssingh43,rujunhan}@usc.edu
yangmu@tamu.edu

Abstract

We present EventPlus, a temporal event under-
standing pipeline that integrates various state-
of-the-art event understanding components in-
cluding event trigger and type detection, event
argument detection, event duration and tempo-
ral relation extraction. Event information, es-
pecially event temporal knowledge, is a type
of common sense knowledge that helps peo-
ple understand how stories evolve and pro-
vides predictive hints for future events. Event-
Plus as the first comprehensive temporal event
understanding pipeline provides a convenient
tool for users to quickly obtain annotations
about events and their temporal information
for any user-provided document. Furthermore,
we show EventPlus can be easily adapted to
other domains (e.g., biomedical domain). We
make EventPlus publicly available to facilitate
event-related information extraction and down-
stream applications.

1 Introduction

Event understanding is intuitive for humans and
important for daily decision making. For exam-
ple, given the raw text shown in Figure 1, a person
can infer lots of information including event trig-
ger and type, event related arguments (e.g., agent,
patient, location), event duration and temporal re-
lations between events based on the linguistic and
common sense knowledge. These understandings
help people comprehend the situation and prepare
for future events. The event and temporal knowl-
edge are helpful for many downstream applications
including question answering (Meng et al., 2017;
Huang et al., 2019), story generation (Peng et al.,
2018; Yao et al., 2019; Goldfarb-Tarrant et al.,
2019, 2020), and forecasting (Wang et al., 2017;
Granroth-Wilding and Clark, 2016; Li et al., 2018).

∗Equal contribution.

Figure 1: Event understanding components. We high-
light events triggers in yellow, and mark the predicted
task-related information in Italic.

Despite the importance, there are relatively few
tools available for users to conduct text-based tem-
poral event understanding. Researchers have been
building natural language processing (NLP) analy-
sis tools for “core NLP” tasks (Gardner et al., 2018;
Manning et al., 2014; Khashabi et al., 2018). How-
ever, systems that target at semantic understanding
of events and their temporal information are still
under-explored. There are individual works for
event extraction, temporal relation detection and
event duration detection, but they are separately
developed and thus cannot provide comprehensive
and coherent temporal event knowledge.

We present EventPlus, the first pipeline sys-
tem integrating several high-performance temporal
event information extraction models for compre-
hensive temporal event understanding. Specifically,
EventPlus contains event extraction (both on de-
fined ontology and for novel event triggers), event
temporal relation prediction, event duration detec-
tion and event-related arguments and named entity
recognition, as shown in Figure 2.1

1The system is publicly accessible at https:
//kairos-event.isi.edu. The source code is
available at https://github.com/PlusLabNLP/
EventPlus. We also provide an introductory video at
https://pluslabnlp.github.io/eventplus.

56

Figure 2: The interface of EventPlus. Users can either choose examples or freely input text which matches with
their selected topic in B. C shows the Name Entity Recognition (NER) results, which serve as argument candidates
for events. When clicking on an event trigger in D, we show the selected event trigger and its corresponding
arguments in C2. We show temporal-related information of all events in E, where nodes represent event triggers
and edges represent their relations; we further indicate the event duration as labels of nodes.

EventPlus is designed with multi-domain sup-
port in mind. Particularly, we present an initial
effort to adapt EventPlus to the biomedical domain.
We summarize the contributions as follows:

• We present the first event pipeline system with
comprehensive event understanding capabilities
to extract event triggers and argument, tempo-
ral relations among events and event duration
to provide an event-centric natural language un-
derstanding (NLU) tool to facilitate downstream
applications.

• Each component in EventPlus has comparable
performance to the state-of-the-art, which assures
the quality and efficacy of our system for tempo-
ral event reasoning.

2 Component

In this section, we introduce each component in
our system, as shown in Figure 3. We use a multi-
task learning model for event trigger and temporal
relation extraction (§ 2.1). The model introduced
in § 2.2 extracts semantic-rich events following the
ACE ontology, and the model introduced in § 2.3
predicts the event duration. Note that our system

handles two types of event representations: one rep-
resents an event as the trigger word (Pustejovsky
et al., 2003a) (as the event extraction model in §
2.1), the other represents event as a complex struc-
ture including trigger, type and arguments (Ahn,
2006) (as the event extraction model in § 2.2). The
corpus following the former definition usually has
a broader coverage while the latter can provide
richer information. Therefore, we develop models
to combine the benefits of both worlds. We also
introduce a speculated and negated events handling
component in § 2.4 to further identify whether an
event happens or not.

2.1 Multi-task Learning of Event Trigger
and Temporal Relation Extraction

The event trigger extraction component takes the
input of raw text and outputs single-token event
triggers. The input to the temporal relation extrac-
tion model is raw text and a list of detected event
triggers. The model will predict temporal relation-
ships between each pair of events. In previous
literature (Han et al., 2019b), multi-task learning
of these two tasks can significantly improve per-
formance on both tasks following the intuition that

57

Figure 3: Overall system design of EventPlus. The raw text is first fed into two event extraction components, and
then we pass the event triggers of the merged event list to event duration detection and temporal relation extraction
models. Finally outputs from all models are combined for visualization.

event relation signals can be helpful to distinguish
event triggers and non-event tokens.

The model feeds BERT embedding (Devlin et al.,
2019) of the input text to a shared BiLSTM layer
for encoding task-specific contextual information.
The output of the BiLSTM is passed to an event
scoring function and a relation scoring function
which are MLP classifiers to calculate the probabil-
ity of being an event (for event extraction) or a prob-
ability distribution over all possible relations (for
temporal relation extraction). We train the multi-
task model on MATRES (Ning et al., 2018a) con-
taining temporal relations BEFORE, AFTER, SIMUL-
TANEOUS and VAGUE. Though the model performs
both tasks during training, it can be separately used
for each individual task during inference.

2.2 Event Extraction on ACE Ontology
Although event triggers present the occurrence of
events, they are not sufficient to demonstrate the
semantic-rich information of events. ACE 20052

corpus defines an event ontology that represents an
event as a structure with triggers and corresponding
event arguments (participants) with specific roles
(Doddington et al., 2004).3 Our system is trained
with ACE 2005 corpus, thus it is capable of ex-
tracting events with the complex structure. ACE
focuses on events of a particular set of types includ-
ing LIFE, MOVEMENT, TRANSACTION, BUSINESS,
CONFLICT, CONTACT, PERSONNEL and JUSTICE,
where each type has corresponding sub-types. Fol-
lowing prior works (Wadden et al., 2019; Lin et al.,
2020), we keep 7 entity types (person, organiza-
tion, location, geo-political entity, facility, vehicle,
weapon), 33 event sub-types, and 22 argument roles

2https://www.ldc.upenn.edu/
collaborations/past-projects/ace

3The ACE program provides annotated data for five kinds
of extraction targets: entities, times, values, relations and
events. We only focus on events and entities data in this paper.

that are associated with sub-types.
Similar to Han et al. (2019b), we build our event

extraction component for ACE ontology upon a
multi-task learning framework that consists of trig-
ger detection, argument role detection and entity
detection. These tasks share the same BERT en-
coder, which is fine-tuned during training. The
entity detector predicts the argument candidates for
all events in an input sentence. The trigger detector
labels the input sequence with the event sub-types
at the token level. The argument role detector finds
the argument sequence4 for each detected trigger
via attention mechanism. For example, for the
sentence in Figure 1, its target trigger sequence
has MOVEMENT:TRANSPORT label at the posi-
tion of “toured” token, and its argument sequence
for this MOVEMENT:TRANSPORT event has B-
ARTIFACT, I-ARTIFACT labels at the position of
“George Pataki” and B-DESTINATION label at the
position of “counties” respectively. The entire
multi-task learning framework is jointly trained.

During inference, our system detects arguments
solely based on triggers. To make our system bet-
ter leverage information from argument candidates,
we developed the following constraints during de-
coding based on the predicted entities (argument
candidates) and other specific definitions in ACE:

• Entity-Argument constraint. The argument role
label for a token can take one of the 22 argu-
ment roles if and only if the token at this position
belongs to a predicted entity.

• Entity-Trigger constraint. The trigger label for
a token can take one of the 33 event sub-types
if and only if the token at this position does not
belong to a predicted entity.

• Valid Trigger-Argument constraint. Based on the
definitions in ACE05, each event sub-type takes

4Argument sequences are presented using BIO encoding.

58

certain types of argument roles. We enforce that
given the predicted trigger label, the argument
roles in this sequence can only take those that are
valid for this trigger.

To account for these constraints, we set the prob-
ability of all invalid configurations to be 0 during
decoding.

2.3 Event Duration Detection

This component classifies event triggers into dura-
tion categories. While many datasets have covered
time expressions which are explicit timestamps for
events (Pustejovsky et al., 2003b; Cassidy et al.,
2014; Reimers et al., 2018; Bethard et al., 2017),
they do not target categorical event duration. To
supplement this, Vashishtha et al. (2019) introduces
the UDS-T dataset, where they provide 11 duration
categories which we adopt for our event pipeline:
INSTANT, SECONDS, MINUTES, HOURS, DAYS,
WEEKS, MONTHS, YEARS, DECADES, CENTURIES

and FOREVER. Pan et al. (2006) also present a
news domain duration annotation dataset contain-
ing 58 articles developed from TimeBank corpus
(we refer as Typical-Duration in the following), it
provides 7 duration categories (a subset of the 11
categories in UDS-T from SECONDS to YEARS).

We developed two models for the event duration
detection task. For a sentence, along with predi-
cate root and span, the models perform duration
classification. In the first method, we fine-tune a
BERT language model (Devlin et al., 2019) on sin-
gle sentences and take hidden states of event tokens
from the output of the last layer, then feed into a
multi-layer perceptron for classification.

The second model is adapted from the UDS-T
baseline model, which is trained under the multi-
task objectives of duration and temporal relation
extraction. The model computes ELMo embed-
dings (Peters et al., 2018) followed by attention
layers to compute the attended representation of the
predicate given sentence. The final MLP layers ex-
tract the duration category. Even though this model
can detect temporal relations, it underperforms the
model we described in § 2.1, so we exclude the
temporal relation during inference.

2.4 Negation and Speculation Cue Detection
and Scope Resolution

The event extraction components described above
are designed to extract all possible events, but we
identify events that are indicated by speculation

(e.g., would) or negation (e.g., not) keywords (Kon-
stantinova et al., 2012). Since those events do not
happen, we mark them with special labels. For
example, in the sentence “The United States is not
considering sending troops to Mozambique”, we
identify “send” will not happen.

We adapt the BERT-based negation and specu-
lation cue detection model and the scope resolu-
tion model introduced by Khandelwal and Sawant
(2020). To fine-tune these models, we use the SFU
Review dataset with negation and speculation anno-
tations (Taboada et al., 2006; Taboada and Grieve,
2004; Konstantinova et al., 2012), and we feed
ground truth negation and speculation cues as input
for the scope resolution model. We evaluate the
two models on a separate testing set of the SFU
Review dataset. The cue detection model yields
a 0.92 F1 score, and the scope resolution model
yields a 0.88 F1 score for token-level prediction,
given ground truth cues as input. In EventPlus, we
input cues detected by the cue detection model to
the scope resolution model.

3 System

We design a pipeline system to enable the interac-
tion among components with state-of-the-art per-
formance introduced in § 2 and provide a compre-
hensive output for events and visualize the results.
Figure 3 shows the overall system design.

3.1 Pipeline Design

Event Extraction EventPlus takes in raw text
and feeds the tokenized text to two event extraction
modules trained on ACE ontology-based datasets
and free-formatted event triggers. The ACE on-
tology extraction modules will produce the output
of event triggers (“toured” is a trigger), event type
(it is a MOVEMENT:TRANSPORT event), argument
and its role (the ARTIFACT is “George Pataki” and
DESTINATION is “counties”) and NER result (“New
York” and “counties” are GEO-POLITICAL ENTITY

and “governer” and “George Pataki” are PERSON).
The trigger-only extraction model will produce all
event triggers (“continues”, “maintain” and “de-
clared” are also event triggers but we do not have
arguments predicted for them). Then trigger-only
events will be merged to ACE-style events list and
create a combined event list from the two models.
For each extracted event, if it is in the negation or
speculation scope predicted by the cue detection
and scope resolution component, then we add a

59

“speculation or negation” argument to that event.

Duration Detection and Temporal Relation Ex-
traction The combined events list will be passed
to the event duration detection model to detect du-
ration for each of the extracted events (“tours” will
take DAYS etc.) and passed to temporal relation
extraction component to detect temporal relations
among each pair of events (“toured” is after “de-
clared” etc.). Note that duration and temporal re-
lation extraction are based on the context sentence
besides the event triggers themselves and they are
designed to consider contextualized information
contained in sentences. Therefore “take (a break)”
can take MINUTES in the scenario of “Dr. Porter
is now taking a break and will be able to see you
soon” but take DAYS in the context of “Dr. Porter
is now taking a Christmas break” (Ning, 2019).

Visualization To keep the resulted temporal
graph clear, we remove predicted VAGUE relations
since that indicates the model cannot confidently
predict temporal relations for those event pairs. Fi-
nally, all model outputs are gathered and pass to
the front-end for visualization.

3.2 Interface Design
Figure 2 shows the interface design of EventPlus.5

We display the NER result with wavy underlines
and highlight event triggers and corresponding ar-
guments with the same color upon clicks. Besides,
we represent the temporal relations among events
in a directed graph using d3 6 if there are any, where
we also indicate each event’s duration in the label
for each event node.

4 Evaluation

Each capability in the pipeline has its own input and
output protocol, and they require various datasets
to learn implicit knowledge independently. In this
section, we describe the performance for each ca-
pability on corresponding labeled datasets.

4.1 Event Trigger Extraction
We report the evaluation about event triggers ex-
traction component on TB-Dense (Cassidy et al.,
2014) and MATRES (Ning et al., 2018a), two
event extraction datasets in the news domain (Han
et al., 2019b). We show the result in Table 1.

5We have a walk-through instruction available to help first-
time end users get familiar with EventPlus. Please see our
video for more information.

6https://d3js.org/

Comparing the performance on TB-Dense with
CAEVO (Chambers et al., 2014), DEER (Han et al.,
2020a) and MATRES performance with Ning et al.
(2018b), the model we use achieves best F1 scores
and yields the state-of-the-art performance.

Corpus Model F1

TB-Dense
Chambers et al. (2014) 87.4
Han et al. (2020a) 90.3
Ours 90.8

MATRES
Ning et al. (2018b) 85.2
Ours 87.8

Table 1: Evaluation for event trigger extraction

4.2 Event Extraction on ACE Ontology
We evaluate our event extraction component on the
test set of ACE 2005 dataset using the same data
split as prior works (Lin et al., 2020; Wadden et al.,
2019). We follow the same evaluation criteria:

• Entity: An entity is correct if its span and type
are both correct.

• Trigger: A trigger is correctly identified (Trig-
I) if its span is correct. It is correctly classified
(Trig-C) if its type is also correct.

• Argument: An argument is correctly identified
(Arg-I) if its span and event type are correct. It
is correctly classified (Arg-C) if its role is also
correct.

In Table 2, we compare the performance of our sys-
tem with the current state-of-the-art method OneIE
(Lin et al., 2020). Our system outperforms OneIE
in terms of entity detection performance. However
our trigger and argument detection performance
is worse than it. We leave the improvements for
triggers and arguments for future work.

Model Entity Trig-I Trig-C Arg-I Arg-C
OneIE 90.2 78.2 74.7 59.2 56.8
Ours 91.3 75.8 72.5 57.7 55.7

Table 2: Test set performance on ACE 2005 dataset.
Following prior works, we use the same evaluation cri-
teria: *-I represent Trigger or Argument Identification.
*-C represent Trigger or Argument Classification.

4.3 Event Duration Detection
We evaluate the event duration detection models
on Typical-Duration and newly annotated ACE-
Duration dataset to reflect the performance on

60

generic news domain for which our system is op-
timized. Since UDS-T dataset (Vashishtha et al.,
2019) is imbalanced and has limited samples for
some duration categories, we do not use it as an
evaluation benchmark but we sample 466 high IAA
data points as training resources. We split Typical-
Duration dataset and use 1790 samples for training,
224 for validation and 224 for testing.

To create ACE-Duration, we sample 50 unique
triggers with related sentences from the ACE
dataset, conduct manual annotation with three an-
notators and take the majority vote as the gold dura-
tion category. Given natural ordering among dura-
tion categories, the following metrics are employed:
accuracy over 7 duration categories (Acc), coarse
accuracy (Acc-c, if the prediction falls in categories
whose distance to the ground truth is 1, it is counted
as correct) and Spearman correlation (Corr).

Typical-Duration ACE-Duration
Model Acc Acc-c Corr Acc Acc-c Corr
UDS-T (U) 0.20 0.54 0.59 0.38 0.68 0.62
UDS-T (T) 0.52 0.79 0.71 0.47 0.67 0.50
UDS-T (T+U) 0.50 0.76 0.68 0.49 0.74 0.66
BERT (T) 0.59 0.81 0.75 0.31 0.67 0.64
BERT (T+U) 0.56 0.81 0.73 0.45 0.79 0.70

Table 3: Event duration detection experimental result.
Typical-Duration results are from testing subset. Nota-
tions in the bracket of model names indicate resources
for training, U: 466 UDS-T high IAA samples, T:
Typical-Duration training set

Experimental results in Table 3 show the BERT
model is better than UDS-T ELMo-based model in
general and data augmentation is especially helpful
to improve performance on ACE-Duration. Due to
the limited size of ACE-Duration, we weight more
on the Typical-Duration dataset and select BERT
(T) as the best configuration. To the best of our
knowledge, this is the state-of-the-art performance
on the event duration detection task.

4.4 Temporal Relation Extraction
We report temporal relation extraction performance
on TB-Dense and MATRES datasets. TB-Dense
consider the duration of events so the labels are
INCLUDES, INCLUDED IN, BEFORE, AFTER, SI-
MULTANEOUS and VAGUE, while MATRES uses
start-point as event temporal anchor and hence its
labels exclude INCLUDES and INCLUDED IN. In
EventPlus, we augment extracted events from mul-
tiple components, so we report temporal relation
extraction result given golden events as relation
candidates to better reflect single task performance.

Corpus Model F1

TB-Dense
Vashishtha et al. (2019) 56.6
Meng and Rumshisky (2018) 57.0
Ours 64.5

MATRES
Ning et al. (2018b) 65.9
Ning et al. (2018a) 69.0
Ours 75.5

Table 4: Experimental result for temporal relation ex-
traction given golden event extraction result

Table 4 shows the experimental results.7 Our
model in § 2.1 achieves the best result on temporal
relation extraction and is significantly better than
(Vashishtha et al., 2019) mentioned in § 2.3.8

5 Extension to Biomedical Domain

With our flexible design, each component of Event-
Plus can be easily extended to other domains with
little modification. We explore two approaches to
extend the event extraction capability (§ 2.2) to
the biomedicine domain: 1) multi-domain training
(MDT) with GENIA (Kim et al., 2009), a dataset
containing biomolecular interaction events from
scientific literature, with shared token embeddings,
which enables the model to predict on both news
and biomedical text; 2) replace the current com-
ponent with an in-domain event extraction com-
ponent SciBERT-FT (Huang et al., 2020) which
is a biomedical event extraction system based on
fine-tuned SciBERT (Beltagy et al., 2019).

Figure 4: Performance comparison of single-domain
training (SDT), multi-domain training (MDT) and
SciBERT-FT on the Dev set of GENIA

7The MATRES experiment result in Table 4 uses 183 doc-
uments for training and 20 for testing developed from the
entire TempEval-3 dataset. Han et al. (2019a) reports higher
F1 score but it uses a subset of MATRES (22 documents for
train, 5 for dev and 9 for test) and has different setting.

8The latest state-of-the-art work (Han et al., 2020a) only
reports end-to-end event extraction and temporal relation ex-
traction result, pure temporal relation extraction result given
ground-truth events are not provided. We are not able to com-
pare with it directly.

61

While MDT on ACE and GENIA datasets from
different domains improves the performance on
GENIA, it is still lower than SciBERT-FT (Figure
4). Therefore, we decide to pursue the second ex-
tension approach to incorporate SciBERT-FT and
extend EventPlus to the biomedical domain.

6 Related Works

Existing NLP toolkits (Manning et al., 2014;
Khashabi et al., 2018) provide an interface for a set
of useful models. Some tools integrate several mod-
els in a pipeline fashion (Peng et al., 2015; Noji
and Miyao, 2016). The majority of these systems
focus on token-level tasks like tokenization, lemma-
tization, part-of-speech tagging, or sentence-level
tasks like syntactic parsing, semantic role labeling
etc. There are only a few systems that can provide
capabilities of event extraction and temporal infor-
mation detection (Tao et al., 2013; Ning, 2019).

For event extraction, some systems only pro-
vide results within a certain defined ontology such
as AIDA (Li et al., 2019), there are also some
works utilizing data from multiple modalities (Li
et al., 2020a,b). Some works could handle novel
events (Xiang and Wang, 2019; Ahmad et al., 2021;
Han et al., 2020b; Huang and Peng, 2020), but
they are either restricted to a certain domain (Yang
et al., 2018) or lack of performance superiority be-
cause of their lexico-syntactic rule-based algorithm
(Valenzuela-Escárcega et al., 2015). For temporal
information detection, Ning et al. (2019) proposes
a neural-based temporal relation extraction system
with knowledge injection. Most related to our work,
Ning et al. (2018b) demonstrates a temporal under-
standing system to extract time expression and im-
plicit temporal relations among detected events, but
this system cannot provide event-related arguments,
entities and event duration information.

These previous works either are not capable of
event understanding or just focus on one perspec-
tive of event-related features. There is no existing
system that incorporates a comprehensive set of
event-centric features, including event extraction
and related arguments and entities, temporal rela-
tions, and event duration.

7 Conclusion and Future Work

We represent EventPlus, a pipeline system that
takes raw texts as inputs and produces a set of
temporal event understanding annotations, includ-
ing event trigger and type, event arguments, event

duration and temporal relations. To the best of our
knowledge, EventPlus is the first available system
that provides such a comprehensive set of tempo-
ral event knowledge extraction capabilities with
state-of-the-art components integrated. We believe
EventPlus will provide insights for understanding
narratives and facilitating downstream tasks.

In the future, we plan to further improve Event-
Plus by tightly integrating event duration prediction
and temporal relation extraction modules. We also
plan to improve the performance for triggers and
arguments detection under the ACE ontology and
develop joint training models to optimize all event-
related features in an end-to-end fashion.

Acknowledgments

Many thanks to Yu Hou for the quality assess-
ment annotations, to Fred Morstatter and Ninareh
Mehrabi for feedback on the negation and specula-
tion event handling, and to the anonymous review-
ers for their feedback. This material is based on
research supported by DARPA under agreement
number FA8750-19-2-0500. The U.S. Government
is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any
copyright notation thereon. The views and con-
clusions contained herein are those of the authors
and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Gov-
ernment.

References
Wasi Ahmad, Nanyun Peng, and Kai-Wei Chang. 2021.

Gate: Graph attention transformer encoder for cross-
lingual relation and event extraction. In The Thirty-
Fifth AAAI Conference on Artificial Intelligence
(AAAI-21).

David Ahn. 2006. The stages of event extraction. In
Proceedings of the Workshop on Annotating and
Reasoning about Time and Events, pages 1–8.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615–
3620, Hong Kong, China. Association for Computa-
tional Linguistics.

Steven Bethard, Guergana Savova, Martha Palmer,
and James Pustejovsky. 2017. SemEval-2017 task
12: Clinical TempEval. In Proceedings of the

62

11th International Workshop on Semantic Evalua-
tion (SemEval-2017), pages 565–572, Vancouver,
Canada. Association for Computational Linguistics.

Taylor Cassidy, Bill McDowell, Nathanael Chambers,
and Steven Bethard. 2014. An annotation frame-
work for dense event ordering. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
501–506.

Nathanael Chambers, Taylor Cassidy, Bill McDowell,
and Steven Bethard. 2014. Dense event ordering
with a multi-pass architecture. Transactions of the
Association for Computational Linguistics, 2:273–
284.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

G Doddington, A Mitchell, M Przybocki, L Ramshaw,
S Strassel, and R Weischedel. 2004. Automatic con-
tent extraction (ace) program: task definitions and
performance measures. In Proceedings of the Fourth
International Language Resources and Evaluation
Conference (LREC’04).

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
Allennlp: A deep semantic natural language process-
ing platform. In Proceedings of Workshop for NLP
Open Source Software (NLP-OSS), pages 1–6.

Seraphina Goldfarb-Tarrant, Tuhin Chakrabarty, Ralph
Weischedel, and Nanyun Peng. 2020. Content plan-
ning for neural story generation with aristotelian
rescoring. In the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4319–4338.

Seraphina Goldfarb-Tarrant, Haining Feng, and
Nanyun Peng. 2019. Plan, write, and revise: an
interactive system for open-domain story generation.
In Proceedings of the 2019 Conference of the
North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
89–97.

Mark Granroth-Wilding and Stephen Clark. 2016.
What happens next? event prediction using a com-
positional neural network model. Proceedings of the
AAAI Conference on Artificial Intelligence, 30(1).

Rujun Han, I-Hung Hsu, Mu Yang, Aram Galstyan,
Ralph Weischedel, and Nanyun Peng. 2019a. Deep
structured neural network for event temporal rela-
tion extraction. In Proceedings of the 23rd Confer-
ence on Computational Natural Language Learning

(CoNLL), pages 666–106, Hong Kong, China. Asso-
ciation for Computational Linguistics.

Rujun Han, Qiang Ning, and Nanyun Peng. 2019b.
Joint event and temporal relation extraction with
shared representations and structured prediction. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 434–
444, Hong Kong, China. Association for Computa-
tional Linguistics.

Rujun Han, Xiang Ren, and Nanyun Peng. 2020a.
Deer: A data efficient language model for event tem-
poral reasoning. arXiv preprint arXiv:2012.15283.

Rujun Han, Yichao Zhou, and Nanyun Peng. 2020b.
Domain knowledge empowered structured neural
net for end-to-end event temporal relation extrac-
tion. In the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
5717–5729. Association for Computational Linguis-
tics.

Kung-Hsiang Huang and Nanyun Peng. 2020. Effi-
cient end-to-end learning of cross-event dependen-
cies for document-level event extraction. ArXiv,
abs/2010.12787.

Kung-Hsiang Huang, Mu Yang, and Nanyun Peng.
2020. Biomedical event extraction with hierarchi-
cal knowledge graphs. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2020,
pages 1277–1285, Online. Association for Compu-
tational Linguistics.

Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and
Yejin Choi. 2019. Cosmos qa: Machine reading
comprehension with contextual commonsense rea-
soning. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
2391–2401.

Aditya Khandelwal and Suraj Sawant. 2020. Negbert:
A transfer learning approach for negation detection
and scope resolution. ArXiv, abs/1911.04211.

Daniel Khashabi, Mark Sammons, Ben Zhou, Tom
Redman, Christos Christodoulopoulos, Vivek Sriku-
mar, Nick Rizzolo, Lev Ratinov, Guanheng Luo,
Quang Do, et al. 2018. Cogcompnlp: Your swiss
army knife for nlp. In Proceedings of the Eleventh
International Conference on Language Resources
and Evaluation (LREC 2018).

Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshi-
nobu Kano, and Jun’ichi Tsujii. 2009. Overview of
BioNLP’09 shared task on event extraction. In Pro-
ceedings of the BioNLP 2009 Workshop Companion
Volume for Shared Task, pages 1–9, Boulder, Col-
orado. Association for Computational Linguistics.

63

Natalia Konstantinova, Sheila CM De Sousa, Noa
P Cruz Dı́az, Manuel J Mana López, Maite Taboada,
and Ruslan Mitkov. 2012. A review corpus anno-
tated for negation, speculation and their scope. In
Lrec, pages 3190–3195.

Manling Li, Ying Lin, Joseph Hoover, Spencer White-
head, Clare Voss, Morteza Dehghani, and Heng Ji.
2019. Multilingual entity, relation, event and hu-
man value extraction. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics (Demon-
strations), pages 110–115, Minneapolis, Minnesota.
Association for Computational Linguistics.

Manling Li, Alireza Zareian, Ying Lin, Xiaoman Pan,
Spencer Whitehead, Brian Chen, Bo Wu, Heng Ji,
Shih-Fu Chang, Clare Voss, Daniel Napierski, and
Marjorie Freedman. 2020a. GAIA: A fine-grained
multimedia knowledge extraction system. In Pro-
ceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics: System
Demonstrations, pages 77–86, Online. Association
for Computational Linguistics.

Manling Li, Alireza Zareian, Qi Zeng, Spencer White-
head, Di Lu, Heng Ji, and Shih-Fu Chang. 2020b.
Cross-media structured common space for multime-
dia event extraction. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 2557–2568, Online. Association
for Computational Linguistics.

Zhongyang Li, Xiao Ding, and Ting Liu. 2018.
Constructing narrative event evolutionary graph
for script event prediction. arXiv preprint
arXiv:1805.05081.

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
A joint neural model for information extraction with
global features. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7999–8009, Online. Association for
Computational Linguistics.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguis-
tics: system demonstrations, pages 55–60.

Yuanliang Meng and Anna Rumshisky. 2018. Context-
aware neural model for temporal information extrac-
tion. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 527–536, Melbourne,
Australia. Association for Computational Linguis-
tics.

Yuanliang Meng, Anna Rumshisky, and Alexey Ro-
manov. 2017. Temporal information extraction for
question answering using syntactic dependencies in
an lstm-based architecture. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 887–896.

Qiang Ning. 2019. Understanding time in natural lan-
guage text. Ph.D. thesis, University of Illinois at
Urbana-Champaign.

Qiang Ning, Sanjay Subramanian, and Dan Roth. 2019.
An improved neural baseline for temporal relation
extraction. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 6203–6209, Hong Kong, China. Association
for Computational Linguistics.

Qiang Ning, Hao Wu, and Dan Roth. 2018a. A multi-
axis annotation scheme for event temporal relations.
In ACL.

Qiang Ning, Ben Zhou, Zhili Feng, Haoruo Peng, and
Dan Roth. 2018b. CogCompTime: A tool for under-
standing time in natural language. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing: System Demonstra-
tions, pages 72–77, Brussels, Belgium. Association
for Computational Linguistics.

Hiroshi Noji and Yusuke Miyao. 2016. Jigg: A
framework for an easy natural language process-
ing pipeline. In Proceedings of ACL-2016 System
Demonstrations, pages 103–108, Berlin, Germany.
Association for Computational Linguistics.

F. Pan, Rutu Mulkar-Mehta, and J. Hobbs. 2006. Learn-
ing event durations from event descriptions. In ACL.

Nanyun Peng, Francis Ferraro, Mo Yu, Nicholas An-
drews, Jay DeYoung, Max Thomas, Matthew R.
Gormley, Travis Wolfe, Craig Harman, Benjamin
Van Durme, and Mark Dredze. 2015. A concrete
Chinese NLP pipeline. In Proceedings of the 2015
Conference of the North American Chapter of the
Association for Computational Linguistics: Demon-
strations, pages 86–90, Denver, Colorado. Associa-
tion for Computational Linguistics.

Nanyun Peng, Marjan Ghazvininejad, Jonathan May,
and Kevin Knight. 2018. Towards controllable story
generation. In Proceedings of the First Workshop on
Storytelling, pages 43–49.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237.

James Pustejovsky, José M Castano, Robert Ingria,
Roser Sauri, Robert J Gaizauskas, Andrea Set-
zer, Graham Katz, and Dragomir R Radev. 2003a.
Timeml: Robust specification of event and temporal
expressions in text. New directions in question an-
swering, 3:28–34.

64

James Pustejovsky, Patrick Hanks, Roser Sauri, An-
drew See, Robert Gaizauskas, Andrea Setzer,
Dragomir Radev, Beth Sundheim, David Day, Lisa
Ferro, et al. 2003b. The timebank corpus. In Corpus
linguistics, volume 2003, page 40. Lancaster, UK.

Nils Reimers, Nazanin Dehghani, and Iryna Gurevych.
2018. Event time extraction with a decision tree of
neural classifiers. Transactions of the Association
for Computational Linguistics, 6:77–89.

Maite Taboada, Caroline Anthony, and Kimberly D
Voll. 2006. Methods for creating semantic orienta-
tion dictionaries. In LREC, pages 427–432.

Maite Taboada and Jack Grieve. 2004. Analyzing
appraisal automatically. In Proceedings of AAAI
Spring Symposium on Exploring Attitude and Affect
in Text (AAAI Technical Re# port SS# 04# 07), Stan-
ford University, CA, pp. 158q161. AAAI Press.

Fangbo Tao, Kin Hou Lei, Jiawei Han, ChengXiang
Zhai, Xiao Cheng, Marina Danilevsky, Nihit De-
sai, Bolin Ding, Jing Ge Ge, Heng Ji, et al. 2013.
Eventcube: multi-dimensional search and mining of
structured and text data. In Proceedings of the 19th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 1494–1497.

Marco A. Valenzuela-Escárcega, Gus Hahn-Powell,
Mihai Surdeanu, and Thomas Hicks. 2015. A
domain-independent rule-based framework for event
extraction. In Proceedings of ACL-IJCNLP 2015
System Demonstrations, pages 127–132, Beijing,
China. Association for Computational Linguistics
and The Asian Federation of Natural Language Pro-
cessing.

Siddharth Vashishtha, Benjamin Van Durme, and
Aaron Steven White. 2019. Fine-grained temporal
relation extraction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 2906–2919, Florence, Italy. Asso-
ciation for Computational Linguistics.

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5784–
5789, Hong Kong, China. Association for Computa-
tional Linguistics.

Zhongqing Wang, Yue Zhang, and Ching Yun Chang.
2017. Integrating order information and event rela-
tion for script event prediction. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 57–67.

Wei Xiang and Bang Wang. 2019. A survey of event ex-
traction from text. IEEE Access, 7:173111–173137.

Hang Yang, Yubo Chen, Kang Liu, Yang Xiao, and
Jun Zhao. 2018. DCFEE: A document-level Chi-
nese financial event extraction system based on au-
tomatically labeled training data. In Proceedings
of ACL 2018, System Demonstrations, pages 50–
55, Melbourne, Australia. Association for Compu-
tational Linguistics.

Lili Yao, Nanyun Peng, Weischedel Ralph, Kevin
Knight, Dongyan Zhao, and Rui Yan. 2019. Plan-
and-write: Towards better automatic storytelling. In
The Thirty-Third AAAI Conference on Artificial In-
telligence (AAAI-19).

65

Proceedings of NAACL-HLT 2021: Demonstrations, pages 66–77
June 6–11, 2021. ©2021 Association for Computational Linguistics

COVID-19 Literature Knowledge Graph Construction and Drug
Repurposing Report Generation

Qingyun Wang1, Manling Li1, Xuan Wang1, Nikolaus Parulian1, Guangxing Han2,
Jiawei Ma2, Jingxuan Tu3, Ying Lin1, Haoran Zhang1, Weili Liu1, Aabhas Chauhan1,
Yingjun Guan1, Bangzheng Li1, Ruisong Li1, Xiangchen Song1, Yi R. Fung1, Heng Ji1,

Jiawei Han1, Shih-Fu Chang2, James Pustejovsky3, Jasmine Rah4, David Liem5,
Ahmed Elsayed6, Martha Palmer6, Clare Voss7, Cynthia Schneider8, Boyan Onyshkevych9

1University of Illinois at Urbana-Champaign 2Columbia University 3Brandeis University
4University of Washington 5University of California, Los Angeles 6Colorado University

7Army Research Lab 8QS2 9Department of Defense
hengji@illinois.edu, hanj@illinois.edu, sc250@columbia.edu

Abstract

To combat COVID-19, both clinicians and sci-
entists need to digest vast amounts of relevant
biomedical knowledge in scientific literature
to understand the disease mechanism and re-
lated biological functions. We have developed
a novel and comprehensive knowledge discov-
ery framework, COVID-KG to extract fine-
grained multimedia knowledge elements (en-
tities and their visual chemical structures, rela-
tions and events) from scientific literature. We
then exploit the constructed multimedia knowl-
edge graphs (KGs) for question answering and
report generation, using drug repurposing as
a case study. Our framework also provides
detailed contextual sentences, subfigures, and
knowledge subgraphs as evidence. All of the
data, KGs, reports1, resources, and shared ser-
vices are publicly available2.

1 Introduction

Practical progress at combating COVID-19 relies
heavily on effective search, discovery, assessment,
and extension of scientific research results. How-
ever, clinicians and scientists are facing two unique
barriers in digesting these research papers.

The first challenge is quantity. Such a bottle-
neck in knowledge access is exacerbated during a
pandemic when increased investment in relevant
research leads to even faster growth of literature
than usual. For example, as of April 28, 2020, at
PubMed3 there were 19,443 papers related to coro-
navirus; as of June 13, 2020, there were 140K+
related papers, nearly 2.7K new papers per day
(see Figure 1). The resulting knowledge bottleneck
contributes to significant delays in the development

1Demo video: http://159.89.180.81/demo/
covid/Covid-KG_DemoVideo.mp4

2Project website: http://blender.cs.illinois.
edu/covid19/

3https://www.ncbi.nlm.nih.gov/pubmed/

of vaccines and drugs for COVID-19. More intel-
ligent knowledge discovery technologies need to
be developed to enable researchers to more quickly
and accurately access and digest relevant knowl-
edge from the literature.

The second challenge is quality. Many research
results about coronavirus from different research
labs and sources are redundant, complementary, or
even conflicting with each other, while some false
information has been promoted in both formal pub-
lication venues as well as social media platforms
such as Twitter. As a result, some of the public
policy responses to the virus, and public perception
of it, have been based on misleading, and at times
erroneous claims. The relative isolation of these
knowledge resources makes it hard, if not impossi-
ble, for researchers to connect the dots that exist in
separate resources to gain new insights.

Let us consider drug repurposing as a case
study.4 Besides the long process of clinical trials
and biomedical experiments, another major cause
of the lengthy discovery phase is the complexity
of the problem involved and the difficulty in drug
discovery in general. The current clinical trials for
drug repurposing rely mainly on reported symp-
toms in considering drugs that can treat diseases
with similar symptoms. However, there are too
many drug candidates and too much misinforma-
tion published in multiple sources. The clinicians
and scientists thus urgently need assistance in ob-
taining a reliable ranked list of drugs with detailed
evidence, and also in gaining new insights into
the underlying molecular cellular mechanisms on
COVID-19 and the pre-existing conditions that may
affect the mortality and severity of this disease.

To tackle these two challenges we propose a new

4This is a pre-clinical phase of biomedical research to dis-
cover new uses of existing, approved drugs that have already
been tested in humans and so detailed information is available
on their pharmacology, formulation, and potential toxicity.

66

framework, COVID-KG, to accelerate scientific
discovery and build a bridge between the research
scientists making use of our framework and clin-
icians who will ultimately conduct the tests, as
illustrated in Figure 2. COVID-KG starts by read-
ing existing papers to build multimedia knowledge
graphs (KGs), in which nodes are entities/concepts
and edges represent relations and events involving
these entities, as extracted from both text and im-
ages. Given the KGs enriched with path ranking
and evidence mining, COVID-KG answers natural
language questions effectively. With drug repur-
posing as a case study, we focus on 11 typical
questions that human experts pose and integrate
our techniques to generate a comprehensive report
for each candidate drug.

04
-3

0

05
-0

7

05
-1

4

05
-2

1

05
-2

8

06
-0

4

06
-1

1

06
-1

8

06
-2

5

20000

22000

24000

26000

28000

30000

Figure 1: Increasing numbers of COVID-19 papers
over time in PubMed website

2 Multimedia Knowledge Graph
Construction

2.1 Coarse-grained Text Knowledge
Extraction

Our coarse-grained Information Extraction (IE)
system consists of three components: (1) coarse-
grained entity extraction (Wang et al., 2019a) and
entity linking (Zheng et al., 2015) for four en-
tity types: Gene nodes, Disease nodes, Chemi-
cal nodes, and Organism. We follow the entity
ontology defined in the Comparative Toxicoge-
nomics Database (CTD) (Davis et al., 2016), and
obtain a Medical Subject Headings (MeSH) Unique
ID for each mention. (2) Based on the MeSH
Unique IDs, we further link all entities to the
CTD and extract 133 subtypes of relations such as
Gene–Chemical–Interaction Relationships, Chemi-
cal–Disease Associations, Gene–Disease Associa-

tions, Chemical–GO Enrichment Associations and
Chemical–Pathway Enrichment Associations. (3)
Event extraction (Li et al., 2019): we extract 13
Event types and the roles of entities involved in
these events as defined in (Nédellec et al., 2013),
including Gene expression, Transcription, Local-
ization, Protein catabolism, Binding, Protein modi-
fication, Phosphorylation, Ubiquitination, Acetyla-
tion, Deacetylation, Regulation, Positive regulation,
and Negative regulation. Figure 3 shows an exam-
ple of the constructed KG from multiple papers.
Experiments on 186 documents with 12,916 sen-
tences manually annotated by domain experts show
that our method achieves 83.6% F-score on node
extraction and 78.1% F-score on link extraction.

2.2 Fine-grained Text Entity Extraction
However, questions from experts often involve
fine-grained knowledge elements, such as “Which
amino acids in glycoprotein are most related to
Glycan (CHEMICAL)?”. To answer these ques-
tions, we apply our fine-grained entity extraction
system CORD-NER (Wang et al., 2020c) to extract
75 types of entities to enrich the KG, including
many COVID-19 specific new entity types (e.g.,
coronaviruses, viral proteins, evolution, materials,
substrates, and immune responses). CORD-NER
relies on distantly- and weakly-supervised methods
(Wang et al., 2019b; Shang et al., 2018), with no
need for expensive human annotation. Its entity an-
notation quality surpasses SciSpacy (up to 93.95%
F-score, over 10% higher on the F1 score based
on a sample set of documents), a fully supervised
BioNER tool. See Figure 4 for results on part of a
COVID-19 paper (Zhang et al., 2020).

2.3 Image Processing and Cross-media
Entity Grounding

Figures in biomedical papers may contain differ-
ent types of visual information, for example, dis-
playing molecular structures, microscopic images,
dosage response curves, relational diagrams, and
other unique visual content. We have developed
a visual IE subsystem to extract the visual infor-
mation from figures to enrich the KG. We start by
designing a pipeline and automatic tools shown
in Figure 5 to extract figures from papers in the
CORD-19 dataset and segment figures into nearly
half a million isolated subfigures. In the end, we
perform cross-modal entity grounding, i.e., associ-
ating visual objects identified in these subfigures
with entities mentioned in their captions or refer-

67

Figure 2: COVID-KG Overview: From Data to Semantics to Knowledge

Figure 3: Constructed KG Connecting Losartan (candi-
date drug in COVID-19) and cathepsin L pseudogene
2 (gene related to coronavirus), where red nodes repre-
sent chemicals, grey nodes represent genes, and edges
represent gene-chemical relations.NER Result Visualization

Angiotensin-converting enzyme 2 GENE_OR_GENOME (ACE2 GENE_OR_GENOME) as a
SARS-CoV-2 CORONAVIRUS receptor: molecular mechanisms and potential therapeutic target.
SARS-CoV-2 CORONAVIRUS has been sequenced [3]. A phylogenetic EVOLUTION analysis
[3, 4] found a bat WILDLIFE origin for the SARS-CoV-2 CORONAVIRUS. There is a diversity of
possible intermediate hosts for SARS-CoV-2 CORONAVIRUS, including pangolins WILDLIFE,
but not mice EUKARYOTE and rats EUKARYOTE [5]. There are many similarities of SARS-
CoV-2 CORONAVIRUS with the original SARS-CoV CORONAVIRUS. Using computer
modeling, Xu et al. [6] found that the spike proteins GENE_OR_GENOME of SARS-CoV-2
CORONAVIRUS and SARS-CoV CORONAVIRUS have almost identical 3-D structures in the
receptor binding domain that maintains Van der Waals forces PHYSICAL_SCIENCE. SARS-
CoV spike proteins GENE_OR_GENOME has a strong binding affinity to human ACE2
GENE_OR_GENOME, based on biochemical interaction studies and crystal structure analysis
[7]. SARS-CoV-2 CORONAVIRUS and SARS-CoV spike proteins GENE_OR_GENOME share
identity in amino acid sequences and ……

Figure 4: Example of Fine-grained Entity Extraction

ring text. To start, since most figures are embedded
as part of PDF files, we run Deepfigures (Siegel
et al., 2018) to automatically detect and extract fig-
ures from each PDF document. Then each figure
is associated with text in its caption or referring

Figure 5: System Pipeline for Automatic Figure Ex-
traction and Subfigure Segmentation. The figure image
shown here is from (Kizziah et al., 2020)

context (main body text referring to the figure). In
this way, a figure can be attached, at a coarse level,
to a KG entity if that entity is mentioned in the
associated text.

To further delineate semantic and visual informa-
tion contained within each subfigure, we have de-
veloped a pipeline to segment individual subfigures
and then align each subfigure with its correspond-
ing subcaption. We run Figure-separator (Tsutsui
and Crandall, 2017) to detect and separate all non-
overlapping image regions. On occasion, subfig-
ures within a figure may also be marked with alpha-
betical letters (e.g., A, B, C, etc). We use deep neu-
ral networks (Zhou et al., 2017) to detect text within
figures and then apply OCR tools (Smith, 2007) to
automatically recognize text content within each
figure. To identify subfigure marker text and text
labels for analyzing figure content, we rely on the
distance between text labels and subfigures to lo-
cate subfigure text markers. Location information
of such text markers can also be used to merge
multiple image regions into a single subfigure. In

68

Figure 6: Expanding KG through Subfigure Segmen-
tation and Cross-modal Entity Grounding. The figure
image shown here is from (Ekins and Coffee, 2015)

the end, each subfigure is segmented, and associ-
ated with its corresponding subcaption and refer-
ring context. The segmented subfigures and as-
sociated text labels provide rich information that
can expand the KG constructed from text captions.
For example, as shown in Figure 6, we apply a
classifier to detect subfigures containing molecular
structures. Then by linking the specific drug names
extracted from within-figure text to corresponding
drug entities in the coarse KG constructed from
the caption text, an expanded cross-modal KG can
be constructed that then links images with specific
molecular structures to their drug entities in the
KG.

2.4 Knowledge Graph Semantic
Visualization

In order to enhance the exploration and discovery
of the information mined from the COVID-19 liter-
ature through the algorithms discussed in previous
sections, we create semantic visualizations over
large complex networks of biomedical relations us-
ing the techniques proposed by Tu et al. (2020).
Semantic visualization allows for the visualization
of user-defined subsets of these relations interac-
tively through semantically typed tag clouds and
heat maps. This allows researchers to get a global
view of selected relation subtypes drawn from hun-
dreds or thousands of papers at a single glance.
This in turn allows for the ready identification of
novel relations that would typically be missed by
directed keyword searches or simple unigram word
cloud or heatmap displays.5

We first build a data index from the knowledge
elements in the constructed KGs, and then create
a Kibana dashboard6 out of the generated data in-

5https://www.semviz.org/
6https://github.com/elastic/kibana

dices. Each Kibana dashboard has a collection
of visualizations that are designed to interact with
each other. Dashboards are implemented as web ap-
plications. The navigation of a dashboard is mainly
through clicking and searching. By clicking the
protein keyword EIF2AK2 in the tag cloud named

“Enzyme proteins participating Modification rela-
tions”, a constraint on the type of proteins in mod-
ifications is added. Correspondingly, all the other
visualizations will be changed.

One unique feature of the semantic visualiza-
tion is the creation of dense tag clouds and dense
heatmaps, through a process of parameter reduc-
tion over relations, allowing for the visualization of
relation sets as tag clouds and multiple chained rela-
tions as heatmaps. Figure 7 illustrates such a dense
heatmap that contains relations between proteins
and implicated diseases (e.g., “those proteins that
are down-regulators of TNF which are implicated
in obesity”), along with their type information7.

Figure 7: Regulatory Processes-Disease Interactions
Heatmap

3 Knowledge-driven Question
Answering

In contrast to most current question-answering
(QA) methods which target single documents, we
have developed a QA component based on a combi-
nation of KG matching and distributional semantic
matching across documents. We build KG indexing
and searching functions to facilitate effective and

7We use the following symbols to indicate the “action”
involved in each protein: “++” = increase, “−−” = decrease,
“→” = affect.

69

efficient search when users pose their questions.
We also support extended semantic matching from
the constructed KGs and related texts by accepting
multi-hop queries.

A common category of queries is the connec-
tions between two entities. Given two entities in
a query, we generate a subgraph covering salient
paths between them to show how they are con-
nected through other entities. Figure 3 is an exam-
ple subgraph summarizing the connections between
Losartan and cathepsin L pseudogene 2. The paths
are generated by traversing the constructed KG,
and are ranked by the number of papers covering
the knowledge elements in each path in the KG.
Each edge is assigned a salience score by aggre-
gating the scores of paths passing through it. In
addition to knowledge elements, we also present re-
lated sentences and source information as evidence.
We use BioBert (Lee et al., 2020), a pre-trained
language model to represent each sentence along
with its left and right neighboring sentences as lo-
cal contexts. Using the same architecture computed
on all respective sentences and the user query, we
aggregate the sequence embedding layer, the last
hidden layer in the BERT architecture with average
pooling (Reimers and Gurevych, 2019). We use the
similarity between the embedding representations
of each sentence and each query to identify and
extract the most relevant sentences as evidence.

Another common category of queries includes
entity types, rather than entity instances, and re-
quires extracting evidence sentences based on type
or pattern matching. We have developed EVI-
DENCEMINER (Wang et al., 2020a,b), a web-based
system that allows for the user’s query as a natural
language statement or an inquiry about a relation-
ship at the meta-symbol level (e.g., CHEMICAL,
PROTEIN) and then automatically retrieves textual
evidence from a background corpora of COVID-19.

4 A case study on Drug Repurposing
Report Generation

4.1 Task and Data

A human-written report about drug repurposing
usually answers the following typical questions.

1. Current indication: what is the drug class?
What is it currently approved to treat?

2. Molecular structure (symbols desired, but a
pointer to a reference is also useful)

3. Mechanism of action i.e., inhibits viral entry,
replication, etc. (w/ a pointer to data)

4. Was the drug identified by manual or compu-
tation screen?

5. Who is studying the drug? (Source/lab name)
6. In vitro Data available (cell line used, assays

run, viral strain used, cytopathic effects, toxi-
city, LD50, dosage response curve, etc.)

7. Animal Data Available (what animal model,
LD50, dosage response curve, etc.)

8. Clinical trials on going (what phase, facility,
target population, dosing, intervention etc.)

9. Funding source
10. Has the drug shown evidence of systemic tox-

icity?
11. List of relevant sources to pull data from.

The answers to questions #5 and #11 are ex-
tracted based on the meta-data sections of re-
search papers in scientific literature, including the
author affiliation and acknowledgement sections.
The answers for other questions are all extracted
based on the knowledge graphs constructed and
knowledge-driven question-answering method de-
scribed above.

As in our case studies, DARPA biologists in-
quired about three drugs, Benazepril, Losartan, and
Amodiaquine, and their links to COVID-19 related
chemicals/genes as shown in Figure 8:

BM1_00870 BM1_06175 BM1_16375 BM1_17125 BM1_22385 BM1_30360
BM1_33735 BM1_56245 BM1_56735 BM1_00870 BM1_06175 BM1_16375
BM1_17125 BM1_22385 BM1_30360 BM1_33735 BM1_56245 BM1_56735
CATB-10270 CATB-1418 CATB-1674 CATB-16A CATB-16D2 CATB-1852 CATB-
1874 CATB-2744 CATB-3098 CATB-348 CATB-3483 CATB-5880 CATB-84 CATB-
912 CATD CATHY CATK CATL CATL-LIKE CTS12 CTS3 CTS6 CTS7 CTS7-PS CTS8
CTS8L1 CTS8-PS CTSA CTSA.L CTSB CTSBA CTSBB CTSB.L CTSB-PS CTSB.S
CTSC CTSC.L CTSC.S CTSD CTSD2 CTSD.S CTSE CTSEAL CTSE.L CTSE.S CTSF
CTSF.L CTSG CTSH CTSH.L CTSH-PS CTSJ CTSK CTSK1 CTSK.L CTSL CTSL.1
CTSL3 CTSL3P CTSLA CTSLB CTSLL CTSL.L CTSLL3 CTSLP1 CTSLP2 CTSLP3
CTSLP4 CTSLP6 CTSLP8 CTSM CTSM-PS CTSM-PS2 CTSO CTSO.L CTSQ
CTSQL2 CTSR CTSS CTSS1 CTSS.2 CTSS2.1 CTSS2.2 CTSSL CTSS.L CTSS.S CTSV
CTSV.L CTSW CTSW.L CTSZ CTSZ.L CTSZ.S LOAG_18685 SMP_013040.1
SMP_034410.1 SMP_067050 SMP_067060 SMP_085010 SMP_085180
SMP_103610 SMP_105370 SMP_158410 SMP_158420 SMP_179950
TSP_01409 TSP_02382 TSP_02383 TSP_03306 TSP_07747 TSP_10129
TSP_10493 TSP_11596 LMAN1 LMAN1L LMAN1.L LMAN1.S LMAN2 LMAN2L
MBL1P MBL2 ACE2 FURIN TMPRSS2

Figure 8: COVID-19 related chemicals/genes.

Our KG results for many other drugs are visual-
ized at our website8. We download new COVID-19
papers from three Application Programming Inter-
faces (APIs): NCBI PMC API, NCBI Pubtator API,
and CORD-19 archive. We provide incremental up-
dates including new papers, removed papers and
updated papers, and their metadata information at
our website9.

8http://blender.cs.illinois.edu/
covid19/visualization.html

9http://blender.cs.illinois.edu/
covid19/

70

4.2 Results

As of June 14, 2020 we collected 140K papers.
We selected 25,534 peer-reviewed papers and con-
structed the KG that includes 7,230 Diseases,
9,123 Chemicals and 50,864 Genes, with 1,725,518
Chemical-Gene links, 5,556,670 Chemical-Disease
links, and 77,844,574 Gene-Disease links. The
KG has received more than 1,000+ downloads.
Our final generated reports10 are shared publicly.
For each question, our framework provides an-
swers along with detailed evidence, knowledge sub-
graphs, image segmentation and analysis results.
Table 1 shows some example answers.

Several clinicians and medical school students
in our team have manually reviewed the drug re-
purposing reports for three drugs, and also the KGs
connecting 41 drugs and COVID-19 related chemi-
cals/genes. In checking the evidence sentences and
reading the original articles, they reported that most
of our output is informative and valid. For instance,
after the coronavirus enters the cell in the lungs,
it can cause a severe disease called Acute Respi-
ratory Distress Syndrome. This condition causes
the release of inflammatory molecules in the body
named cytokines such as Interleukin-2, Interleukin-
6, Tumor Necrosis Factor, and Interleukin-10. We
see all of these connections in our results, such as
the examples shown in Figure 3 and Figure 9. With
further checks on these results, the scientists also
indicated that many results were worth further in-
vestigation. For example, in Figure 3 we can see
that Lusartan is connected to tumor protein p53
which is related to lung cancer.

lopinavir-ritonavir
drug combination

cathepsin D

COVID-19

Coronavirus
Infections

Severe
Acute

Respiratory
Syndrome

Figure 9: Connections Involving Coronavirus Related
Diseases

5 Related Work

Extensive prior research work has focused on ex-
tracting biomedical entities (Zheng et al., 2014;
Habibi et al., 2017; Crichton et al., 2017; Wang
et al., 2018; Beltagy et al., 2019; Alsentzer et al.,
2019; Wei et al., 2019; Wang et al., 2020c), rela-
tions (Uzuner et al., 2011; Krallinger et al., 2011;

10http://blender.cs.illinois.edu/
covid19/DrugRe-purposingReport_V2.0.docx

Question Example Answers

Q1

Drug Class angiotensin-converting enzyme (ACE) inhibitors
Disease hypertension

Evidence

[PMID:32314699 (PMC7253125)] Past medical his-
tory was significant for hypertension, treated with
amlodipine and benazepril, and chronic back pain.

Sentences [PMID:32081428 (PMC7092824)] On the other
hand, many ACE inhibitors are currently used to
treat hypertension and other cardiovascular diseases.
Among them are captopril, perindopril, ramipril,
lisinopril, benazepril, and moexipril.

Q4

Disease COVID-19

Evidence

[PMID:32081428 (PMC7092824)] By using a
molecular docking approach, an earlier study iden-
tified N-(2-aminoethyl)-1 aziridine-ethanamine as a
novel ACE2 inhibitor that effectively blocks the
SARS-CoV RBD-mediated cell fusion.

Sentences This has provided a potential candidate and lead
compound for further therapeutic drug development.
Meanwhile, biochemical and cell-based assays can
be established to screen chemical compound libraries
to identify novel inhibitors.

Q6

Disease cardiovascular disease

Evidence

[PMID:22800722 (PMC7102827)] The in vitro half-
maximal inhibitory concentration (IC50) values of
food-derived ACE inhibitory peptides are about 1000

Sentences fold higher than that of synthetic captopril but they
have higher in vivo activities than would be expected
from their in vitro activities.....

Q8

Disease COVID-19

Evidence

[PMID:32336612 (PMC7167588)] Two trials of
losartan as additional treatment for SARS-CoV-2 in-
fection in hospitalized (NCT04312009) or not hos-
pitalized (NCT04311177) patients have been an-
nounced, supported by the background of the huge
adverse impact of the ACE Angiotensin II AT1 re-
ceptor axis over-activity in these patients.

Sentences [PMID:32350632 (PMC7189178)] To address the
role of angiotensin in lung injury, there is an ongoing
clinical trial to examine whether losartan treatment
affects outcomes in COVID-19 associated ARDS
(NCT04312009).
[PMID:32439915 (PMC7242178)] Losartan was
also the molecule chosen in two trials recently started
in the United States by the University of Minnesota
to treat patients with COVID-19 (clinical trials.gov
NCT04311177 and NCT 104312009).

Table 1: Example Answers for Questions in Drug Re-
purposing Reports

Manandhar and Yuret, 2013; Bui et al., 2014; Peng
et al., 2016; Wei et al., 2015; Peng et al., 2017;
Luo et al., 2017; Wei et al., 2019; Li and Ji, 2019;
Peng et al., 2019, 2020), and events (Ananiadou
et al., 2010; Van Landeghem et al., 2013; Nédellec
et al., 2013; Deléger et al., 2016; Wei et al., 2019;
Li et al., 2019; ShafieiBavani et al., 2020) from
biomedical literature, with the most recent work
focused on COVID-19 literature (Hope et al., 2020;
Ilievski et al., 2020; Wolinski, 2020; Ahamed and
Samad, 2020).

Most of the recent biomedical QA work (Yang
et al., 2015, 2016; Chandu et al., 2017; Kraus et al.,
2017) is driven by the BioASQ initiative (Tsatsa-
ronis et al., 2015), and many live QA systems, in-
cluding COVIDASK11 and AUEB12, and search en-

11https://covidask.korea.ac.kr/
12http://cslab241.cs.aueb.gr:5000/

71

gines (Kricka et al., 2020; Esteva et al., 2020; Hope
et al., 2020; Taub Tabib et al., 2020) have been de-
veloped. Our work is an application and extension
of our recently developed multimedia knowledge
extraction system for the news domain (Li et al.,
2020a,b). Similar to the news domain, the knowl-
edge elements extracted from text and images in
literature are complementary. Our framework ad-
vances state-of-the-art by extending the knowledge
elements to more fine-grained types, incorporating
image analysis and cross-media knowledge ground-
ing, and KG matching into QA.

6 Conclusions and Future Work

We have developed a novel framework, COVID-
KG, that automatically transforms a massive sci-
entific literature corpus into organized, structured,
and actionable KGs, and uses it to answer questions
in drug repurposing reporting. With COVID-KG,
researchers and clinicians are able to obtain infor-
mative answers from scientific literature, and thus
focus on more important hypothesis testing, and pri-
oritize the analysis efforts for candidate exploration
directions. In our ongoing work, we have created a
new ontology that includes 77 entity subtypes and
58 event subtypes, and we are building a neural IE
system following this new ontology. In the future,
we plan to extend COVID-KG to automate the cre-
ation of new hypotheses by predicting new links.
We will also create a multimedia common semantic
space (Li et al., 2020a,b) for literature and apply it
to improve cross-media knowledge grounding and
inference.

Ethical Considerations

Required Workflow for Using Our System
Human review required. Our knowledge discov-
ery tool provides investigative leads for pre-clinical
research, not final results for clinical use. Cur-
rently, biomedical researchers scour the literature
to identify candidate drugs, then follow a standard
research methodology to investigate their actual
utility (involving literature reviews, computer sim-
ulations of drug mechanisms and effectiveness, in-
vitro studies, cellular in-vivo studies, etc. before
moving to clinical studies.). Our tool COVID-KG
(and all knowledge discovery tools for biomedical
applications) is not meant to be used for direct clin-
ical applications on any human subjects. Rather,
our tool aims to highlight unseen relations and pat-
terns in large amounts of scientific textual data that

would be too time-consuming for manual human
effort. Accordingly, the tool would be useful for
stakeholders (e.g., biomedical scientists) to iden-
tify specific drug candidates and molecular targets
that are relevant in their biomedical and clinical
research aims. The use of our knowledge discovery
tool allows the researcher to narrow down the set
of candidate drugs to investigate rapidly, but then
proceed with the usual sequence of steps before
kicking off expensive and time-consuming clinical
tests. Failure to follow this sequence of events, and
use of the system without the required human re-
view, could lead to misguided experimental design
wasting time and resources.

Check evidence and source before using our
system results. In addition, our tool provides
source, confidence values and rich evidence sen-
tences for each node and link in the KG. To curtail
potential harms caused by extraction errors, users
of the knowledge graphs should double-check the
source information and verify the accuracy of the
discovered leads before launching expensive ex-
perimental studies. We spell out here the positive
values, as well as the limitations and possible so-
lutions to address these issues for future improve-
ment. Moreover, any planned investigations involv-
ing human subjects should first be approved by
the stakeholder’s IRB (Institutional Review Board)
who will oversee the safety of the proposed studies
and the role of COVID-KG before any experimen-
tal studies are conducted. COVID-KG is a tool to
enhance biomedical and clinical research; it is not
a tool for direct clinical application with human
subjects.

Limitations of System Performance and Data
Collection

System errors. Our system can effectively convert
a large amount of scientific papers into knowledge
graphs, and can scale as literature volume increases.
However, none of our extraction components is
perfect, they produce about 6%-22% false alarms
and misses as reported in section 2. But as we
described in the workflow, all of the connections
and answers will be validated by domain experts
by checking their corresponding sources before
they are included in the drug repurposing report.
COVID-KG is developed for pre-clinical research
to target down drugs of interest for biomedical
scientists. Therefore, no human subjects or spe-
cific populations are directly subjected to COVID-

72

KG unless approved by the stakeholder’s IRB
who oversees the safety and ethical aspects of the
clinical studies in accordance with the Belmont
report (https://www.hhs.gov/ohrp/regulations-and-
policy/belmont-report/index.html). Accordingly,
COVID-KG will not impose direct harm to vulner-
able human cohorts or populations, unless misused
by the stakeholders without IRB approval. With re-
gards to potential harm in preclinical studies, users
of COVID-KG are advised to verify the accuracy
of the discovered leads in the source information
before conducting expensive experimental studies.

Bias in training data. Proper use of the technol-
ogy requires that input documents are legally and
ethically obtained. Regulation and standards (e.g.
GDPR13) provide a legal framework for ensuring
that such data is properly used and that any individ-
ual whose data is used has the right to request its
removal. In the absence of such regulation, society
relies on those who apply technology to ensure that
data is used in an ethical way. The input data to our
system is peer-reviewed publicly available scien-
tific articles. Additional potential harm could come
from the output of the system being used in ways
that magnify the system errors or bias in its train-
ing data. The various components in our system
rely on weak distant supervision based on large-
scale external knowledge bases and ontologies that
cover a wide range of topics in the biomedical do-
main. Nevertheless, our system output is intended
for human interpretation. We do not endorse in-
corporating the system’s output into an automatic
decision-making system without human validation;
this fails to meet our recommendations and could
yield harmful results. In the cited technical reports
for each component in our framework, we have
reported detailed error rates for each type of knowl-
edge element from system evaluations and provide
detailed qualitative analysis and explanations.

Bias in development data. We also note that
the performance of our system components as re-
ported is based on the specific benchmark datasets,
which could be affected by such data biases. Thus
questions concerning generalizability and fairness
should be carefully considered. Within the research
community, addressing data bias requires a combi-
nation of new data sources, research that mitigates
the impact of bias, and, as done in (Mitchell et al.,
2019), auditing data and models. Sections 2 and 4.1

13The General Data Protection Regulation of the European
Union https://gdpr.eu/what-is-gdpr/.

cite data sources used for training to support future
auditing. A general approach to properly use our
system should incorporate ethics considerations as
the first-order principles in every step of the sys-
tem design, maintain a high degree of transparency
and interpretability of data, algorithms, models,
and functionality throughout the system, make soft-
ware available as open-source for public verifica-
tion and auditing, and explore countermeasures to
protect vulnerable groups. In our ongoing and fu-
ture work, we will keep increasing the annotated
dataset size, add more rounds of user correction
and validation, and iteratively incorporate feedback
from domain experts who have used the tool, to
create new benchmarks for retraining model and
conducting more systematic evaluations. We rec-
ommend caution of using our system output until a
more complete expert evaluation has occurred.

Bias in source. Furthermore, our system out-
put may include some biases from the sources, by
way of biases in the peer-reviewing process. In our
previous work (Yu et al., 2014; Ma et al., 2015;
Zhi et al., 2015; Zhang et al., 2019), we have ag-
gregated source profile, knowledge graphs, and
evidence for fact-checking across sources. We plan
to extend our framework to include fact-checking
to enable practitioners and researchers to access
up-to-the-minute information.

Bias in test queries. Finally, the queries (i.e.,
the lists of candidate drugs and proteins/genes) are
provided by the users who might have biases in
their selection. Addressing the user’s own biases
falls outside the scope of our project, but as we
have stated in the previous subsection, we direct
users to carefully examine source information (au-
thor, publication date, etc.) and detailed evidence
(contextual sentences and documents) associated
with the extracted connections.

Acknowledgement

This research is based upon work supported in
part by U.S. DARPA KAIROS Program No.
FA8750-19-2-1004, U.S. DARPA AIDA Program
FA8750-18-2-0014, .S. DTRA HDTRA I -16-1-
0002/Project #1553695, eTASC - Empirical Ev-
idence for a Theoretical Approach to Semantic
Components, U.S. NSF No. 1741634, the Office
of the Director of National Intelligence (ODNI),
and Intelligence Advanced Research Projects Ac-
tivity (IARPA) via contract FA8650-17-C-9116.
The views and conclusions contained herein are

73

those of the authors and should not be interpreted as
necessarily representing the official policies, either
expressed or implied, of DARPA, or the U.S. Gov-
ernment. The U.S. Government is authorized to
reproduce and distribute reprints for governmental
purposes notwithstanding any copyright annotation
therein.

References
Sabber Ahamed and Manar Samad. 2020. Information

mining for covid-19 research from a large volume
of scientific literature. Information Retrieval Repos-
itory, arXiv:2004.02085.

Emily Alsentzer, John Murphy, William Boag, Wei-
Hung Weng, Di Jindi, Tristan Naumann, and
Matthew McDermott. 2019. Publicly available clini-
cal BERT embeddings. In Proceedings of the 2nd
Clinical Natural Language Processing Workshop,
pages 72–78, Minneapolis, Minnesota, USA. Asso-
ciation for Computational Linguistics.

Sophia Ananiadou, Sampo Pyysalo, Jun’ichi Tsujii,
and Douglas B Kell. 2010. Event extraction for sys-
tems biology by text mining the literature. Trends in
biotechnology, 28(7):381–390.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615–
3620, Hong Kong, China. Association for Computa-
tional Linguistics.

Quoc-Chinh Bui, Peter MA Sloot, Erik M Van Mul-
ligen, and Jan A Kors. 2014. A novel feature-
based approach to extract drug–drug interactions
from biomedical text. Bioinformatics, 30(23):3365–
3371.

Khyathi Chandu, Aakanksha Naik, Aditya Chan-
drasekar, Zi Yang, Niloy Gupta, and Eric Nyberg.
2017. Tackling biomedical text summarization:
OAQA at BioASQ 5B. In BioNLP 2017, pages 58–
66, Vancouver, Canada,. Association for Computa-
tional Linguistics.

Gamal Crichton, Sampo Pyysalo, Billy Chiu, and Anna
Korhonen. 2017. A neural network multi-task learn-
ing approach to biomedical named entity recogni-
tion. Bioinformatics, 18(1):368.

Allan Peter Davis, Cynthia J. Grondin, Robin J. John-
son, Daniela Sciaky, Benjamin L. King, Roy Mc-
Morran, Jolene Wiegers, Thomas C. Wiegers, and
Carolyn J. Mattingly. 2016. The Comparative Toxi-
cogenomics Database: update 2017. Nucleic Acids
Research, 45(D1):D972–D978.

Louise Deléger, Robert Bossy, Estelle Chaix,
Mouhamadou Ba, Arnaud Ferré, Philippe Bessières,
and Claire Nédellec. 2016. Overview of the bacteria
biotope task at BioNLP shared task 2016. In Pro-
ceedings of the 4th BioNLP Shared Task Workshop,
pages 12–22, Berlin, Germany. Association for
Computational Linguistics.

Sean Ekins and Megan Coffee. 2015. Fda approved
drugs as potential ebola treatments. F1000Research,
4.

Andre Esteva, Anuprit Kale, Romain Paulus, Kazuma
Hashimoto, Wenpeng Yin, Dragomir Radev, and
Richard Socher. 2020. Co-search: Covid-19 infor-
mation retrieval with semantic search, question an-
swering, and abstractive summarization. Informa-
tion Retrieval Repository, arXiv:2006.09595.

Maryam Habibi, Leon Weber, Mariana Neves,
David Luis Wiegandt, and Ulf Leser. 2017. Deep
learning with word embeddings improves biomed-
ical named entity recognition. Bioinformatics,
33(14):37–48.

Tom Hope, Jason Portenoy, Kishore Vasan, Jonathan
Borchardt, Eric Horvitz, Daniel S Weld, Marti A
Hearst, and Jevin West. 2020. Scisight: Combining
faceted navigation and research group detection for
covid-19 exploratory scientific search. Information
Retrieval Repository, arXiv:2005.12668.

Filip Ilievski, Daniel Garijo, Hans Chalupsky,
Naren Teja Divvala, Yixiang Yao, Craig Rogers,
Ronpeng Li, Jun Liu, Amandeep Singh, Daniel
Schwabe, et al. 2020. Kgtk: A toolkit for large
knowledge graph manipulation and analysis. Artifi-
cial Intelligence Repository, arXiv:2006.00088.

James L Kizziah, Keith A Manning, Altaira D Dear-
born, and Terje Dokland. 2020. Structure of the
host cell recognition and penetration machinery
of a staphylococcus aureus bacteriophage. PLoS
pathogens, 16(2):e1008314.

Martin Krallinger, Miguel Vazquez, Florian Leitner,
David Salgado, Andrew Chatr-Aryamontri, Andrew
Winter, Livia Perfetto, Leonardo Briganti, Luana Li-
cata, Marta Iannuccelli, et al. 2011. The protein-
protein interaction tasks of biocreative iii: classifica-
tion/ranking of articles and linking bio-ontology con-
cepts to full text. BMC bioinformatics, 12(S8):S3.

Milena Kraus, Julian Niedermeier, Marcel Jankrift,
Sören Tietböhl, Toni Stachewicz, Hendrik Folk-
erts, Matthias Uflacker, and Mariana Neves. 2017.
Olelo: a web application for intuitive exploration
of biomedical literature. Nucleic acids research,
45(W1):478–483.

Larry J Kricka, Sergei Polevikov, Jason Y Park,
Paolo Fortina, Sergio Bernardini, Daniel Satchkov,
Valentin Kolesov, and Maxim Grishkov. 2020. Ar-
tificial intelligence-powered search tools and re-
sources in the fight against covid-19. EJIFCC,
31(2):106.

74

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So, and
Jaewoo Kang. 2020. Biobert: a pre-trained biomed-
ical language representation model for biomedical
text mining. Bioinformatics, 36(4):1234–1240.

Diya Li, Lifu Huang, Heng Ji, and Jiawei Han. 2019.
Biomedical event extraction based on knowledge-
driven tree-LSTM. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1421–1430, Minneapolis, Minnesota.
Association for Computational Linguistics.

Diya Li and Heng Ji. 2019. Syntax-aware multi-task
graph convolutional networks for biomedical rela-
tion extraction. In Proc. EMNLP2019 Workshop on
Health Text Mining and Information Analysis.

Manling Li, Alireza Zareian, Ying Lin, Xiaoman Pan,
Spencer Whitehead, Brian Chen, Bo Wu, Heng Ji,
Shih-Fu Chang, Clare Voss, Daniel Napierski, and
Marjorie Freedman. 2020a. GAIA: A fine-grained
multimedia knowledge extraction system. In Pro-
ceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics: System
Demonstrations, pages 77–86, Online. Association
for Computational Linguistics.

Manling Li, Alireza Zareian, Qi Zeng, Spencer White-
head, Di Lu, Heng Ji, and Shih-Fu Chang. 2020b.
Cross-media structured common space for multime-
dia event extraction. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 2557–2568, Online. Association
for Computational Linguistics.

Yuan Luo, Özlem Uzuner, and Peter Szolovits.
2017. Bridging semantics and syntax with graph
algorithms—state-of-the-art of extracting biomedi-
cal relations. Briefings in bioinformatics, 18(1):160–
178.

Fenglong Ma, Yaliang Li, Qi Li, Minghui Qiu, Jing
Gao, Shi Zhi, Lu Su, Bo Zhao, Heng Ji, and Jiawei
Han. 2015. Faitcrowd: Fine grained truth discovery
for crowdsourced data aggregation. In Proc. the 21st
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD2015).

Suresh Manandhar and Deniz Yuret, editors. 2013. Sec-
ond Joint Conference on Lexical and Computational
Semantics (*SEM), Volume 2: Proceedings of the
Seventh International Workshop on Semantic Eval-
uation (SemEval 2013). Association for Computa-
tional Linguistics, Atlanta, Georgia, USA.

Margaret Mitchell, Simone Wu, Andrew Zaldivar,
Parker Barnes, Lucy Vasserman, Ben Hutchinson,
Elena Spitzer, Inioluwa Deborah Raji, and Timnit
Gebru. 2019. Model cards for model reporting. In
Proceedings of the Conference on Fairness, Account-
ability, and Transparency, pages 220–229.

Claire Nédellec, Robert Bossy, Jin-Dong Kim, Jung-
jae Kim, Tomoko Ohta, Sampo Pyysalo, and Pierre
Zweigenbaum. 2013. Overview of BioNLP shared
task 2013. In Proceedings of the BioNLP Shared
Task 2013 Workshop, pages 1–7, Sofia, Bulgaria. As-
sociation for Computational Linguistics.

Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina
Toutanova, and Wen-tau Yih. 2017. Cross-sentence
n-ary relation extraction with graph lstms. Transac-
tions of the Association for Computational Linguis-
tics, 5:101–115.

Yifan Peng, Qingyu Chen, and Zhiyong Lu. 2020. An
empirical study of multi-task learning on BERT for
biomedical text mining. In Proceedings of the 19th
SIGBioMed Workshop on Biomedical Language Pro-
cessing, pages 205–214, Online. Association for
Computational Linguistics.

Yifan Peng, Chih-Hsuan Wei, and Zhiyong Lu. 2016.
Improving chemical disease relation extraction with
rich features and weakly labeled data. Journal of
cheminformatics, 8(1):53.

Yifan Peng, Shankai Yan, and Zhiyong Lu. 2019.
Transfer learning in biomedical natural language
processing: An evaluation of BERT and ELMo on
ten benchmarking datasets. In Proceedings of the
18th BioNLP Workshop and Shared Task, pages 58–
65, Florence, Italy. Association for Computational
Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for
Computational Linguistics.

Elaheh ShafieiBavani, Antonio Jimeno Yepes,
Xu Zhong, and David Martinez Iraola. 2020. Global
locality in biomedical relation and event extraction.
In Proceedings of the 19th SIGBioMed Workshop on
Biomedical Language Processing, pages 195–204,
Online. Association for Computational Linguistics.

Jingbo Shang, Liyuan Liu, Xiaotao Gu, Xiang Ren,
Teng Ren, and Jiawei Han. 2018. Learning named
entity tagger using domain-specific dictionary. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
2054–2064, Brussels, Belgium. Association for
Computational Linguistics.

Noah Siegel, Nicholas Lourie, Russell Power, and
Waleed Ammar. 2018. Extracting scientific figures
with distantly supervised neural networks. In Pro-
ceedings of the 18th ACM/IEEE on Joint Conference
on Digital Libraries, page 223–232, New York, NY,
USA. Association for Computing Machinery.

75

Ray Smith. 2007. An overview of the tesseract ocr en-
gine. In Proceedings of the 9th international confer-
ence on document analysis and recognition (ICDAR
2007), volume 2, pages 629–633.

Hillel Taub Tabib, Micah Shlain, Shoval Sadde, Dan
Lahav, Matan Eyal, Yaara Cohen, and Yoav Gold-
berg. 2020. Interactive extractive search over
biomedical corpora. In Proceedings of the 19th
SIGBioMed Workshop on Biomedical Language Pro-
cessing, pages 28–37, Online. Association for Com-
putational Linguistics.

George Tsatsaronis, Georgios Balikas, Prodromos
Malakasiotis, Ioannis Partalas, Matthias Zschunke,
Michael R Alvers, Dirk Weissenborn, Anastasia
Krithara, Sergios Petridis, Dimitris Polychronopou-
los, et al. 2015. An overview of the bioasq
large-scale biomedical semantic indexing and ques-
tion answering competition. BMC bioinformatics,
16(1):138.

Satoshi Tsutsui and David J Crandall. 2017. A data
driven approach for compound figure separation us-
ing convolutional neural networks. In Proceedings
of the 2017 14th IAPR International Conference on
Document Analysis and Recognition (ICDAR), vol-
ume 1, pages 533–540.

Jingxuan Tu, M. Verhagen, B. Cochran, and J. Puste-
jovsky. 2020. Exploration and discovery of the
covid-19 literature through semantic visualization.
ArXiv, abs/2007.01800.

Özlem Uzuner, Brett R South, Shuying Shen, and
Scott L DuVall. 2011. 2010 i2b2/va challenge on
concepts, assertions, and relations in clinical text.
Journal of the American Medical Informatics Asso-
ciation, 18(5):552–556.

Sofie Van Landeghem, Jari Björne, Chih-Hsuan Wei,
Kai Hakala, Sampo Pyysalo, Sophia Ananiadou,
Hung-Yu Kao, Zhiyong Lu, Tapio Salakoski, Yves
Van de Peer, et al. 2013. Large-scale event extrac-
tion from literature with multi-level gene normaliza-
tion. PloS one, 8(4):e55814.

Qingyun Wang, Lifu Huang, Zhiying Jiang, Kevin
Knight, Heng Ji, Mohit Bansal, and Yi Luan. 2019a.
PaperRobot: Incremental draft generation of scien-
tific ideas. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1980–1991, Florence, Italy. Association for
Computational Linguistics.

Xuan Wang, Yingjun Guan, Weili Liu, Aabhas
Chauhan, Enyi Jiang, Qi Li, David Liem, Dibakar
Sigdel, John Caufield, Peipei Ping, et al. 2020a. Ev-
idenceminer: Textual evidence discovery for life sci-
ences. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics: Sys-
tem Demonstrations, pages 56–62.

Xuan Wang, Weili Liu, Aabhas Chauhan, Yingjun
Guan, and Jiawei Han. 2020b. Automatic textual ev-
idence mining in covid-19 literature. Computation
and Language Repository, arXiv:2004.12563.

Xuan Wang, Xiangchen Song, Yingjun Guan,
Bangzheng Li, and Jiawei Han. 2020c. Compre-
hensive named entity recognition on cord-19 with
distant or weak supervision. Computation and
Language Repository, arXiv:2003.12218.

Xuan Wang, Yu Zhang, Qi Li, Xiang Ren, Jingbo
Shang, and Jiawei Han. 2019b. Distantly super-
vised biomedical named entity recognition with dic-
tionary expansion. In Proceedings of the 2019
IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), pages 496–503.

Xuan Wang, Yu Zhang, Xiang Ren, Yuhao Zhang,
Marinka Zitnik, Jingbo Shang, Curtis Langlotz, and
Jiawei Han. 2018. Cross-type biomedical named en-
tity recognition with deep multi-task learning. Bioin-
formatics, 35(10):1745–1752.

Chih-Hsuan Wei, Alexis Allot, Robert Leaman, and
Zhiyong Lu. 2019. PubTator central: automated
concept annotation for biomedical full text articles.
Nucleic Acids Research, 47(W1):587–593.

Chih-Hsuan Wei, Yifan Peng, Robert Leaman, Al-
lan Peter Davis, Carolyn J Mattingly, Jiao Li,
Thomas C Wiegers, and Zhiyong Lu. 2015.
Overview of the biocreative v chemical disease re-
lation (cdr) task. In Proceedings of the 5th BioCre-
ative challenge evaluation workshop, volume 14.

Francis Wolinski. 2020. Visualization of diseases at
risk in the covid-19 literature. Information Retrieval
Repository, arXiv:2005.00848.

Zi Yang, Niloy Gupta, Xiangyu Sun, Di Xu, Chi Zhang,
and Eric Nyberg. 2015. Learning to answer biomed-
ical factoid & list questions: Oaqa at bioasq 3b.
CLEF (Working Notes), 1391.

Zi Yang, Yue Zhou, and Eric Nyberg. 2016. Learning
to answer biomedical questions: OAQA at BioASQ
4B. In Proceedings of the Fourth BioASQ work-
shop, pages 23–37, Berlin, Germany. Association
for Computational Linguistics.

Dian Yu, Hongzhao Huang, Taylor Cassidy, Heng Ji,
Chi Wang, Shi Zhi, Jiawei Han, Clare Voss, and Ma-
lik Magdon-Ismail. 2014. The wisdom of minority:
Unsupervised slot filling validation based on multi-
dimensional truth-finding. In Proc. The 25th Inter-
national Conference on Computational Linguistics
(COLING2014).

Haibo Zhang, Josef M Penninger, Yimin Li, Nanshan
Zhong, and Arthur S Slutsky. 2020. Angiotensin-
converting enzyme 2 (ace2) as a sars-cov-2 receptor:
molecular mechanisms and potential therapeutic tar-
get. Intensive care medicine, 46(4):586–590.

Xiaomei Zhang, Yibo Wu, Lifu Huang, Heng Ji, and
Guohong Cao. 2019. Expertise-aware truth analysis
and task allocation in mobile crowdsourcing. IEEE
Transactions on Mobile Computing.

76

Jin Guang Zheng, Daniel Howsmon, Boliang Zhang,
Juergen Hahn, Deborah McGuinness, James
Hendler, and Heng Ji. 2014. Entity linking for
biomedical literature. In BMC Medical Informatics
and Decision Making.

Jin Guang Zheng, Daniel Howsmon, Boliang Zhang,
Juergen Hahn, Deborah McGuinness, James
Hendler, and Heng Ji. 2015. Entity linking for
biomedical literature. In Proceedings of the
BMC Medical Informatics and Decision Making,
volume 15.

Shi Zhi, Bo Zhao, Wenzhu Tong, Jing Gao, Dian Yu,
Heng Ji, and Jiawei Han. 2015. Modeling truth ex-
istence in truth discovery. In Proc. the 21st ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD2015).

Xinyu Zhou, Cong Yao, He Wen, Yuzhi Wang,
Shuchang Zhou, Weiran He, and Jiajun Liang. 2017.
East: an efficient and accurate scene text detector. In
Proceedings of the IEEE conference on Computer Vi-
sion and Pattern Recognition, pages 5551–5560.

77

Proceedings of NAACL-HLT 2021: Demonstrations, pages 78–83
June 6–11, 2021. ©2021 Association for Computational Linguistics

Multifaceted Domain-Specific Document Embeddings

Julian Risch and Philipp Hager and Ralf Krestel
Hasso Plattner Institute, University of Potsdam

Potsdam, Germany
firstname.lastname@hpi.de

Abstract
Current document embeddings require large
training corpora but fail to learn high-quality
representations when confronted with a small
number of domain-specific documents and
rare terms. Further, they transform each doc-
ument into a single embedding vector, mak-
ing it hard to capture different notions of docu-
ment similarity or explain why two documents
are considered similar. In this work, we pro-
pose our Faceted Domain Encoder, a novel ap-
proach to learn multifaceted embeddings for
domain-specific documents. It is based on a
Siamese neural network architecture and lever-
ages knowledge graphs to further enhance the
embeddings even if only a few training sam-
ples are available. The model identifies differ-
ent types of domain knowledge and encodes
them into separate dimensions of the embed-
ding, thereby enabling multiple ways of find-
ing and comparing related documents in the
vector space. We evaluate our approach on two
benchmark datasets and find that it achieves
the same embedding quality as state-of-the-art
models while requiring only a tiny fraction of
their training data.

1 Introduction

Many documents have an inherently multifaceted
nature, a characteristic that domain experts could
exploit when searching through large document
collections. For example, doctors could search
through medical archives for documents containing
similar disease descriptions or related uses of a spe-
cific drug. However, one of the major challenges of
information retrieval in such document collections
is domain-specific language use:

1. Training datasets to learn document represen-
tations are limited in size,

2. documents might express the same informa-
tion by using completely different terms (vo-
cabulary mismatch) or different levels of gran-
ularity (granularity mismatch),

3. and the lack of context knowledge prevents
drawing even simple logical conclusions.

Domain-specific embeddings are available for a
variety of domains, including scientific litera-
ture (Beltagy et al., 2019), patents (Risch and Kres-
tel, 2019), and the biomedical domain (Kalyan and
Sangeetha, 2020). However, these approaches re-
quire large amounts of training data and computing
resources. In this paper, we introduce and demon-
strate our Faceted Domain Encoder, a document
embedding approach that produces comparative
results on considerably smaller document collec-
tions and requires fewer computing resources. Fur-
ther, it provides a multifaceted view of texts while
also addressing the challenges of domain-specific
language use. To this end, we introduce external
domain knowledge to the embedding process, tack-
ling the problem of vocabulary and granularity mis-
matches. A screenshot of the demo is shown in Fig-
ure 1. The interactive demo, our source code, and
the evaluation datasets are available online: https:
//hpi.de/naumann/s/multifaceted-embeddings and
a screencast is available on YouTube: https://youtu.
be/HHcsX2clEwg.

2 Related Work

A popular approach for introducing external do-
main knowledge to the embedding process uses
retrofitting of word vectors based on a graph
of semantic relationships as a post-processing
step (Faruqui et al., 2015). Similarly, Zhang et al.
(2019) train fastText embeddings on biomedical
journal articles and additionally on sequences of
medical terms sampled from a knowledge graph.
Dis2Vec uses a lexicon of medical terms to bring
Word2Vec vectors of domain terms closer to-
gether and to push out-of-domain vectors further
away (Ghosh et al., 2016). Unlike Dis2Vec, which
concerns only whether a word is in the domain vo-
cabulary or not, our approach handles diverse types

78

Figure 1: The demo shows nearest neighbor documents and highlights entities within the same categories (“facets”).
Stop word removal and lemmatization can be turned off for increased readability. The user interface allows to adjust
the weights of the facets of the document embeddings.

of relationships between domain terms. Nguyen
et al. (2017) propose an extension of Doc2Vec,
adding vectors for domain concepts as input for
learning medical document embeddings. Roy et al.
(2017) annotate words in the input text with a list of
matching entities and relationships from a knowl-
edge graph and extend Word2Vec to jointly learn
embeddings for words and annotations. Their ab-
straction of the graph structure as text annotations
enables the inclusion of different node types and
edge connections into word embeddings. Another
work (Liu et al., 2020) proposed K-BERT, which
extends BERT (Devlin et al., 2019) by expanding
input sentences with entities from a knowledge
graph.

Multifaceted embeddings capture more than one
view of a document. Yang et al. (2018) propose a
multifaceted network embedding and apply com-
munity detection algorithms to learn separate em-
beddings for each community. Liu et al. (2019)
suggest an extension to the deepwalk graph em-
bedding, which learns separate node embeddings
for different facets of nodes in a knowledge graph.
Similar to our approach, they propose to concate-
nate the obtained facet embeddings into a single
representation. We learn separate embeddings for
types of domain knowledge and concatenate them
into an overall document representation.

3 Faceted Domain Encoder

Our Faceted Domain Encoder is a supervised learn-
ing approach using a Siamese neural network to
encode documents and a knowledge graph as a
source for additional domain information. The ar-
chitecture is visualized in Figure 2.

3.1 Overview

The network encodes two documents at-a-time with
a bidirectional GRU layer and predicts a similarity
score for each pair. By computing the pair’s tar-
get similarity score based on our knowledge graph,
we train the network to adjust its document rep-
resentations to the relationships between domain
terms in the graph. We introduce multiple facets
in this process by grouping nodes in the graph into
multiple categories. Our model represents different
aspects of domain knowledge in different category
embeddings by learning not a single embedding
vector but an embedding per graph category. We
train one embedding for each graph category per
document and concatenate them into a single em-
bedding vector to represent the entire document.
This representation enables the fast discovery of
related documents by performing a conventional
nearest neighbor search either based on the whole
document or specific category embeddings. To con-
trol which category contributes the most to the doc-

79

0.2 0.41.4

Graph Embedding Lookup

Categorical Graph
Attention

Category Weighting

Word Dropout

Word Embedding Lookup

Sequence Encoder

0.2 0.81.2

Graph Embedding Lookup

Categorical Graph
Attention

Category Weighting

Word Dropout

Word Embedding Lookup

Sequence Encoder

Document Cosine Distance

Graph Cosine Distance

Document da Document db

Figure 2: Our model is based on a Siamese network
architecture, which encodes two documents in parallel
and compares them in the last (top) layer. It is trained
to minimize the difference between the documents’ co-
sine distance in the embedding space and their graph-
based ground-truth distance. Colors symbolize differ-
ent facets of the embeddings, which are learned based
on node categories in the knowledge graph.

ument vector’s overall direction, we apply corpus
normalization inspired by Liu et al. (2019).

To cope with limited amounts of training data,
our approach leverages external domain knowledge
during the training process. We represent this exter-
nal domain knowledge in the form of a knowledge
graph. Each node in the graph represents an entity,
e.g., the name of a disease. Each entity belongs
to a category, modeled as a node attribute. For
example, entities in a medical graph are grouped
into diseases, chemicals, or body parts. Categories
define the different types of domain knowledge that
the model learns to embed into different subparts
of the document embedding. Edges between nodes
represent relationships, e.g., chemicals in the same
group in the periodic table. The entity linking re-
quires a dictionary mapping from words to entities
and handles synonyms mapping to the same entity.
For the demo, we created a knowledge graph from
the taxonomy underlying Medical Subject Head-
ings (MeSH). Figure 3 shows a small excerpt of
the graph.

After parsing and deduplicating the official
dataset, MeSH comprises 29,641 concepts (enti-
ties) and 271,846 synonyms, which are organized
in a hierarchy ranging from broad concepts to spe-
cific sub-concepts. Following previous work (Guo
et al., 2020), we transform the hierarchy into a net-

Behavior
Psychiatry and

Psychology

F01.145

Depression
Psychiatry and

Psychology

F01.145.126.350

Encopresis
Disease

C23.888.821…

Hearing Loss
Disease

F01.145.126…

Behavioral
Symptoms

Psychiatry and
Psychology

F01.145.126

Figure 3: This excerpt of our graph representation of
the Medical Subject Headings (MeSH) hierarchy vi-
sualizes entities as nodes with their color correspond-
ing to categories (“facets”). The edges and the node
numbers reveal the hierarchical relationships, e.g., the
broader concept of “Behavior” and the specific mental
illness “Depression”.

work graph prevailing the relationships between
concepts.

3.2 Equally Weighted Categories
Our approach learns separate embeddings for dif-
ferent categories of domain terms. However, not
all categories might be useful when it comes to rep-
resenting the overall document. We illustrate this
problem with a fictional example from the medical
domain. Our approach might learn that an article
covers a seldom form of cancer (disease category)
in the lung and stomach (anatomy category), and
the study originates in the United States (location
category). Concatenating these three embeddings
gives equal weight to each category. The closest
document in embedding space needs to be similar
in all of the three categories. This might lead to
counterintuitive results with the most relating ar-
ticle covering a stomach disease in a small town
in Ohio, instead of a document just covering lung
cancer. When reading the text again, we might
weigh the given information differently based on
its specificity and expect the form of cancer to be
more important than the geographic location of the
study. Note that this problem is magnified when
combining up to sixteen categories in the case of
our medical dataset. We illustrate the problem with
an actual example from our demo in Figure 4.

A second problem can arise when a single, seem-
ingly unimportant category dominates the docu-
ment embedding. Some documents mention a sin-
gle term very often, e.g., the word “patient”. A high
frequency of less-informative words can lead to in-
dividual categories collecting vastly more word

80

embeddings than others and taking over the entire
document embedding.

The root cause of both issues is an unintended
difference in magnitude between the category em-
beddings. When concatenating multiple embed-
dings into a new vector, the category embeddings
with the highest magnitude will decide the over-
all direction of the embedding vector. We address
this issue with a simple normalization and weight-
ing process to control which category embeddings
contribute the most to the overall direction of the
document vector. This approach is similar to what
Liu et al. proposed in their work on multifaceted
graph embeddings but differs in that we also apply
normalization and propose new weighting strate-
gies.

3.3 Category Normalization Strategies

We propose two strategies to compute category
weights: corpus-idf and document-tfidf. The first
strategy, corpus-idf, sums the inverse-document-
frequency of all terms in the category across the
entire vocabulary. We normalize the resulting val-
ues for all categories to sum to one. This strategy
applies the same category weights to all documents
in the entire corpus. The motivation is to identify
categories that contain the most important words in
a collection of documents. This strategy is closely
related to the number of unique mentioned tokens
in each category.

The second strategy, document-tfidf, computes
category weights for individual documents by sum-
ming the inverse-document-frequency value of all
category terms in the document. Since terms can
occur multiple times, the result is similar to the
tf-idf value when computed for each category. Ad-
ditionally, we sum the idf of all words without a
category and split the weight equally among all
categories. Thereby, we avoid zero weights for cat-
egories in the overall embedding. The idea behind
this weighting scheme is to have a document-level
proxy metric to indicate which categories are im-
portant for the document.

4 Experiments

For our experiments, we use two Semantic Textual
Similarity (STS) benchmarks from the biomedical
domain, BIOSSES (Soğancıoğlu et al., 2017) and
Med-STS (Wang et al., 2020). The benchmarks
comprise sentence pairs with relatedness scores
assigned by domain experts. They measure embed-

ding quality by comparing the annotator score with
the embedding similarity of both sentences based
on Pearson correlation.

To this end, BIOSSES contains 100 sentence
pairs collected from medical articles and judged by
five domain experts at a scale of 0 to 4. We perform
stratified 10-fold cross-validation as proposed by
the benchmark authors. We divide the dataset into
ten equally-sized subsets using the annotator scores
for stratification. Stratification ensures that each
split has a similar distribution of related and unre-
lated sentence pairs. We train ten separate models
on the subsets, always using one subset for test-
ing and the remaining nine for training. Note that
we still use 30 percent of the training dataset for
validation and early stopping: we stop the training
process after the first epoch in which the loss on the
validation set stops decreasing. Med-STS contains
1,068 sentence pairs from medical records collected
internally in the U.S. Mayo Clinics. Two domain
experts judged each sentence pair on a scale from
0 to 5. The dataset authors proposed a train-test
split of 750 to 350 sentence pairs. Additionally, we
use 30 percent, or 225 pairs, of our training set for
validation and early stopping.

The experiment results listed in Table 1 show
that our Faceted Domain Encoder outperforms the
domain-agnostic embeddings from fastText (Bo-
janowski et al., 2017) and Universal Sentence
Encoder (Cer et al., 2018) on both benchmarks.
The corpus-idf normalization is better than the
document-tfidf normalization strategy on the
BIOSSES dataset but not on the Med-STS dataset.
In comparison with the domain-specific embed-
dings from BioWordVec (Zhang et al., 2019) and
BioSentVec (Chen et al., 2019), our approach
achieves almost the same performance on Med-
STS, which is remarkable given that our Faceted
Domain Encoder requires no pre-training on large
corpora in contrast to the other presented models.
For BIOSSES, only BioSentVec outperforms our
approach by a large margin.

5 Interactive User Interface

The user interface comprises three main parts: top
center, bottom center, and sidebar. In the top center,
the user can select a source document and one or
all of the categories (“facets”). Further, either a
preprocessed (stop word removal, lemmatization)
or a raw document version can be selected for the
viewed documents and word highlighting can be

81

Table 1: Pearson correlation on STS benchmarks (* marks results reported by Chen et al. (2019)).

Embedding Pre-Trained BIOSSES Med-STS

Avg. fastText English (Bojanowski et al., 2017) X 0.51 0.68
Universal Sentence Encoder (Cer et al., 2018) X 0.35* 0.71*

Avg. BioWordVec (Zhang et al., 2019) X 0.69* 0.75*

BioSentVec (Chen et al., 2019) X 0.82* 0.77*

Faceted Domain Encoder, Document Normalization 0.53 0.75
Faceted Domain Encoder, Corpus Normalization 0.62 0.72

switched between coloring by entities and color-
ing by attention scores. The bottom center shows
the selected document and the top ten documents
that are closest to the selected document in the em-
bedding space. Depending on the selected facet,
the documents’ distance is calculated based on one
specific facet or on the entire document embedding.
The sidebar at the left-hand side provides an option
to adjust the document embedding in detail. It al-
lows the user to specify what impact the individual
facets have on the document’s overall embedding.

6 Conclusion

Current document embeddings require large
amounts of training data and provide only a sin-
gle view of document similarity, which prevents
searches with different notions of similarity. In
this paper, we introduced and demonstrated an ap-
proach for multifaceted domain-specific document
embeddings. It is tailored to small document col-
lections of only a few hundred training samples
and leverages knowledge graphs to enhance the
learned embeddings. Experiments on two bench-
mark datasets show that our model outperforms
state-of-the-art domain-agnostic embeddings and
is on par with specialized biomedical document
embeddings trained on extensive document collec-
tions while only using a tiny fraction of their train-
ing data. Our demo provides a faceted view into
documents by learning to identify different types
of domain knowledge and encoding them into spe-
cific dimensions of the embeddings. Thereby, it
enables novel ways to compare documents and pro-
vides a comparatively high level of interpretabil-
ity of neural-network-based document similarity
measures. A promising path for future work is to
remove our neural networks’ reliance on ground
truth data by designing a semi-supervised approach
in which the model learns to update its training
goal while discovering new domain terms by itself.

References
Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-

ERT: A Pretrained Language Model for Scientific
Text. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing and
the International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3606–
3611.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching Word Vectors with
Subword Information. Transactions of the Associa-
tion for Computational Linguistics (TACL), 5:135–
146.

Daniel Cer, Yinfei Yang, Sheng yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Céspedes, Steve Yuan, Chris Tar,
Yun Hsuan Sung, Brian Strope, and Ray Kurzweil.
2018. Universal Sentence Encoder for English.
In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 169–174.

Qingyu Chen, Yifan Peng, and Zhiyong Lu. 2019.
BioSentVec: Creating Sentence Embeddings for
Biomedical Texts. In Proceedings of the Interna-
tional Conference on Healthcare Informatics (ICHI),
pages 1–5.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the Conference of the
North American Chapter of the Association for Com-
putational Linguistics (NAACL), pages 4171–4186.

Manaal Faruqui, Jesse Dodge, Sujay K. Jauhar, Chris
Dyer, Eduard Hovy, and Noah A. Smith. 2015.
Retrofitting word vectors to semantic lexicons. In
Proceedings of the Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics (NAACL), pages 1606–1615.

Saurav Ghosh, Prithwish Chakraborty, Emily Cohn,
John S. Brownstein, and Naren Ramakrishnan. 2016.
Characterizing diseases from unstructured text: A
vocabulary driven Word2vec approach. In Proceed-
ings of the International Conference on Information
and Knowledge Management (CIKM), pages 1129–
1138.

82

Anchor Document
Title: Years of potential life lost: another indicator of the impact of
cutaneous malignant melanoma on society.

year potential/life/lose ypll indicator/premature mortality complement
traditional/incidence/mortality rate /facilitate comparison different/cancer
calculate ypll cutaneous/melanoma 11/cancer routinely/record /track
surveillance/epidemiology/end results seer ypll cutaneous/melanoma/rank
eighth/person/young 65 year […]

Nearest neighbor without category normalization
Title: Obesity and colorectal adenomatous polyps.

obesity colorectal/adenomatous polyp/obesity investigate/risk
factor/malignancy/include/colon cancer/case-control study/conduct/patient
colonoscopy/practice/new york city determine possible/risk factor
colorectal/adenomatous polyp/know precursor lesion case/colorectal cancer […]

Nearest neighbor with corpus-idf normalization
Title: Malignant melanoma in the 1990s: the continued importance of
early detection and the role of physician examination […]

malignant melanoma/1990 continue importance early detection/role
physician/examination/self-examination/skin/despite exciting new
technique develop help diagnose early/malignant melanoma/current
standard care remain periodic examination/skin/combination […]

Categories
Chemicals
Disease
Therapeutic Technique
Physical Sciences
Humanities
Health Care
Person
Geographic Location

Figure 4: Different weighting of the categories (“facets”) changes the distances of the documents in the embedding
space and the nearest neighbors of the anchor document. Corpus-idf normalization allows to take into account the
frequency of the entities within the corpus. The impact of the most frequent words on the embeddings can thus be
reduced. Stop word removal and lemmatization can be turned off for increased readability.

Zhen-Hao Guo, Zhu-Hong You, De-Shuang Huang,
Hai-Cheng Yi, Kai Zheng, Zhan-Heng Chen, and
Yan-Bin Wang. 2020. MeSHHeading2vec: a new
method for representing MeSH headings as vectors
based on graph embedding algorithm. Briefings in
Bioinformatics.

Katikapalli Subramanyam Kalyan and S. Sangeetha.
2020. SECNLP: A survey of embeddings in clinical
natural language processing. Bioinformatics, 101:1–
21.

Ninghao Liu, Qiaoyu Tan, Yuening Li, Hongxia Yang,
Jingren Zhou, and Xia Hu. 2019. Is a single vector
enough? Exploring node polysemy for network em-
bedding. In Proceedings of the International Con-
ference on Knowledge Discovery and Data Mining
(SIGKDD), pages 932–940.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju,
Haotang Deng, and Ping Wang. 2020. K-bert:
Enabling language representation with knowledge
graph. In Proceedings of the Conference on Artifi-
cial Intelligence (AAAI), pages 2901–2908.

Gia Hung Nguyen, Lynda Tamine, Laure Soulier, and
Nathalie Souf. 2017. Learning concept-driven doc-
ument embeddings for medical information search.
Lecture Notes in Computer Science, 10259(17).

Julian Risch and Ralf Krestel. 2019. Domain-specific
word embeddings for patent classification. Data
Technologies and Applications, 53(1):108–122.

Arpita Roy, Youngja Park, and SHimei Pan. 2017.
Learning Domain-Specific Word Embeddings from
Sparse Cybersecurity Texts. In arXiv preprint:
1709.07470.

Gizem Soğancıoğlu, Hakime Öztürk, and Arzucan
Özgür. 2017. BIOSSES: A semantic sentence sim-
ilarity estimation system for the biomedical domain.
Bioinformatics, 33(14):49–58.

Yanshan Wang, Naveed Afzal, Sunyang Fu, Liwei
Wang, Feichen Shen, Majid Rastegar-Mojarad, and
Hongfang Liu. 2020. MedSTS: a resource for clini-
cal semantic textual similarity. Language Resources
and Evaluation, 54(1):57–72.

Liang Yang, Xiaochun Cao, and Guo Yuanfang. 2018.
Multi-facet Network Embedding: Beyond the Gen-
eral Solution of Detection and Representation. In
Proceedings of the Conference on Artificial Intelli-
gence (AAAI), pages 499–506.

Yijia Zhang, Qingyu Chen, Zhihao Yang, Hongfei Lin,
and Zhiyong Lu. 2019. BioWordVec, improving
biomedical word embeddings with subword infor-
mation and MeSH. Scientific Data, 6(1):1–9.

83

Proceedings of NAACL-HLT 2021: Demonstrations, pages 84–91
June 6–11, 2021. ©2021 Association for Computational Linguistics

Improving Evidence Retrieval for Automated Explainable Fact-Checking

Chris Samarinas1, Wynne Hsu1,2,3, and Mong Li Lee1,2,3

1Institute of Data Science, National University of Singapore
2NUS Centre for Trusted Internet and Community

3School of Computing, National University of Singapore

Abstract

Automated fact-checking on a large-scale is a
challenging task that has not been studied sys-
tematically until recently. Large noisy doc-
ument collections like the web or news arti-
cles make the task more difficult. In this pa-
per, we describe the components of a three-
stage automated fact-checking system, named
Quin+. We demonstrate that using dense pas-
sage representations increases the evidence re-
call in a noisy setting. We experiment with two
sentence selection approaches, an embedding-
based selection using a dense retrieval model,
and a sequence labeling approach for context-
aware selection. Quin+ is able to verify open-
domain claims using a large-scale corpus or
web search results.

1 Introduction

With the emergence of social media and many in-
dividual news sources online, the spread of misin-
formation has become a major problem with po-
tentially harmful social consequences. Fake news
can manipulate public opinion, create conflicts,
elicit unreasonable fear and suspicion. The vast
amount of unverified online content led to the
establishment of external post-hoc fact-checking
organizations, such as PolitiFact, FactCheck.org,
Snopes etc, with dedicated resources to verify
claims online. However, manual fact-checking is
time consuming and intractable on a large scale.
The ability to automatically perform fact-checking
is critical to minimize negative social impact.

Automated fact checking is a complex task in-
volving evidence extraction followed by evidence
reasoning and entailment. For the retrieval of rel-
evant evidence from a corpus of documents, ex-
isting systems typically utilize traditional sparse
retrieval which may have poor recall, especially
when the relevant passages have few overlapping

words with the claims to be verified. Dense re-
trieval models have proven effective in question
answering as these models can better capture the
latent semantic content of text. The work in
(Samarinas et al., 2020) is the first to use dense re-
trieval for fact checking. The authors constructed
a new dataset called Factual-NLI comprising of
claim-evidence pairs from the FEVER dataset
(Thorne et al., 2018) as well as synthetic examples
generated from benchmark Question Answering
datasets (Kwiatkowski et al., 2019; Nguyen et al.,
2016). They demonstrated that using Factual-NLI
to train a dense retriever can improve evidence re-
trieval significantly.

While the FEVER dataset has enabled the
systematic evaluation of automated fact-checking
systems, it does not reflect well the noisy na-
ture of real-world data. Motivated by this, we
introduce the Factual-NLI+ dataset, an extension
of the FEVER dataset with synthetic examples
from question answering datasets and noise pas-
sages from web search results. We examine how
dense representations can improve the first-stage
retrieval recall of passages for fact-checking in a
noisy setting, and make the retrieval of relevant
evidence more tractable on a large scale.

However, the selection of relevant evidence sen-
tences for accurate fact-checking and explainabil-
ity remains a challenge. Figure 1 shows an ex-
ample of a claim and the retrieved passage which
has three sentences, of which only the last sen-
tence provides the critical evidence to refute the
claim. We propose two ways to select the relevant
sentences, an embedding-based selection using a
dense retrieval model, and a sequence labeling ap-
proach for context-aware selection. We show that
the former generalizes better with a high recall,
while the latter has higher precision, making them
suitable for the identification of relevant evidence
sentences. Our fact-checking system Quin+ is able

84

Figure 1: Sample claim and the retrieved evidence pas-
sage where only the last sentence is relevant.

to verify open-domain claims using a large corpus
or web search results.

2 Related Work

Automated claim verification using a large cor-
pus has not been studied systematically until the
availability of the Fact Extraction and VERifica-
tion dataset (FEVER) (Thorne et al., 2018). This
dataset contains claims that are supported or re-
futed by specific evidence from Wikipedia arti-
cles. Prior to the work in (Samarinas et al., 2020),
fact-checking solutions have relied on sparse pas-
sage retrieval, followed by a claim verification (en-
tailment classification) model (Nie et al., 2019).
Other approaches used the mentions of entities
in a claim and/or basic entity linking to retrieve
documents and a machine learning model such as
logistic regression or an enhanced sequential in-
ference model to decide whether an article most
likely contains the evidence (Yoneda et al.; Chen
et al., 2017; Hanselowski et al., 2018).

However, retrieval based on sparse representa-
tions and exact keyword matching can be rather re-
strictive for various queries. This restriction can be
mitigated by dense representations using BERT-
based language models (Devlin et al., 2019). The
works in (Lee et al., 2019; Karpukhin et al., 2020;
Xiong et al., 2020; Chang et al., 2020) have suc-
cessfully used such models and its variants for pas-
sage retrieval in open-domain question answering.
The results can be further improved using passage
re-ranking with cross-attention BERT-based mod-
els (Nogueira et al., 2019). The work in (Samari-
nas et al., 2020) is the first to propose a dense
model to retrieve passages for fact-checking.

Apart from passage retrieval, sentence selection
is also a critical task in fact-checking. These ev-
idence sentences provide an explanation why a
claim has been assessed to be credible or not. Re-

cent works have proposed a BERT-based model
for extracting relevant evidence sentences from
multi-sentence passages (Atanasova et al., 2020).
The authors observe that joint training on verac-
ity prediction and explanation generation performs
better than training separate models. The work in
(Stammbach and Ash, 2020) investigates how the
few-shot learning capabilities of the GPT-3 model
(Brown et al., 2020) can be used for generating
fact-checking explanations.

3 The Quin+ System

The automated claim verification task can be de-
fined as follows: given a textual claim c and a cor-
pus D = {d1, d2, ..., dn}, where every passage d
is comprised of sentences sj , 1 ≤ j ≤ k, a system
will return a set of evidence sentences Ŝ ⊂ ⋃ di
and a label ŷ ∈ {probably true, probably false,
inconclusive}.

We have developed an automated fact-checking
system, called Quin+, that verifies a given claim
in three stages: passage retrieval from a corpus,
sentence selection and entailment classification as
shown in Figure 2. The label is determined as fol-
lows: we first perform entailment classification on
the set of evidence sentences. When the number
of retrieved evidence sentences that entail or con-
tradict the claim is low, we label the claim as “in-
conclusive”. If the number of evidence sentences
that support the claim exceeds the number of sen-
tences that refute the claim, we assign the label
“probably true”. Otherwise, we assign the label
“probably false”.

3.1 Passage Retrieval
The passage retrieval model in Quin+ is based on
a dense retrieval model called QR-BERT (Samari-
nas et al., 2020). This model is based on BERT
and creates dense vectors for passages by calculat-
ing their average token embedding. The relevance
of a passage d to a claim c is then given by their
dot product:

r(c, d) = φ(c)Tφ(d) (1)

Dot product search can run efficiently using an ap-
proximate nearest neighbors index implemented
using the FAISS library (Johnson et al., 2019).
QR-BERT maximizes the sampled softmax loss:

Lθ =
∑

(c,d)∈D+
b

rθ(c, d)− log
(∑

di∈Db
erθ(c,di)

)
(2)

85

Figure 2: Three stages of claim verification in Quin+.

where Db is the set of passages in a training batch
b, D+

b is the set of positive claim-passage pairs in
the batch b, and θ represents the parameters of the
BERT model.

The work in (Samarinas et al., 2020) introduced
the Factual-NLI dataset that extends the FEVER
dataset (Thorne et al., 2018) with more diverse
synthetic examples derived from question answer-
ing datasets. There are 359,190 new entailed
claims with evidence and additional contradicted
claims from a rule-based approach. To ensure ro-
bustness, we compile a new large-scale noisy ver-
sion of Factual-NLI called Factual-NLI+1. This
dataset includes all the 5 million Wikipedia pas-
sages in the FEVER dataset. We add ‘noise’ pas-
sages as follows. For every claim c in the FEVER
dataset, we retrieve the top 30 web results from
the Bing search engine and keep passages with
the highest BM25 score that are classified as neu-
tral by the entailment model. For claims gen-
erated from MSMARCO queries (Nguyen et al.,
2016), we include the irrelevant passages that are
found in the MSMARCO dataset for those queries.
This results in 418,650 additional passages. The
new dataset reflects better the nature of a large-
scale corpus that would be used by real-world fact-
checking system. We trained a dense retrieval
model using this extended dataset.

The Quin+ system utilizes a hybrid model that
combines the results from the dense retrieval
model described above and BM25 sparse retrieval
to obtain the final list of retrieved passages. For
efficient sparse retrieval, we used the Rust-based
Tantivy full text search engine2.

3.2 Sentence Selection
We propose and experiment with two sentence se-
lection methods: an embedding-based selection

1https://archive.org/details/factual-nli
2https://github.com/tantivy-search/tantivy

and context-aware sentence selection method.
The embedding-based selection method relies

on the dense representations learned by the dense
passage retrieval model QR-BERT. For a given
claim c, we select the sentences si from a given
passage d = {s1, s2, ..., sk} whose relevance
score r(c, si) is greater than some threshold λ
which is set experimentally.

The context-aware sentence selection method
uses a BERT-based sequence labeling model. The
input of the model is the concatenation of the to-
kenized claim C = {C1, C2, ..., Ck}, the special
[SEP] token and the tokenized evidence passage
E = {E1, E2, ..., Em} (see Figure 3). For the out-
put of the model, we adopt the BIO tagging format
so that all the irrelevant tokens are classified as O,
the first token of an evidence sentence classified as
B evidence and the rest tokens of an evidence sen-
tence as I evidence. We trained a model based on
RoBERTa-large (Liu et al., 2019), minimizing the
cross-entropy loss:

Lθ = −
N∑

i=1

li∑

j=1

log(pθ(y
i
j)) (3)

whereN is the number of examples in the training
batch, li the number of non-padding tokens of the
ith example, and pθ(yij) is the estimated softmax
probability of the correct label for the jth token of
the ith example. We trained this model on Factual-
NLI with batch size 64, Adam optimizer and initial
learning rate 5× 10−5 until convergence.

3.3 Entailment Classification

Natural Language Inference (NLI), also known
as textual entailment classification, is the task of
detecting whether a hypothesis statement is en-
tailed by a premise passage. It is essentially a
text classification problem, where the input is a

86

Figure 3: Sequence labeling model for evidence selection from a passage for a given claim.

pair of premise-hypothesis (P,H) and the out-
put a label y ∈ {entailment, contradiction, neu-
tral}. An NLI model is often a core component of
many automated fact-checking systems. Datasets
like the Stanford Natural Language Inference cor-
pus (SNLI) (Bowman et al., 2015), Multi-Genre
Natural Language Inference corpus (Multi-NLI)
(Williams et al., 2018) and Adversarial-NLI (Nie
et al., 2020) have facilitated the development of
models for this task.

Even though pre-trained NLI models seem to
perform well on the two popular NLI datasets
(SNLI and Multi-NLI), they are not as effective
in a real-world setting. This is possibly due to
the bias in these two datasets, which has a neg-
ative effect in the generalization ability of the
trained models (Poliak et al., 2018). Further, these
datasets are comprised of short single-sentence
premises. As a result, models trained on these
datasets usually do not perform well on noisy real-
world data involving multiple sentences. These
issues have led to the development of additional
more challenging datasets such as Adversarial
NLI (Nie et al., 2020).

Our Quin+ system utilizes an NLI model based
on RoBERTa-large with a linear transformation of
the [CLS] token embedding (Devlin et al., 2019):

o = softmax(W · BERT[CLS]([P ;H]) + a) (4)

where P ;H is the concatenation of the premise
with the hypothesis, W3×1024 is a linear transfor-
mation matrix, and a3×1 is the bias. We trained the
entailment model by minimizing the cross-entropy
loss on the concatenation of the three popular NLI
datasets (SNLI, Multi-NLI and Adversarial-NLI)
with batch size 64, Adam optimizer and initial
learning rate 5× 10−5 until convergence.

4 Performance of Quin+

We evaluate the three individual components of
Quin+ (retrieval, sentence selection and entail-
ment classification) and finally perform an end-to-
end evaluation using various configurations.

Table 1 gives the recall@k and Mean Recip-
rocal Rank (MRR@100) of the passage retrieval
models on FEVER and Factual-NLI+. We also
compare the performance on a noisy extension
of the FEVER dataset where additional passages
from the Bing search engine are included as
‘noise’ passages. We see that when noise pas-
sages are added to the FEVER dataset, the gap be-
tween the hybrid passage retrieval model in Quin+
and sparse retrieval widens. This demonstrates the
limitations of using sparse retrieval, and why it is
crucial to have a dense retrieval model to surface
relevant passages from a noisy corpus. Overall,
the hybrid passage retrieval model in Quin+ gives
the best performance compared to BM25 and the
dense retrieval model.

(a) FEVER Dataset
Model R@5 R@10 R@20 R@100 MRR

BM25 50.53 58.92 67.93 82.93 0.381
Dense 65.47 69.61 72.51 75.71 0.535
Hybrid 71.71 78.60 83.65 91.09 0.556

(b) FEVER with noise passages

Model R@5 R@10 R@20 R@100 MRR

BM25 35.17 44.18 53.89 73.95 0.2649
Dense 54.10 62.13 68.09 75.24 0.4053
Hybrid 54.89 64.61 73.33 86.11 0.4074

(c) Factual-NLI+ Dataset
Model R@5 R@10 R@20 R@100 MRR

BM25 45.02 53.20 61.56 77.96 0.347
Dense 59.66 67.09 72.23 78.52 0.461
Hybrid 61.29 70.03 77.51 87.90 0.465

Table 1: Performance of passage retrieval models.

87

(a) Factual-NLI Dataset
Model Precision Recall F1

Baseline 67.74 91.87 77.98
Sequence labeling 94.78 92.11 93.43
Embedding-based 66.12 90.29 76.34

(b) SciFact Dataset
Model Precision Recall F1

Baseline 62.21 71.54 66.55
Sequence labeling 69.38 68.45 68.91
Embedding-based 43.30 92.36 58.96

Table 2: Performance of sentence selection methods.

Table 2 shows the token-level precision, recall
and F1 score of the proposed sentence selection
methods on the Factual-NLI dataset and a domain-
specific (medical) claim verification dataset, Sci-
Fact (Wadden et al., 2020). We also compare the
performance to a baseline sentence-level NLI ap-
proach, where we perform entailment classifica-
tion (using the model described in Section 3.3)
on each sentence of a passage and select the non-
neutral sentences as evidence. We observe that
the sequence labeling model gives the highest pre-
cision, recall and F1 score when tested on the
Factual-NLI dataset. Further, the precision is sig-
nificantly higher than the other methods.

On the other hand, for the SciFact dataset, we
see that sequence labeling method remains the top
performer in terms of precision and F1 score af-
ter fine-tuning, although its recall is lower than
the embedding-based method. This shows that se-
quence labeling model is able to mitigate the high
false positive rate observed with the embedding-
based selection method by taking into account the
surrounding context.

The Factual-NLI+ dataset contains claims with
passages that either support or refute the claims
with some sentences highlighted as ground truth
specific evidence. Table 3 shows the perfor-
mance of the entailment model to classify the in-
put evidence as supporting or refuting the claims.
The input evidence can be in the form of the
whole passage, ground truth evidence sentences,
or sentences selected by our sequence labeling
model. We observe that the entailment classifica-
tion model performs poorly when whole passages
are passed as input evidence. However, when the
specific sentences are passed as input, the preci-
sion, recall, and F1 measures improve. The rea-
son is that our entailment classification model is
trained mostly on short premises. As a result, it

(a) Supporting evidence

Input Precision Recall F1
Whole passages 63.40 53.93 58.28
Highlighted ground truth 82.15 60.05 69.38
Selected sentences 74.40 56.68 64.34

(b) Refuting evidence
Input Precision Recall F1
Whole passages 33.95 40.65 37.00
Highlighted ground truth 77.54 89.32 83.02
Selected sentences 75.27 81.96 78.47

Table 3: Performance of entailment classification
model on different forms of input evidence.

Passage retrieval Sentence selection F1

BM25, k=5 Embedding-based 52.76
BM25, k=20 Embedding-based 47.65
BM25, k=5 Sequence labeling 49.65
Dense, k=5 Embedding-based 49.03
Dense, k=5 Sequence labeling 52.83
Dense, k=50 Sequence labeling 58.22
Hybrid, k=6 Embedding-based 50.29
Hybrid, k=6 Sequence labeling 57.24
Hybrid, k=50 Sequence labeling 52.60

Table 4: End-to-end claim verification on Factual-
NLI+ for different configurations.

does better on sentence-level evidence compared
to the longer passages.

Finally, we carry out an end-to-end evaluation
of our fact-checking system on Factual-NLI+ us-
ing various configurations of top-k passage re-
trieval (BM25, dense, hybrid, for various val-
ues of k ∈ [5, 100]) and evidence selection ap-
proaches (embdedding-based and sequence label-
ing). Table 4 shows the macro-average F1 score
for the three classes (supporting, refuting, neu-
tral) for some of the tested configurations. We see
that dense or hybrid retrieval with evidence selec-
tion using the proposed sequence labeling model
gives the best results. Even though hybrid retrieval
seems to lead to slightly worse performance, it re-
quires much fewer passages (6 instead of 50) and
makes the system more efficient.

5 System Demonstration

We have created a demo for verifying open-
domain claims using the top 20 results from a
web search engine. For a given claim, Quin+ re-
turns relevant text passages with highlighted sen-
tences. The passages are grouped into two sets,
supporting and refuting. It computes a veracity
rating based on the number of supporting and re-
futing evidence. It returns “probably true” if there

88

Figure 4: The Quin+ system returning relevant evidence and a veracity rating for a claim.

are more supporting evidence, otherwise it returns
“probably false”. When the number of retrieved
evidence is low, it returns “inconclusive”. Figure 4
shows a screen dump of the system with a claim
that has been assessed to be probably false based
on the overwhelming number of refuting sentence
evidence (21 refute versus 0 support). Quin+ can
also be used on a large-scale corpus.

6 Conclusion & Future Work

In this work, we have presented a three-stage fact-
checking system. We have demonstrated how a
dense retrieval model can lead to higher recall
when retrieving passages for fact-checking. We
have also proposed two schemes to select rele-
vant sentences: an embedding-based approach and
a sequence labeling model to improve the claim
verification accuracy. Quin+ gave promising re-
sults in our extended Factual-NLI+ corpus, and is

also able to verify open-domain claims using web
search results. The source code of our system is
publicly available3.

Even though our system is able to verify multi-
ple open-domain claims successfully, it has some
limitations. Quin+ is not able to effectively ver-
ify multi-hop claims that require the retrieval of
multiple pieces of evidence. For the verification
of multi-hop claims, methodologies inspired by
multi-hop question answering could be utilized.

For the future development of large-scale fact-
checking systems we believe that a new bench-
mark needs to be introduced. The currently avail-
able datasets, including Factual-NLI+, are not
suitable for evaluating the verification of claims
using multiple sources.

3https://github.com/algoprog/Quin

89

References
Pepa Atanasova, Jakob Grue Simonsen, Christina Li-

oma, and Isabelle Augenstein. 2020. Generating
fact checking explanations. In Proceedings of the
Annual Meeting of the Association for Computa-
tional Linguistics (ACL).

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large an-
notated corpus for learning natural language infer-
ence. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP).

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Wei-Cheng Chang, Felix X. Yu, Yin-Wen Chang, Yim-
ing Yang, and Sanjiv Kumar. 2020. Pre-training
tasks for embedding-based large-scale retrieval. In
International Conference on Learning Representa-
tions (ICLR).

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced lstm for
natural language inference. In Proceedings of the
Annual Meeting of the Association for Computa-
tional Linguistics (ACL).

J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
NAACL-HLT.

Andreas Hanselowski, Hao Zhang, Zile Li, Daniil
Sorokin, Benjamin Schiller, Claudia Schulz, and
Iryna Gurevych. 2018. Ukp-athene: Multi-sentence
textual entailment for claim verification. In Pro-
ceedings of the First Workshop on Fact Extraction
and VERification (FEVER), pages 103–108.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with gpus. IEEE
Transactions on Big Data.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Ledell
Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
2020. Dense passage retrieval for open-domain
question answering. Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics (ACL).

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Matthew Kelcey,
Jacob Devlin, Kenton Lee, Kristina N. Toutanova,
Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Transactions of the Association of Com-
putational Linguistics.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the
Annual Meeting of the Association for Computa-
tional Linguistics (ACL).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. MS MARCO: A human generated ma-
chine reading comprehension dataset. CoRR,
abs/1611.09268.

Yixin Nie, Haonan Chen, and Mohit Bansal. 2019.
Combining fact extraction and verification with neu-
ral semantic matching networks. In Proceedings of
the AAAI Conference on Artificial Intelligence.

Yixin Nie, Adina Williams, Emily Dinan, Mohit
Bansal, Jason Weston, and Douwe Kiela. 2020. Ad-
versarial NLI: A new benchmark for natural lan-
guage understanding. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics (ACL).

Rodrigo Nogueira, W. Yang, Kyunghyun Cho, and
Jimmy Lin. 2019. Multi-stage document ranking
with bert. ArXiv, abs/1910.14424.

Adam Poliak, Jason Naradowsky, Aparajita Haldar,
Rachel Rudinger, and Benjamin Van Durme. 2018.
Hypothesis only baselines in natural language infer-
ence. In Proceedings of the Joint Conference on
Lexical and Computational Semantics.

Chris Samarinas, Wynne Hsu, and Mong Li Lee. 2020.
Latent retrieval for large-scale fact-checking and
question answering with nli training. In IEEE In-
ternational Conference on Tools with Artificial In-
telligence (ICTAI).

Dominik Stammbach and Elliott Ash. 2020. e-fever:
Explanations and summaries for automated fact
checking. In Proceedings of the Conference on
Truth and Trust Online (TTO).

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a large-scale dataset for fact extraction and
verification. In NAACL-HLT.

David Wadden, Kyle Lo, Lucy Lu Wang, Shanchuan
Lin, Madeleine van Zuylen, Arman Cohan, and Han-
naneh Hajishirzi. 2020. Fact or fiction: Verifying
scientific claims. Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

90

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the Conference of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL-HLT).

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold
Overwijk. 2020. Approximate nearest neighbor
negative contrastive learning for dense text retrieval.
arXiv preprint arXiv:2007.00808.

Takuma Yoneda, Jeff Mitchell, Johannes Welbl, Pon-
tus Stenetorp, and Sebastian Riedel. Ucl machine
reading group: Four factor framework for fact find-
ing (hexaf). In Proceedings of the First Workshop
on Fact Extraction and VERification (FEVER).

91

Proceedings of NAACL-HLT 2021: Demonstrations, pages 92–98
June 6–11, 2021. ©2021 Association for Computational Linguistics

Interactive Plot Manipulation using Natural Language

Yihan Wang, Yutong Shao and Ndapa Nakashole
Computer Science and Engineering
University of California, San Diego

La Jolla, CA 92093
yiw007@ucsd.edu,{yshao, nnakashole}@eng.ucsd.edu

Abstract
We present an interactive Plotting Agent, a
system that enables users to directly manipu-
late plots using natural language instructions
within an interactive programming environ-
ment. The Plotting Agent maps language
to plot updates. We formulate this problem
as a slot-based task-oriented dialog problem,
which we tackle with a sequence-to-sequence
model. This plotting model while accurate in
most cases, still makes errors, therefore, the
system allows a feedback mode, wherein the
user is presented with a top-k list of plots,
among which the user can pick the desired
one. From this kind of feedback, we can
then, in principle, continuously learn and im-
prove the system. Given that plotting is widely
used across data-driven fields, we believe our
demonstration will be of interest to both practi-
tioners such as data scientists broadly defined,
and researchers interested in natural language
interfaces.

1 Introduction

Motivation. Data can be utilized to improve out-
comes in many sectors, for example healthcare,
education, and business. However, when presented
in its raw form, it is difficult to derive insights from
data. Plotting is a simple yet powerful technique
for making raw data readable, and exposing trends.
Data plotting libraries, such as matplotlib, pro-
vide operations that enable users to visualize their
data. Such libraries support functionalities at dif-
ferent levels, from high-level, “change the X-axis
from linear to log scale”; to low-level “color this
screen pixel red”. However, novice users and
expert programmers alike may still find it time-
consuming to create plots of interest using these
libraries. We therefore propose an interactive nat-
ural language interface (NLI) for plotting, that en-
ables users to manipulate plots using natural lan-
guage. The interactive aspect allows complex plot-

Figure 1: Related to our work is a commercial product,
wolframalpha.com, which enables users to describe the
function they would like to visualize, in this example,
“plot the tangent to x2 at x = 3”. However, the user
has no control over the plotting details. In contrast, we
allow the user to use natural language to manipulate the
plot.

ting needs to be specified and refined in multiple
steps.

Prior Work. Previous work on NLIs for plotting
focused on enabling users to describe the data or
the mathematical function of interest. In contrast,
our approach enables users to directly manipulate
a plot. NLIs that focus on describing the data have
emerged from Human Computer Interaction (HCI)
and related areas (Gao et al., 2015; Setlur et al.,
2016; Srinivasan and Stasko, 2017; Yu and Silva,
2019; Sun et al., 2010). Thus the user poses queries
such as: “Show me medals for hockey and skat-
ing by country.” or “Is there a seasonal trend for
bike usage?”. The system retrieves the relevant
data, performs simple data analysis, and produces a
visualization. Commercial products such as wolfra-
malpha.com enable users to describe the function

92

they would like to visualize. By leveraging knowl-
edge of functions and mathematical procedures,
the system produces meaningful results for queries
such as: “plot the tangent to x2 at x = 3”, as shown
in Figure 1.

Our work is also related to conversational image
editing (Manuvinakurike et al., 2018b,a), which
yields results for queries such as “Can you fix the
glare on my dog’s eyes”. The key difference is that
our images are plots, and thus the manipulations
are different from those involving photo images.

Contributions and Demonstration Overview.
We present a Plotting Agent for matplotlib, a
popular Python plotting library. The Plotting Agent
provides users with various ways to manipulate
plots in an interactive programming environment,
Jupyter Notebooks.

Our demonstration allows the user to explore
the Plotting Agent in various ways: (1) Upload
custom data and interactively manipulating plots
on the uploaded data. (2) Work in a feedback mode,
wherein the user is presented with a top-k list of
plots, among which the user can pick the desired
one. (3) Operate in batch mode where a series of
instructions written in a file are loaded and executed
sequentially by the system.

(4) Have a personalized experience, wherein the
system learns user preferences, enabling them to
perform certain tasks faster.

In addition to the novel functionality, we also
build on ChartDialogs (Shao and Nakashole, 2020)
to enable other functionality.

(5) Generate synthetic data using on pre-defined
random data samplers from ChartDialogs , and
interactively manipulate plots on the synthetic data.

(6) Load existing dialogs from the ChartDialogs
dataset to observe the plot updates for each dialog
turn. The user can make further changes to the plot.

In all the above cases, the user can use differ-
ent lexical items and paraphrases to express the
same intent. This demonstrates the advantage of
our neural-based model compared to a system that
might rely on rules and dictionaries. We have pub-
licly released a live demo system1 and a screencast
showcasing the demo2.

1https://github.com/Bawerlacher/
Plotting_Agent

2https://youtu.be/a2D77JI7RVs

Figure 2: Model for mapping natural language inputs
to plot updates.

2 The Plotting Agent System

We cast the Plotting Agent problem as a slot-based,
task-oriented dialog problem. Each slot represents
a plot property, such as line color, marker size,
etc. Each plot type has different slots. However,
some slots are shared and apply to multiple plot
types. Consider the slot “X-axis scale”, which takes
the value “X-axis scale = log”, from the request
“change the x-axis scale from linear to log”. Since
the “X-axis scale” slot applies to the x-axis, it is
applicable to any plot type with an x-axis, such
as line chart, bar plot, or contour plot. Given the
slots and their values, we can generate a plot image
using matplotlib.

Model for Predicting Updates. Our model, de-
picted in Figure 2, for mapping natural language to
plot slots and slot values builds on the sequence-to-
sequence (seq2seq) framework (Sutskever et al.,
2014; Vinyals and Le, 2015). The input to
the model is a natural language request, a text-
representation of the current plot, the dialog his-
tory, formulated as a set of slot-value pairs, and
the current plot image3. The dialog history con-
sists of prior utterances, which are concatenated
and treated as the dialog history.

The model outputs the update needed to go
from the current set of slot-value pairs to the
new slot-value pairs. For example, if the cur-
rent slot-value pairs are {(‘line width’: ‘thin’),
(‘line color’: ‘black’)} and the new slot-value pairs
are {(‘line width’: ‘thin’), (‘line color’: ‘red’)}
after the user utterance that says “change the
line color to red”, then the corresponding update

3Our experiments showed that incorporating the plot image
did not improve model performance, thus plot images are
omitted in the model we present in this demo.

93

Top-k Exact Match
@1 0.61
@2 0.71
@3 0.74
@5 0.78
@10 0.78
@20 0.79

Table 1: Top-K exact match (EM) performance

(∆) that the model must predict is {(‘line color’:
‘red’)}. We output decoder predicts ∆ as a se-
quence.

Implementation and Training. The system is
implemented in Python and makes use of the Py-
torch library for neural network models. We use
a 2-layer Bi-LSTM for the text encoder and an-
other 2-layer Bi-LSTM for the decoder. We trained
the model on the ChartDialogs (Shao and Nakas-
hole, 2020) dataset which contains dialogs about
plots. The dataset was generated by pairs of hu-
mans, where one human plays the role of the user,
and the other plays the role of the agent. We use
the train/dev/test split provided.

3 System Evaluation

Exact Match. Table 1 shows performance in
terms of Exact Match (EM), a measure that re-
flects how accurate the model is at updating the
plots exactly as requested by the natural language
utterance. We show performance at top-k ranked
predictions, which are obtained from Beam Search.
Beam Search keeps track of the k most probable
partial predictions (hypotheses). A hypothesis has
a score which is its log probability. As can be seen
in Table 1, At k = 1, EM accuracy is only 61%.
However, for k = 5, EM accuracy is much higher
at 78%. We leveraged this fact, in the feedback
mode of our demo, where instead of just showing
the highest ranked plot, the top-k plots are shown,
and the user selects the one that best corresponds
to the intent of their utterance.

Runtime. Response times to utterances are on
average 0.3s on modest hardware. This is much
faster than using a Web search engine which might
involve time consuming tasks such as refining the
query multiple times and visiting community tuto-
rial websites such as StackOverflow to search for
similar questions that might have been answered.

4 Plotting Agent Demonstration

Interactive functionality is showcased within
Jupyter Notebooks.

Data points and Instructions. To generate a
plot, the following information must specified: the
data points to plot and the slot-value assignments
of the plot. The system therefore consists of two
parts: data loading and instruction delivery. For
data loading, the system supports uploading data
files or randomly sampling synthetic data using our
pre-defined data samplers. For instruction deliv-
ery, the system allows users to instruct the agent
interactively or to load instructions from existing
dialogs from our ChartDialogs dataset. In both
cases, the natural language input and the current
plot slot-value assignments (states) are fed into the
back-end model to predict a set of slot-value pairs
for plot updates.

4.1 Data Specification

Custom Data Upload. The user can upload a
csv file containing the data to visualize. For “clean”
csv files in which all the columns are to be plotted,
e.g. using the first column for X axis, the second
column for Y axis, etc., the data can be automat-
ically loaded without further specifications. For
more complex csv files, we also provide a more
detailed and customized data specification process.
If data loading is successful, the system will output
“Data loaded from the csv file!” Figure 3 shows
an example of uploading a csv file containing the
cumulative COVID-19 daily confirmed cases in the
United States until mid June 2020.

Synthetic Data. The user can generate data us-
ing our pre-defined data samplers for each plot type.
After the user specifies the plot type, the system
will invoke the corresponding data sampler to gen-
erate a group of data suitable for the given plot
type. An example of plotting with generated data
is shown in the Figure 4.

4.2 Plotting Intent Specification

Interactive Mode. The user can send instruc-
tions directly to the system using the interactive
interface. There are two kinds of instructions: spe-
cial commands and plot descriptions. Special com-
mands are instructions that refer to specific system
functionalities, such as “undo”, “redo”, “load csv”,
“plot”, etc. For example, “plot” will show the plot

94

Figure 3: Custom Data with Interactive Instruction Delivery: upload of COVID-19 USA confirmed cases, and one
instance of an interactive plot update.

image and “undo” will undo the last change to the
plot.

Any other natural language instructions that are
not in the special commands set are treated as plot
descriptions. A plot description will be fed to the
back-end model to predict the plot update, as de-
scribed above. An example of interactive instruc-
tion delivery is shown on the COVID-19 US daily
confirmed cases data, in Figure 3.

Prior Dialog Mode. In order to get a quick idea
of how the system works, the user can choose
to load a random dialog from the ChartDialogs
dataset. The system treats the utterances in each
dialog turn as a natural language instruction and
predicts the plot update. The user chooses if they
wish to view the updated plot step-by-step or only
to obtain the final resulting plot. After the system
processes all the dialog turns and shows the re-

sult, the user can continue to make further changes
to the plot properties through natural language in-
structions. An example of this use case is shown in
Figure 5.

Batch Mode. The user can also write their own
instructions in a file and send the file path to the
system. The system will read the instructions one
by one, update the plot correspondingly, and show
the final result.

4.3 User Feedback

Our plotting model while accurate inmost cases,
still makes errors, therefore, the system allows a
feedback mode, wherein the user is presented with
a top-k list of plots, among which the user can pick
the desired one. The top-k results are obtained from
Beam search used in our decoder in the architec-
ture shown in 2. At each step of the decoder, Beam

95

Figure 4: Synthetic Data: example plot of type pie chart generated from our pre-defined data samplers.

Figure 5: Prior Dialog: an example of executing a dialog taken from the ChartDialogs dataset.

search keeps track of the k most probable partial
results, where k is the beam size. As shown in Ta-
ble 1, the higher the value of k, the more likely it is
to have the correct plot presented to the user. From
this kind of feedback, we can then, in principle,
continuously learn and improve the system

4.4 Personalization

A useful system should be personalized to an indi-
vidual user. It should adapt to their unique goals,
context, or nuances of the types of visualizations
they like to produce. For example, the user can
request “change the font size to 16, and the line

96

Figure 6: Batch mode: an example of loading instructions from a file.

color to cyan”. But in a personalized form, the
user may simply state “fix the fonts and colors”,
in which case the agent relies on the user prior
preferences. Our demo includes a basic notion of
personalization.

5 Discussion

Primitive to Complex Plotting Intents. Interac-
tions with our current plotting agent are limited to
manipulating slots preprogrammed by the API de-
velopers of the plotting library, such as changing
the font size or the color of a particular item. Our
goal is to expand commands understood by the
plotting agent to include complex slots beyond the
API slots (e.g., by teaching the system to “shift the
legend so that it does not obscure important parts
of the plot” or “make the text labels of a scatter plot
to be aesthatically optimized”, or “change colors
to be colorblind friendly”.).

Limitations of Slot-based Representation.
The current demo system also has limitations
due to design choices guided by the goal of
task simplification. For example, some plot
components that are not easily formulated as

slot-value pairs are not supported. This is a
research question of representation, while the slot
based representation facilitates quick learning,
more expressive representations can resolve these
limitations.

6 Conclusion

In this paper, we introduced an interactive Plotting
Agent for mapping natural language instructions to
plot updates. The system supports various modes
for specifying data and instructing the agent to up-
date plots. Our interactive Plotting Agent is under
further research and development to improve its
language understanding capabilities, and to expand
its functionality to other plot components, and plot-
ting libraries. We hope the demo will be of interest
to both practitioners such as data scientists, and re-
searchers interested in natural language interfaces.

References
Tong Gao, Mira Dontcheva, Eytan Adar, Zhicheng Liu,

and Karrie G Karahalios. 2015. Datatone: Manag-
ing ambiguity in natural language interfaces for data
visualization. In Proceedings of the 28th Annual

97

ACM Symposium on User Interface Software & Tech-
nology, pages 489–500. ACM.

Ramesh Manuvinakurike, Trung Bui, Walter Chang,
and Kallirroi Georgila. 2018a. Conversational im-
age editing: Incremental intent identification in a
new dialogue task. In Proceedings of the 19th An-
nual SIGdial Meeting on Discourse and Dialogue,
pages 284–295.

Ramesh R. Manuvinakurike, Jacqueline Brixey, Trung
Bui, Walter Chang, Doo Soon Kim, Ron Artstein,
and Kallirroi Georgila. 2018b. Edit me: A corpus
and a framework for understanding natural language
image editing. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation, LREC 2018, Miyazaki, Japan, May 7-12,
2018.

Vidya Setlur, Sarah E Battersby, Melanie Tory, Rich
Gossweiler, and Angel X Chang. 2016. Eviza: A
natural language interface for visual analysis. In
Proceedings of the 29th Annual Symposium on User
Interface Software and Technology, pages 365–377.
ACM.

Yutong Shao and Ndapa Nakashole. 2020. ChartDi-
alogs: Plotting from Natural Language Instructions.
In ACL. Association for Computational Linguistics.

Arjun Srinivasan and John Stasko. 2017. Natural lan-
guage interfaces for data analysis with visualization:
Considering what has and could be asked. In Pro-
ceedings of the Eurographics/IEEE VGTC Confer-
ence on Visualization: Short Papers, pages 55–59.
Eurographics Association.

Yiwen Sun, Jason Leigh, Andrew E. Johnson, and
Sangyoon Lee. 2010. Articulate: A semi-automated
model for translating natural language queries into
meaningful visualizations. In Smart Graphics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing sys-
tems, pages 3104–3112.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. arXiv preprint arXiv:1506.05869.

Bowen Yu and Cláudio T Silva. 2019. Flowsense: A
natural language interface for visual data exploration
within a dataflow system. IEEE transactions on vi-
sualization and computer graphics.

98

Proceedings of NAACL-HLT 2021: Demonstrations, pages 99–105
June 6–11, 2021. ©2021 Association for Computational Linguistics

ActiveAnno: General-Purpose Document-Level Annotation Tool with
Active Learning Integration

Max Wiechmann, Seid Muhie Yimam, Chris Biemann
Language Technology group, Universität Hamburg, Germany

mail@maxwiechmann.de
{yimam,biemann}@informatik.uni-hamburg.de

Abstract

ACTIVEANNO is a novel annotation tool fo-
cused on document-level annotation tasks de-
veloped both for industry and research set-
tings. It is designed to be a general-purpose
tool with a wide variety of use cases. It fea-
tures a modern and responsive web UI for cre-
ating annotation projects, conducting annota-
tions, adjudicating disagreements, and analyz-
ing annotation results. ACTIVEANNO embeds
a highly configurable and interactive user inter-
face. The tool also integrates a RESTful API
that enables integration into other software sys-
tems, including an API for machine learning
integration. ACTIVEANNO is built with ex-
tensible design and easy deployment in mind,
all to enable users to perform annotation tasks
with high efficiency and high-quality annota-
tion results.

1 Introduction

Lots of tasks in industry and research require the
manual annotation of a potentially large number
of documents, for example in content analysis re-
search or supervised machine learning. Existing
tools, such as WebAnno (Yimam et al., 2013), al-
low for span-level annotation tasks like NER and
POS tagging. As Neves and Ševa (2019) point out
in their review of annotation tools, document-level
annotation is a feature missing in most existing
tools. ACTIVEANNO is a novel tool created to
fill this void. It was created based on five cen-
tral design goals: 1) Creating annotations of high
quality in an efficient manner (quality). 2) Sup-
port a broad range of use cases without any ad-
ditional programming effort (configurability). 3)
provide a good user experience through a mod-
ern, responsive web application to be more at-
tractive than specialized prototypes of annotation
software (responsiveness). 4) Publicly available
to extend for future use cases (open source). 5)
Provide APIs for easy integration into existing

software systems and easy deployment to mini-
mize the upfront effort for using ACTIVEANNO

(extensibility). Through this approach, we would
like to put forward ACTIVEANNO as a candidate
for the default option for document-level annota-
tion in industry and research.

2 Related Work

Neves and Ševa (2019) conducted an extensive re-
view of 78 annotation tools in total, comparing 15
which met their minimum criteria. Five of those
tools support document-level annotations: MAT,
MyMiner, tagtog, prodigy, and LightTag. MAT1

(Bayer, 2015) is designed for what they call the
“tag-a-little, learn-a-little (TALLAL) loop” to in-
crementally build up an annotation corpus, but it
is only a research prototype and is not ready to
be used in production. MyMiner (Salgado et al.,
2012) is an online-only tool without a login or user
system. Its main purpose is to classify scientific
documents in a biomedical context, which is lim-
ited in scope and configuration options and not suit-
able as a general-purpose tool. The tools tagtog2

(Cejuela et al., 2014), prodigy3, and LightTag 4 are
all feature-rich and support some form of machine
learning integration, but are commercial with either
no free version or a free version with limited func-
tionality. This makes these tools less accessible for
projects with limited monetary resources.

According to Neves and Ševa (2019), WebAnno
is the best tool fitting their criteria, however,
it does not support document-level annotations.
WebAnno is a notable example of an annotation
tool which is open-source, widely used and feature-
rich. We adapt some of the functionalities into our
ACTIVEANNO document-level annotation tool.

1http://mat-annotation.sourceforge.
net/

2https://www.tagtog.net/
3https://prodi.gy/
4https://www.lighttag.io/

99

Another annotation tool with limited sup-
port for document-level annotations is Doccano5

(Nakayama et al., 2018), though it is not mentioned
in the evaluation of Neves and Ševa. The open-
source tool currently supports three distinct anno-
tation tasks: text classification, sequence labeling,
and sequence to sequence tasks.

3 Architecture of ACTIVEANNO

Figure 1: The system architecture of ACTIVEANNO.

ACTIVEANNO is a client-server application as
depicted in Figure 1. On the server-side, the main
component is a backend service written in Kotlin
using the Ktor framework. The backend service
is stateless, allowing for horizontal scaling for ad-
vanced performance requirements. It is connected
to a MongoDB database that is used to store doc-
uments and annotation projects. There is also a
minimal authentication service written in Python
and Django, which provides a simple user man-
agement UI and the authentication mechanism of
JSON web token (JWT) that is used by the fron-
tend and backend components. The authentication
part is extracted into this service such that it can be
exchanged for an existing or a more sophisticated
user management service, if needed. Finally, the
frontend is written in Javascript using React, which
is served by an Nginx. All backend components
are deployed as Docker containers through existing
Docker Compose files. The communication be-
tween the client and server is done through HTTP
requests via the JSON format.
ACTIVEANNO documents: A document is repre-
sented as a JSON object with a textual field con-

5https://github.com/doccano/doccano

taining the document text, for example the text of
a tweet or the abstract of a paper. It can option-
ally have additional fields with meta data that can
also be displayed to support the annotation process.
Metadata examples include the date and username
for tweets, the authors and publication for papers,
or the number of stars for an app review. Docu-
ments are imported through the UI or API in the
JSON format and can be annotated for multiple
annotation projects afterward.
Annotation definitions: Annotation projects de-
fine an annotation task for one or more annota-
tion definitions. An annotation definition describes
the required type and form of the annotation that
should be created. The typical example is a tag set
annotation, where a document is annotated with
one or more predefined tags such as spam/no spam,
the sentiment or the topic classification of a text.
ACTIVEANNO also supports boolean, number, and
text annotations with various configuration options
such as minimum/maximum values.
Annotations and annotation results: For an an-
notation project, every document can be annotated
for every annotation definition of the annotation
project, resulting in one annotation per definition.
Together, all annotations for a document from a
single annotator form an annotation result. Every
annotation of the annotation result has a different
value structure depending on the type of annotation
definition. Additionally, every annotation value can
have an associated probability used in the context
of automatically generated annotations through the
machine learning integration.
Annotation process: ACTIVEANNO has a two-
step annotation process. In the first step, annota-
tion results are created. They can be created either
by annotators, annotation generators (see Section
4), or they can be imported through the import an-
notation API (see Section 3.2). After every new
annotation result, a finalization policy logic is ap-
plied to the document and its annotation results.
This logic decides if the annotation process is fin-
ished for the document and a final annotation result
exists. The logic is dependent on the project con-
figuration. The manager of a project can set the
number of annotators per document. This is the
minimum number of different annotators required
for each document until any additional logic is ap-
plied. For example, if the number of annotators
is set to three, every document will be shown to
the annotators until the document is annotated by
three users. One annotator can only annotate every

100

document once. After three annotation results were
created, the finalization policy is applied. Depend-
ing on the selected policy, the annotation results
will either be exported individually, or the annota-
tions are merged based on a majority calculation.
If no majority is observed, the document can ei-
ther be presented to an additional annotator until
a majority is reached, or to a curator to decide on
the correct annotation result. It is also possible to
always require a curator for use cases with very
high-quality requirements.

3.1 Web UI
ACTIVEANNO is a modern single-page and respon-
sive web application. It is fully localized, currently
supporting English and German. By using a persis-
tent web database, the application state and there-
fore the created annotations are automatically per-
sisted. A configurable role system allows for the
proper authorization of endpoints. The two main
roles are user and manager. A user can be an an-
notator or curator, a manager has the ability to edit
projects as well as analyze the results. There are
also the roles producer and consumer to allow the
protection of the API of ACTIVEANNO. Producers
are allowed to push data into ACTIVEANNO while
consumers are allowed to read the annotation re-
sults through the export API. Though slightly mod-
ified, the user roles were inspired by WebAnno’s
user management.

The web interface is composed of the login page,
a landing page and pages for annotation, curation,
and management. On the landing page, users can
see their areas of responsibility and switch the ap-
plication language. The manage page is for users
with the manager role, allowing them to create
and edit projects, annotation definitions, annotation
generators, and the analysis of annotation results.

Figure 2 (left) shows the UI (Mobile version) for
editing the basic properties of an example project,
like name and description. Besides, the other parts
of the manage project component allow configur-
ing the filter condition to query documents from
the database, defining which documents are rel-
evant for the project, as well as the field and or-
der of how to sort documents when querying the
database. Both the filter and sort inputs translate
to MongoDB queries. Additionally, the manager
of the project can configure the annotation schema,
which is composed of the annotation definitions
for the project. From this and the document map-
ping step, where the manager defines which part

Figure 2: Left: Edit project UI, Right: Annotation UI

(as JSON keys) of the imported documents are rel-
evant for the project, the layout for the annotation
task gets generated. The generated layout shows all
the metadata, the document text, and the annotation
definitions with default input types. Figure 2 (right)
shows an example layout for the annotation view
(Mobile version). Lastly, the manager can config-
ure how annotation results are able to be exported:
either through the REST API, webhooks, or both
(see Section 3.2 for the details of the API).

Figure 3 shows the annotation UI for a more
complex annotation task, in this case on a desktop
layout, with six annotation definitions of different
types, including Yes/No annotations, single and
multi-select tag set annotations (some displayed
as buttons, some as drop-down inputs), a number
annotation visualized as a slider, an extensible tag
input (where annotators select tags created by other
annotators or create their own), and an open text
input. After a manager created a project and docu-
ments are imported into ACTIVEANNO, the anno-
tators can annotate the documents according to the
project set up in the annotate subarea. Depending
on how the project is set up, the annotated docu-
ments might be checked and possibly overwritten
by a curator in the curation subarea. In the curation
UI, curators can see all previously created annota-
tion results. Curators have the authority to decide
if an annotation created by annotators is correct, to
provide a final verdict.

After annotation results are finalized, they can
be analyzed by the project managers. In addition
to accuracy, the inter-annotator agreement (simple
agreement with exact matching), as well as the
annotation duration is generated as charts in the
UI. There is also a table of individual documents,
showing the correctness of every annotator and

101

Figure 3: Complex annotation example

their agreements for the document. The UI has fil-
ter inputs to restrict analyzed annotation results by
annotator, date range, or more fine-grained filters.

3.2 Import and Export API

ACTIVEANNO provides multiple API endpoints to
enable automated document processing and inte-
gration into larger software systems. The import
document endpoint allows uploading any JSON
document or an array of JSON documents. Doc-
uments will be assigned a unique ID, stored in
the MongoDB, and the IDs will be returned to the
caller, so they can be used for future reference,
e.g. to export from ACTIVEANNO. The ID is also
used to import externally created annotations into
ACTIVEANNO for a specific project and document.
Imported annotations can be treated like any other
created annotation in the agreement process, or as
pre-annotations for human annotators.

Through a single export endpoint, annotation
results can be exported into other applications for
further processing. Through the GET parameters,
it can be filtered which annotation results will be

exported, for example, based on the timestamp or
document IDs. As an alternative to the export API,
every project can define a list of webhook URLs,
which will be called once a document is finalized.

4 Annotation Generator

The integration of machine learning and the ability
to automate parts of the annotation process are im-
portant to increase the efficiency of the annotation
process. The basis for automation is the ability to
automatically generate annotations without a hu-
man annotator. To generalize the concept and to
allow for other ways to automatically create an-
notations, ACTIVEANNO defines the concept of
annotation generators. An annotation generator
is anything capable of creating an annotation for a
specific annotation definition given a document and
potentially other previously generated annotations
for other annotation definitions. An annotation gen-
erator is defined through an abstract class with a
generateAnnotation method that every gen-
erator needs to implement. Every annotation gener-
ator also has to define what is the input to use for

102

the actual annotation generation. It can be any field
from the original document, or it can be any value
from another created annotation that is part of the
same annotation schema, allowing for chaining or
conditional connecting of annotation generators.

Currently, ACTIVEANNO has three inbuilt an-
notation generator implementations. The first one
automatically detects the language of the generator
input using the language detection library Lingua6.
This is an example of a statistical and rule-based
annotation generator as compared to a machine
learning-based generator. The second annotation
generator allows calling an external machine learn-
ing service through a URL for tag set annotation
definitions, which will take the response and map
it into the tag set options from the annotation defi-
nition. This can be used when an already trained
machine learning model exists. The model would
have to be wrapped by an HTTP API to comply
with the API definition of ACTIVEANNO for this
annotation generator. The API is structured to al-
low for multiple documents to be predicted at once.
The third annotation generator is similar to the sec-
ond one, but also supports automatically updating
the external machine learning model by sending an
HTTP request with the training data in the body.
To support this functionality, the concept of an up-
datable annotation generator exists. This kind of
generator extends the base annotation generator,
but also requires its subclasses to implement an
update method, where the training data will be
aggregated and used to train or update the anno-
tation generator. For this, updatable annotation
generators also need to define a threshold when
to start the training and when to update an exist-
ing model. For example, the first model should be
trained after 100 training samples are generated,
and then it should be updated for every 25 new
training samples. An updatable annotation gen-
erator is versioned with a version number and an
update state, to ensure the version is actually usable
to generate new annotations.

Annotation generators can be triggered to
generate/re-generate annotations for a project when
appropriate, and they can be triggered to update
themselves if they are updatable annotation gener-
ators and enough new training data is created to
allow for a model update.

6https://github.com/pemistahl/lingua

4.1 Machine Learning Integration
Once the annotation definitions and annotation gen-
erators are created and an external machine learn-
ing service is provided in compliance with the API
of ACTIVEANNO, the last step is to integrate the
machine learning module into ACTIVEANNO. For
this, a project has multiple configuration possibili-
ties. The first one is the handling policy of gener-
ated annotation results. This policy can be set to
use the generated annotations as pre-annotations
for the annotators. In this case, the annotations will
fill out or select the inputs in the annotation panel,
giving the annotators the option to just accept the
automatically generated annotations, which can
reduce the annotation effort. Alternatively, it is
possible to set the generator results to be treated
equally to an annotator where the results will be
included in the finalization logic.

The other important configuration is the sorting
policy. With regards to generated annotations, it is
possible to overwrite the normal sorting order of
the project. This can be set to prefer documents
with existing generated annotation results. In this
case, if only a subset of documents has received
their generated annotations at a point in time, they
will be preferred in sending them to the annotators.
This means that if pre-annotations are available,
they will always be shown before documents with-
out pre-annotations. The second option is to set
the sorting to active learning with uncertainty sam-
pling. This is used to support active learning, where
the documents with the lowest confidence values
associated with the generated annotations will be
preferred (see Section 4.2). We also have an alter-
native approach for machine learning integration
that relies on the import annotation API. Imported
annotations can be used instead of internally gener-
ated annotations. For updating a machine learning
model, the REST API or webhook support can be
used to get the final annotation results. In this case,
all the logic regarding how to extract the data and
when to update the model need to be implemented
externally. This approach might be more useful
if the required logic or process is vastly different
from the inbuilt annotation generator concept.

4.2 Active Learning Process
When there is no existing training data for an an-
notation definition, ACTIVEANNO can be used to
build up a training dataset based on active learning
with uncertainty sampling. The training data can
either be imported once at the start of the active

103

learning process or continuously, for example, if
the data comes from a news crawler or the Twitter
API. The active learning process would work as
follows: First, when there is no training data, doc-
uments get manually labeled by an annotator. If
a threshold of the annotation generator is reached,
triggering the update of the generator will result in
the training data being aggregated and sent to the
external service. Triggering the generate annota-
tions functionality (from the UI or via an API) will
result in the newly trained generator model that
will create predictions for all remaining documents
in the project. Afterwards, when the projects sort-
ing policy is set to active learning, the confidence
values from the newly generated annotations will
be used to sort the documents for annotation, those
with the lowest confidence being presented first.

This process can then be repeated until the ma-
chine learning model is performing well enough to
be partly or fully automated. This is similar to the
“tag-a-little, learn-a-little loop” from MAT (Bayer,
2015). If combined with enabling pre-annotations,
it is also very similar to the annotation process of
RapTAT (Gobbel et al., 2014). To partly automate
the process, the project has to be configured to treat
the generator as an annotator and to require one
annotator per document. Additionally, the configu-
ration option of the finalize condition has to be set
to some confidence threshold, for example, 80%.
Then, only the documents with a confidence value
below 80% will be required to be annotated further.
To fully automate the process, the finalize condition
should be set to always to accept the annotations
automatically without additional conditions.

5 Use Cases
ACTIVEANNO is designed to be applicable in many
settings, including industry and research; for small
projects on a local machine and large projects with
many users on the internet; for use cases with
and without machine learning components. We
have used ACTIVEANNO in two industry setups,
to test its suitability to collect real-world annota-
tion requirements. It was directly deployed on the
service cluster of a company, configured via envi-
ronment variables, and connected to the existing
system via its API with some small additions to
the existing software system to get documents into
ACTIVEANNO. For the machine learning integra-
tion, a small Python service wrapping fastText (Bo-
janowski et al., 2017) models was employed. The
data for the experiments were around 250,000 Ger-

man textual feedback comments obtained from a
retail context.

The first experiment was set up to analyze the ef-
fects of pre-annotations on annotation quality and
efficiency. Three annotation definitions, namely
spam/not spam, sentiment, and topic classification
were annotated by two annotators employed at the
company. One condition was provided without
pre-annotations while the other one was provided
with pre-annotations for all three annotation defini-
tions. The annotations were created by pre-trained
machine learning models that are integrated into
ACTIVEANNO through the annotation generator
and the machine learning-related APIs. Through
the analyze functionality of ACTIVEANNO, the
inter-annotator agreement (IAA), annotation dura-
tion, and the accuracy of annotators as well as the
machine learning models are compared inside the
tool. The final result showed a 28% faster anno-
tation without any change of annotation accuracy
or annotator agreement for the condition with pre-
annotations. ACTIVEANNO enabled the research
project itself while the annotators reported a posi-
tive user experience using the tool. They reported
that the tool is easy, fast, and convenient to use.

The second experiment explored the incremental
and active learning capabilities of ACTIVEANNO.
A new annotation definition about the utility (or in-
formation quality) of a comment with three classes
(useful, okay, spam) was created as it was a new
business requirement to create such annotations for
further aggregation and processing. During the ex-
periment, multiple new machine learning models
for different conditions were created by annotating
new comments inside ACTIVEANNO and trigger-
ing the automatic annotation generator updating
and re-annotating functionality. By additionally
enabling pre-annotations, annotators had reduced
effort for selecting the correct annotation option,
once the model had an acceptable level of accu-
racy. Selecting the best performing model based
on the experiment conditions then enables and im-
proves the regular annotation process of the com-
pany. Once the model performs well enough while
being used for pre-annotation, it could then be used
to partly automate the process as described by sim-
ply editing the project configuration.

Finally, as both experiments were conducted on
non-publicly available data, we created another
example project based on the OffensEval 2019
shared task (Zampieri et al., 2019), specifically
sub-task A. The task is directly integrated as an

104

example project in ACTIVEANNO, including a
machine learning component that can be updated
through ACTIVEANNO. Please refer to the demo7

and video8 to see this use case in action.

6 Conclusion and Future Work

ACTIVEANNO supports several mechanisms to pro-
duce high-quality annotations with an efficient an-
notation process, like the number of annotators
per document, a configurable agreement logic, cu-
rators, machine learning integration through an-
notation generators, pre-annotations, treating an-
notation generators as annotators, partly or fully
automating annotations, and updating annotation
generators with incremental or active learning. A
fully configurable annotation schema with anno-
tation definition types like tag sets, numbers and
texts, a modern and responsive web UI, as well as
flexible user management allows ACTIVEANNO

to be adaptable to many different kinds of anno-
tation process requirements. The RESTful API
and webhooks allow for easy integration with other
software components.

Future work planned is to add in-app feedback
between curators and annotators for improving an-
notator performance, adding more in-built annota-
tion generators for other types of annotation def-
initions, UI improvements (layout editor, better
display of very long documents) and span-level an-
notations as well as hybrid-level annotations which
can be defined either on a span or document level.

Most importantly, ACTIVEANNO was designed
with extensibility and flexibility in mind. It is avail-
able as open-source software under the MIT li-
cense.

References
Samuel Bayer. 2015. MITRE Annotation Toolkit

(MAT). http://mat-annotation.
sourceforge.net/.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Juan Miguel Cejuela, Peter McQuilton, Laura Ponting,
Steven J. Marygold, Raymund Stefancsik, Gillian H.

7Source code, documentation and the link to the demo
can be found here: https://github.com/MaxMello/
ActiveAnno

8Demo Video: https://youtu.be/ryCi4XeReDg

Millburn, Burkhard Rost, and the FlyBase Consor-
tium. 2014. tagtog: interactive and text-mining-
assisted annotation of gene mentions in PLOS full-
text articles. Database, 2014. Bau033.

Glenn T. Gobbel, Jennifer Garvin, Ruth Reeves,
Robert M. Cronin, Julia Heavirland, Jenifer
Williams, Allison Weaver, Shrimalini Jayaramaraja,
Dario Giuse, Theodore Speroff, Steven H. Brown,
Hua Xu, and Michael E. Matheny. 2014. Assisted
annotation of medical free text using RapTAT. Jour-
nal of the American Medical Informatics Associa-
tion, 21(5):833–841.

Hiroki Nakayama, Takahiro Kubo, Junya Kamura, Ya-
sufumi Taniguchi, and Xu Liang. 2018. doccano:
Text annotation tool for human. Software available
from https://github.com/doccano/doccano.

Mariana Neves and Jurica Ševa. 2019. An extensive
review of tools for manual annotation of documents.
Briefings in Bioinformatics, 22(1):146–163.

David Salgado, Martin Krallinger, Marc Depaule,
Elodie Drula, Ashish V. Tendulkar, Florian Leitner,
Alfonso Valencia, and Christophe Marcelle. 2012.
MyMiner: a web application for computer-assisted
biocuration and text annotation. Bioinformatics,
28(17):2285–2287.

Seid Muhie Yimam, Iryna Gurevych, Richard
Eckart de Castilho, and Chris Biemann. 2013.
WebAnno: A flexible, web-based and visually
supported system for distributed annotations. In
Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations, pages 1–6, Sofia, Bulgaria.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019. SemEval-2019 Task 6: Identifying and cat-
egorizing offensive language in social media (Offen-
sEval). In Proceedings of the 13th International
Workshop on Semantic Evaluation, pages 75–86,
Minneapolis, Minnesota, USA.

105

Proceedings of NAACL-HLT 2021: Demonstrations, pages 106–115
June 6–11, 2021. ©2021 Association for Computational Linguistics

TextEssence: A Tool for Interactive Analysis of
Semantic Shifts Between Corpora

Denis Newman-Griffis1 Venkatesh Sivaraman2 Adam Perer2
Eric Fosler-Lussier3 Harry Hochheiser1,4

1Department of Biomedical Informatics, University of Pittsburgh
2Human-Computer Interaction Institute, Carnegie Mellon University

3Department of Computer Science and Engineering, The Ohio State University
4Intelligent Systems Program, University of Pittsburgh

dnewmangriffis@pitt.edu vsivaram@andrew.cmu.edu

Abstract

Embeddings of words and concepts capture
syntactic and semantic regularities of lan-
guage; however, they have seen limited use as
tools to study characteristics of different cor-
pora and how they relate to one another. We
introduce TextEssence, an interactive system
designed to enable comparative analysis of cor-
pora using embeddings. TextEssence includes
visual, neighbor-based, and similarity-based
modes of embedding analysis in a lightweight,
web-based interface. We further propose a
new measure of embedding confidence based
on nearest neighborhood overlap, to assist in
identifying high-quality embeddings for cor-
pus analysis. A case study on COVID-19 sci-
entific literature illustrates the utility of the sys-
tem. TextEssence can be found at https:
//textessence.github.io.

1 Introduction

Distributional representations of language, such as
word and concept embeddings, provide powerful in-
put features for NLP models in part because of their
correlation with syntactic and semantic regularities
in language use (Boleda, 2020). However, the use
of embeddings as a lens to investigate those regu-
larities, and what they reveal about different text
corpora, has been fairly limited. Prior work using
embeddings to study language shifts, such as the
use of diachronic embeddings to measure seman-
tic change in specific words over time (Hamilton
et al., 2016; Schlechtweg et al., 2020), has focused
primarily on quantitative measurement of change,
rather than an interactive exploration of its quali-
tative aspects. On the other hand, prior work on
interactive analysis of text collections has focused
on analyzing individual corpora, rather than facili-
tating inter-corpus analysis (Liu et al., 2012; Weiss,
2014; Liu et al., 2019).

We introduce TextEssence, a novel tool that com-
bines the strengths of these prior lines of research

by enabling interactive comparative analysis of dif-
ferent text corpora. TextEssence provides a multi-
view web interface for users to explore the proper-
ties of and differences between multiple text cor-
pora, all leveraging the statistical correlations cap-
tured by distributional embeddings. TextEssence
can be used both for categorical analysis (i.e., com-
paring text of different genres or provenance) and
diachronic analysis (i.e., investigating the change
in a particular type of text over time).

Our paper makes the following contributions:

• We present TextEssence, a lightweight tool im-
plemented in Python and the Svelte JavaScript
framework, for interactive qualitative analysis
of word and concept embeddings.

• We introduce a novel measure of embedding
confidence to mitigate embedding instability
and quantify the reliability of individual em-
bedding results.

• We report on a case study using TextEssence
to investigate diachronic shifts in the scientific
literature related to COVID-19, and demon-
strate that TextEssence captures meaningful
month-to-month shifts in scientific discourse.

The remainder of the paper is organized as fol-
lows. §2 lays out the conceptual background be-
hind TextEssence and its utility as a corpus analy-
sis tool. In §3 and §4, we describe the nearest-
neighbor analysis and user interface built into
TextEssence. §5 describes our case study on scien-
tific literature related to COVID-19, and §6 high-
lights key directions for future research.

2 Background

Computational analysis of text corpora can act as
a lens into the social and cultural context in which
those corpora were produced (Nguyen et al., 2020).
Diachronic word embeddings have been shown to
reflect important context behind the corpora they

106

are trained on, such as cultural shifts (Kulkarni
et al., 2015; Hamilton et al., 2016; Garg et al.,
2018), world events (Kutuzov et al., 2018), and
changes in scientific and professional practice (Vy-
lomova et al., 2019). However, these analyses have
proceeded independently of work on interactive
tools for exploring embeddings, which are typically
limited to visual projections (Zhordaniya et al.;
Warmerdam et al., 2020). TextEssence combines
these directions into a single general-purpose tool
for interactively studying differences between any
set of corpora, whether categorical or diachronic.

2.1 From words to domain concepts
When corpora of interest are drawn from special-
ized domains, such as medicine, it is often nec-
essary to shift analysis from individual words to
domain concepts, which serve to reify the shared
knowledge that underpins discourse within these
communities. Reified domain concepts may be re-
ferred to by multi-word surface forms (e.g., “Lou
Gehrig’s disease”) and multiple distinct surface
forms (e.g., “Lou Gehrig’s disease” and “amy-
otrophic lateral sclerosis”), making them more se-
mantically powerful but also posing distinct chal-
lenges from traditional word-level representations.

A variety of embedding algorithms have been
developed for learning representations of domain
concepts and real-world entities from text, includ-
ing weakly-supervised methods requiring only a
terminology (Newman-Griffis et al., 2018); meth-
ods using pre-trained NER models for noisy anno-
tation (De Vine et al., 2014; Chen et al., 2020); and
methods leveraging explicit annotations of concept
mentions (as in Wikipedia) (Yamada et al., 2020).1

These algorithms capture valuable patterns about
concept types and relationships that can inform
corpus analysis (Runge and Hovy, 2020).

TextEssence only requires pre-trained embed-
dings as input, so it can accommodate any embed-
ding algorithm suiting the needs and characteris-
tics of specific corpora (e.g. availability of annota-
tions or knowledge graph resources). Furthermore,
while the remainder of this paper primarily refers
to concepts, TextEssence can easily be used for
word-level embeddings in addition to concepts.

2.2 Why static embeddings?
Contextualized, language model-based embed-
dings can provide more discriminative features for

1The significant literature on learning embeddings from
knowledge graph structure is omitted here for brevity.

NLP than static (i.e., non-contextualized) embed-
dings. However, static embeddings have several
advantages for this comparative use case. First,
they are less resource-intensive than contextualized
models, and can be efficiently trained several times
without pre-training to focus entirely on the char-
acteristics of a given corpus. Second, the scope
of what static embedding methods are able to cap-
ture from a given corpus has been well-established
in the literature, but is an area of current investi-
gation for contextualized models (Jawahar et al.,
2019; Zhao and Bethard, 2020). Finally, the na-
ture of contextualized representations makes them
best suited for context-sensitive tasks, while static
embeddings capture aggregate patterns that lend
themselves to corpus-level analysis. Nevertheless,
as work on qualitative and visual analysis of con-
textualized models grows (Hoover et al., 2020),
new opportunities for comparative analysis of local
contexts will provide fascinating future research.

3 Identifying Stable Embeddings for
Analysis

While embeddings are a well-established means
of capturing syntax and semantics from natural
language text (Boleda, 2020), the problem of com-
paring multiple sets of embeddings remains an ac-
tive area of research. The typical approach is to
consider the nearest neighbors of specific points,
consistent with the “similar items have similar rep-
resentations” intuition of embeddings. This method
also avoids the conceptual difficulties and low repli-
cability of comparing embedding spaces numer-
ically (e.g. by cosine distances) (Gonen et al.,
2020). However, even nearest neighborhoods are
often unstable, and vary dramatically across runs
of the same embedding algorithm on the same cor-
pus (Wendlandt et al., 2018; Antoniak and Mimno,
2018). In a setting such as our case study, the rela-
tively small sub-corpora we use (typically less than
100 million tokens each) exacerbate this instability.
Therefore, to quantify variation across embedding
replicates and identify informative concepts, we
introduce a measure of embedding confidence.2

We define embedding confidence as the mean
overlap between the top k nearest neighbors of a

2An embedding replicate here refers to the embedding
matrix output by running a specific embedding training al-
gorithm on a specific corpus. Ten runs of word2vec on a
given Wikipedia dump produce ten replicates; using different
Wikipedia dumps would produce one replicate each of ten
different sets of embeddings.

107

Nearest Neighbors

3x Replicates

dry cough
sneezing

fever

“rhinitis” Neighbors

Confidences

rhinitis

fever

0.56

0.7
...

Overlap Analysis

70076002 Rhinitis

dry cough
sneezing

fever

“rhinitis” Neighbors
dry cough

fever
nausea

“rhinitis” Neighbors

dry cough
sneezing

fever

“rhinitis” Neighbors
shivering
nausea

dry cough

“rhinitis” Neighbors
3
2()

Replicate A Replicate B

Average

0.560.33

0.66

dry cough
fever

nausea

“rhinitis” Neighbors
shivering
nausea

dry cough

“rhinitis” Neighbors

0.66

Figure 1: Illustration of embedding confidence calculation, using 3 embedding replicates. Our experiments on
CORD-19 used this same process with 10 replicates.

given item between multiple embedding replicates.
Formally, let E1 . . . Em be m embedding repli-
cates trained on a given corpus, and let kNNi(c) be
the set of k nearest neighbors by cosine similarity
of concept c in replicate Ei. Then, the embedding
confidence EC@k is defined as:

EC@k(c, E1 . . . Em) =

1

m(m− 1)

m∑

i

∑

j 6=i

∣∣kNN i(c) ∩ kNN j(c)
∣∣

k

An example of this calculation is illustrated in Fig-
ure 1.

We can then define the set of high-confidence
concepts for the given corpus as the set of all con-
cepts with an embedding confidence above a given
threshold. A higher threshold will restrict to highly-
stable concepts only, but exclude the majority of
embeddings. We recommend an initial threshold
of 0.5, which can be configured based on observed
quality of the filtered embeddings.

3.1 Computing aggregate nearest neighbors

After filtering for high-confidence concepts, we
summarize nearest neighbors across replicates by
computing aggregate nearest neighbors. The ag-
gregate neighbor set of a concept c is the set of
high-confidence concepts with highest average co-
sine similarity to c over the embedding replicates.
More precisely, let Di(c) be the vector of pairwise
similarities between concept c and all concepts in
the embedding vocabulary,3 as calculated in repli-
cate Ei. Then, we calculate the aggregate pairwise

3All embedding replicates trained on a given corpus will
share the same vocabulary.

distance vector for c as:

DAgg(c) =
1

m

m∑

i

Di(c)

The k aggregate nearest neighbors of c,
kNNAgg(c), are then the k concepts with
lowest values in DAgg(c). This helps to provide
a more reliable picture of the concept’s nearest
neighbors, while excluding concepts whose
neighbor sets are uncertain.

4 The TextEssence Interface

The workflow for using TextEssence to compare
different corpora is illustrated in Figure 2. Given
the set of corpora to compare, the user (1) trains
embedding replicates on each corpus; (2) identifies
the high-confidence set of embeddings for each cor-
pus; and (3) provides these as input to TextEssence.
TextEssence then offers three modalities for inter-
actively exploring their learned representations: (1)
Browse, an interactive visualization of the embed-
ding space; (2) Inspect, a detailed comparison of a
given concept’s neighbor sets across corpora; and
(3) Compare, a tool for analyzing the pairwise rela-
tionships between two or more concepts.

4.1 Browse: visualizing embedding changes
The first interface presented to the user is an
overview visualization of one of the embedding
spaces, projected into 2-D using t-distributed
Stochastic Neighbor Embedding (t-SNE) (van der
Maaten and Hinton, 2008). High-confidence con-
cepts are depicted as points in a scatter plot and may
be color-coded based on pre-existing groupings; for
example, in our case study (§5), we color-coded

108

Choose a
point of
interest

Choose
a second
point for

comparison

Choose different
corpus to view

Link between
neighbors

Change
comparison point

InspectBrowse Compare

Text
Essence

Figure 2: Workflow for comparing corpus embeddings with TextEssence. The system enables three different kinds
of interactions: (1) Browse the embedding space for each corpus; (2) Inspect a single concept in each corpus; and
(3) Compare two or more concepts across corpora. Each view transitions to the others using the current concept.

medical concepts based on their semantic groups in
the UMLS (McCray et al., 2001), such as “Chemi-
cals & Drugs” and “Disorders.” The user can select
a point to highlight its aggregated nearest neighbors
in the high-dimensional space, an interaction simi-
lar to TensorFlow’s Embedding Projector (Smilkov
et al., 2016) that helps distinguish true neighbors
from artifacts of the dimensionality reduction pro-
cess.

The Browse interface also expands upon exist-
ing dimensionality reduction tools by enabling vi-
sual comparison of multiple corpora (e.g., embed-
dings from individual months). This is challenging
because the embedding spaces are trained sepa-
rately, and can therefore differ greatly in both high-
dimensional and reduced representations. While
previous work on comparing projected data has fo-
cused on algorithmically aligning projections (Liu
et al., 2020; Chen et al., 2018) and adding new
comparison-focused visualizations (Cutura et al.,
2020), we chose to align the projections using a
simple Procrustes transformation and enable the
user to compare them using animation.

When the user hovers on a corpus thumbnail, pre-

view lines are shown between the positions of each
concept in the current and destination corpora. The
direction of each line is disambiguated by increas-
ing its width as the line approaches its destination.
In addition, the width and opacity of each point’s
preview line are proportional to the fraction of the
point’s aggregate nearest neighbors that differ be-
tween the source and destination corpora. This
serves to draw attention to the concepts that shift
the most. Upon clicking the corpus thumbnail, the
points smoothly follow their trajectory lines to form
the destination plot. In addition, when a concept is
selected, the user can opt to center the visualization
on that point and then transition between corpora,
revealing how neighboring concepts move relative
to the selected one.

4.2 Inspect: tracking individual concept
change

Once a particular concept of interest has been
identified, the Inspect view presents an interac-
tive table depicting how that concept’s aggregated
nearest neighbors have changed over time. This
view also displays other contextualizing informa-

109

Figure 3: Similarity over time of two drugs to
116568000 Dexamethasone in our case study. April,
August, and October are omitted as Dexamethasone
was not high confidence for these months. Similarity
values are mean over embedding replicates within each
month; error bars indicate standard deviations.

tion about the concept, including its definitions
(derived from the UMLS (Bodenreider, 2004) for
our case study4), the terms used to refer to the con-
cept (limited to SNOMED CT for our case study),
and a visualization of the concept’s embedding con-
fidence over the sub-corpora analyzed. For infor-
mation completeness, we display nearest neighbors
from every corpus analyzed, even in corpora where
the concept was not designated high-confidence
(note that a concept must be high-confidence in at
least one corpus to be selectable in the interface).
In these cases, a warning is shown that the con-
cept itself is not high-confidence in that corpus; the
neighbors themselves are still exclusively drawn
from the high-confidence set.

4.3 Compare: tracking pair similarity

The Compare view facilitates analysis of the chang-
ing relationship between two or more concepts
across corpora (e.g. from month to month). This
view displays paired nearest neighbor tables, one
per corpus, showing the aggregate nearest neigh-
bors of each of the concepts being compared. An
adjacent line graph depicts the similarity between
the concepts in each corpus, with one concept spec-
ified as the reference item and the others serving as
comparison items (similar to Figure 3). Similarity
between two concepts for a specific corpus is cal-
culated by averaging the cosine similarity between
the corresponding embeddings in each replicate.

4We included definitions from all English-language
sources in the UMLS, as SNOMED CT includes definitions
only for a small subset of concepts.

Month Docs Words Entities Hi-Conf.

March 41,750 158M 38,451 15,100
April 10,738 41M 25,142 1,851
May 73,444 125M 40,297 5,051
June 24,813 34M 19,749 2,729
July 24,786 35M 19,334 2,800
August 28,642 31M 19,134 2,407
September 33,732 38M 20,947 4,381
October 38,866 44M 21,470 1,990

Table 1: 2020 monthly snapshots of CORD-19 dataset
(documents added each month only; not cumulative).
Entities denotes the number of SNOMED CT codes for
which embeddings were learned; Hi-Conf. is the sub-
set of these that had confidence above the 0.5 thresh-
old. The high document count in March 2020 included
all COVID-19 literature published prior to March 13,
2020 (beginning of CORD-19 dataset); the spike in
May 2020 was due to adding arXiv and Medline as data
sources for CORD-19.

5 Case Study: Diachronic Change in
CORD-19

The scale of global COVID-19-related research has
led to an unprecedented rate of new scientific find-
ings, including developing understanding of the
complex relationships between drugs, symptoms,
comorbidities, and health outcomes for COVID-19
patients. We used TextEssence to study how the
contexts of medical concepts in COVID-19-related
scientific literature have changed over time. Ta-
ble 1 shows the number of new articles indexed in
the COVID-19 Open Research Dataset (CORD-19;
Wang et al. (2020a)) from its beginning in March
2020 to the end of October 2020; while additions
of new sources over time led to occasional jumps
in corpus volumes, all are sufficiently large for em-
bedding training. We created disjoint sub-corpora
containing the new articles indexed in CORD-19
each month for our case study.

CORD-19 monthly corpora were tokenized us-
ing ScispaCy (Neumann et al., 2019), and con-
cept embeddings were trained using JET (Newman-
Griffis et al., 2018), a weakly-supervised concept
embedding method that does not require explicit
corpus annotations. We used SNOMED Clinical
Terms (SNOMED CT), a widely-used reference
representing concepts used in clinical reporting, as
our terminology for concept embedding training,
using the March 2020 interim release of SNOMED
CT International Edition, which included COVID-
19 concepts. We trained JET embeddings using a
vector dimensionality d = 100 and 10 iterations,

110

to reflect the relatively small size of each corpus.
We used 10 replicates per monthly corpus, and a
high-confidence threshold of 0.5 for EC@5.

5.1 Findings

TextEssence captures a number of shifts in CORD-
19 that reflect how COVID-19 science has devel-
oped over the course of the pandemic. Table 2
highlights key findings from our preliminary inves-
tigation into concepts known a priori to be relevant.
Please note that while full nearest neighbor tables
are omitted due to space limitations, they can be
accessed by downloading our code and following
the included guide to inspect CORD-19 results.

44169009 Anosmia While associations of anos-
mia (loss of sense of smell) were observed early in
the pandemic (e.g., Hornuss et al. (2020), posted in
May 2020), it took time to begin to be utilized as
a diagnostic variable (Talavera et al., 2020; Wells
et al., 2020). Anosmia’s nearest neighbors reflect
this, staying stably in the region of other otolaryn-
gological concepts until October (when Talavera
et al. (2020); Wells et al. (2020), inter alia were in-
cluded in CORD-19), where we observe a marked
shift in utilization to play a similar role to other
common symptoms of COVID-19.

116568000 Dexamethasone The corticosteroid
dexamethasone was recognized early as valuable
for treating severe COVID-19 symptoms (Lester
et al. (2020), indexed July 2020), and its role has
remained stable since (Ahmed and Hassan (2020),
indexed October 2020). This is reflected in the
shift of its nearest neighbors from prior contexts
of traumatic brain injury (Moll et al., 2020) to
a stable neighborhood of other drugs used for
COVID-19 symptoms. However, in September
2020, 702806008 Ruxolitinib emerges as Dexam-
ethasone’s nearest neighbor. This reflects a spike
in literature investigating the use of ruxolitinib for
severe COVID-19 symptom management (Gozzetti
et al., 2020; Spadea et al., 2020; Li and Liu, 2020).
As the similarity graph in Figure 3 shows, the
contextual similarity between dexamethasone and
ruxolitinib steadily increases over time, reflecting
the growing recognition of ruxolitinib’s new utility
(Caocci and La Nasa (2020), indexed May 2020).

83490000 Hydroxychloroquine Hydroxychloro-
quine, an anti-malarial drug, was misleadingly pro-
moted as a potential treatment for COVID-19 by
President Trump in March, May, and July 2020,
leading to widespread misuse of the drug (Englund

Concept Month(s) Representative neighbors

44169009
Anosmia

Mar-Sep 2553606007 Gustatory
51388003 Pharyngeal pain
60707004 Taste

Oct 15387003 Vomiting
73879007 Nausea
49727002 Cough

116568000
Dexametha-
sone

Mar 19130008 Injury
417746004 Traumatic
injury

May-Jul 116602009 Prednisone
108675009 Infliximab

Sep 702806008 Ruxolitinib

83490000
Hydrox-
ychloro-
quine

All 80229008 Antimalarial agent
96034006 Azithromycin

Aug 198051006 Nosocomial
infection
233765002 Respiratory fail-
ure without hypercapnia

Table 2: Representative nearest neighbors (manually
selected from top 10) for three concepts in CORD-19,
grouped by period of observation. Complete nearest
neighbor tables are omitted for brevity, but may be
viewed using our released code and data.

et al., 2020). As a result, a number of studies re-
investigated the efficacy of hydroxychloroquine as
a treatment for COVID-19 in hospitalized patients
(Ip et al. (2020); Albani et al. (2020); Rahmani
et al. (2020), all indexed August 2020). This shift
is reflected in the neighbors of Hydroxychloroquine,
adding investigative outcomes such as nosocomial
(hospital-acquired) infections and respiratory fail-
ure to the expected anti-malarial neighbors.

6 Discussion

Our case study on scientific literature related to
COVID-19 demonstrates that TextEssence can be
used to study diachronic shifts in usage of domain
concepts. We highlight three directions for future
work using TextEssence: mining for new shifts and
associations in changing literature (§6.1); appli-
cations between comparative analysis of corpora
(§6.2); and further investigation of embedding con-
fidence as a tool for analysis (§6.3).

6.1 Mining shifts in the literature

While our primary focus in developing TextEssence
was on its use as a qualitative tool for targeted

111

inquiry, diachronic embeddings have significant
potential for knowledge discovery through quan-
titative measurement of semantic differences. For
example, new embeddings could be generated for
subsequent months of CORD-19 (or other corpora),
and analyzed to determine what concepts shifted
the most—indicating current trends—or what con-
cepts are just starting to shift—suggesting potential
future developments.

However, quantitative, vector-based comparison
of embedding spaces faces significant conceptual
challenges, such as a lack of appropriate alignment
objectives and empirical instability (Gonen et al.,
2020). While nearest neighbor-based change mea-
surement has been proposed (Newman-Griffis and
Fosler-Lussier, 2019; Gonen et al., 2020), its effi-
cacy for small corpora with limited vocabularies
remains to be determined. Our novel embedding
confidence measure offers a step in this direction
(see §6.3 for further discussion), but further re-
search is needed.

6.2 Other applications of TextEssence

A previous study on medical records (Newman-
Griffis and Fosler-Lussier, 2019) showed that the
technologies behind TextEssence can be used for
categorical comparison as well as analysis of tem-
poral shifts. More broadly, the use of TextEssence
is not limited to comparison of text corpora alone.
In settings where multiple embedding strategies are
available, such as learning representations of do-
main concepts from text sources (Beam et al., 2020;
Chen et al., 2020), knowledge graphs (Grover and
Leskovec, 2016), or both (Yamada et al., 2020;
Wang et al., 2020b), TextEssence can be used to
study the different regularities captured by compet-
ing algorithms, providing insight into the utility of
different approaches. TextEssence also can func-
tion as a tool for studying the properties of different
terminologies for domain concepts, something not
previously explored in the computational literature.

In addition, the TextEssence interface can pro-
vide utility for other types of analyses as well. For
example, the Inspect and Compare portions of the
interface could be used to interact with topic mod-
els learned from different corpora. These compo-
nents are largely agnostic to the nature of the un-
derlying data, and could be extended for studying
a variety of different types of NLP models.

6.3 Confidence estimation in embedding
analysis

The relatively constrained size of corpora in our
analysis motivated our novel embedding confi-
dence measure, to help separate differences due
to random effects in embedding training from dif-
ferences in concept usage patterns. We used a
fixed confidence threshold for our analyses; how-
ever, increasing or decreasing the threshold for
high-confidence embeddings will affect both the
set of reported neighbors and the visualization of
the embedding space, and can inform the user
of TextEssence which observations are more or
less stable. We highlight varying this threshold
as an important area for future investigation with
TextEssence.

More broadly, prior work by Wendlandt et al.
(2018), Antoniak and Mimno (2018), and Gonen
et al. (2020), among others, has also shown embed-
ding stability to be a concern in models trained on
larger corpora than those used in this work. How-
ever, the role of random embedding effects on pre-
vious qualitative studies using word embeddings
(e.g., Kulkarni et al. (2015), Hamilton et al. (2016))
has not been evaluated. A broader investigation of
embedding confidence measures in qualitative stud-
ies will be invaluable in the continued development
of embedding technologies as a tool for linguistics
research.

7 Conclusion

TextEssence is an interactive tool for comparative
analysis of word and concept embeddings. Our
implementation and experimental code is avail-
able at https://github.com/drgriffis/
text-essence, and the database derived from
our CORD-19 analysis is available at https://
doi.org/10.5281/zenodo.4432958. A
screencast of TextEssence in action is available
at https://youtu.be/1xEEfsMwL0k. All
associated resources for TextEssence may be found
at https://textessence.github.io.

Acknowledgments

This work made use of computational resources
generously provided by the Ohio Supercomputer
Center (Ohio Supercomputer Center, 1987) in sup-
port of COVID-19 research. The research reported
in this publication was supported in part by the Na-
tional Library of Medicine of the National Institutes
of Health under award number T15 LM007059.

112

References
Mukhtar H Ahmed and Arez Hassan. 2020. Dexam-

ethasone for the Treatment of Coronavirus Disease
(COVID-19): a Review. SN Comprehensive Clini-
cal Medicine, 2(12):2637–2646.

Filippo Albani, Federica Fusina, Alessia Giovannini,
Pierluigi Ferretti, Anna Granato, Chiara Prezioso,
Danilo Divizia, Alessandra Sabaini, Marco Marri,
Elena Malpetti, and Giuseppe Natalini. 2020. Im-
pact of Azithromycin and/or Hydroxychloroquine
on Hospital Mortality in COVID-19. Journal of clin-
ical medicine, 9(9).

Maria Antoniak and David Mimno. 2018. Evaluating
the Stability of Embedding-based Word Similarities.
Transactions of the Association for Computational
Linguistics, 6:107–119.

Andrew L Beam, Benjamin Kompa, Allen Schmaltz,
Inbar Fried, Griffin Weber, Nathan Palmer, Xu Shi,
Tianxi Cai, and Isaac S Kohane. 2020. Clinical Con-
cept Embeddings Learned from Massive Sources of
Multimodal Medical Data. Pacific Symposium on
Biocomputing. Pacific Symposium on Biocomputing,
25:295–306.

Olivier Bodenreider. 2004. The Unified Med-
ical Language System (UMLS): integrating
biomedical terminology. Nucleic Acids Research,
32(90001):D267–D270.

Gemma Boleda. 2020. Distributional Semantics and
Linguistic Theory. Annual Review of Linguistics,
6(1):213–234.

Giovanni Caocci and Giorgio La Nasa. 2020. Could
ruxolitinib be effective in patients with COVID-19
infection at risk of acute respiratory distress syn-
drome (ARDS)?

Juntian Chen, Yubo Tao, and Hai Lin. 2018. Visual
exploration and comparison of word embeddings.
Journal of Visual Languages & Computing, 48:178
– 186.

Qingyu Chen, Kyubum Lee, Shankai Yan, Sun Kim,
Chih-Hsuan Wei, and Zhiyong Lu. 2020. BioCon-
ceptVec: Creating and evaluating literature-based
biomedical concept embeddings on a large scale.
PLOS Computational Biology, 16(4):e1007617.

Rene Cutura, Michaël Aupetit, Jean-Daniel Fekete, and
Michael Sedlmair. 2020. Comparing and explor-
ing high-dimensional data with dimensionality re-
duction algorithms and matrix visualizations. In
Proceedings of the International Conference on Ad-
vanced Visual Interfaces, AVI ’20, New York, NY,
USA. Association for Computing Machinery.

Lance De Vine, Guido Zuccon, Bevan Koopman, Lau-
rianne Sitbon, and Peter Bruza. 2014. Medical se-
mantic similarity with a neural language model. In
Proceedings of the 23rd ACM International Confer-
ence on Information and Knowledge Management -

CIKM ’14, CIKM ’14, pages 1819–1822, Shanghai,
China. ACM.

Tessa R Englund, Alan C Kinlaw, and Saira Z Sheikh.
2020. Rise and Fall: Hydroxychloroquine and
COVID-19 Global Trends: Interest, Political In-
fluence, and Potential Implications. ACR Open
Rheumatology, 2(12):760–766.

Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and
James Zou. 2018. Word embeddings quantify
100 years of gender and ethnic stereotypes. Pro-
ceedings of the National Academy of Sciences,
115(16):E3635—-E3644.

Hila Gonen, Ganesh Jawahar, Djamé Seddah, and Yoav
Goldberg. 2020. Simple, Interpretable and Stable
Method for Detecting Words with Usage Change
across Corpora. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 538–555, Online. Association for
Computational Linguistics.

Alessandro Gozzetti, Enrico Capochiani, and Monica
Bocchia. 2020. The Janus kinase 1/2 inhibitor rux-
olitinib in COVID-19.

Aditya Grover and Jure Leskovec. 2016. Node2Vec:
Scalable Feature Learning for Networks. In Pro-
ceedings of the 22Nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, KDD ’16, pages 855–864, New York, NY, USA.
ACM.

William L. Hamilton, Jure Leskovec, and Dan Jurafsky.
2016. Diachronic Word Embeddings Reveal Statisti-
cal Laws of Semantic Change. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1489–1501, Berlin, Germany. Association for Com-
putational Linguistics.

Benjamin Hoover, Hendrik Strobelt, and Sebastian
Gehrmann. 2020. exBERT: A Visual Analysis Tool
to Explore Learned Representations in Transformer
Models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 187–196, Online. As-
sociation for Computational Linguistics.

Daniel Hornuss, Berit Lange, Nils Schröter, Siegbert
Rieg, Winfried V Kern, and Dirk Wagner. 2020.
Anosmia in COVID-19 patients. medRxiv, page
2020.04.28.20083311.

Andrew Ip, Donald A Berry, Eric Hansen, An-
dre H Goy, Andrew L Pecora, Brittany A Sinclaire,
Urszula Bednarz, Michael Marafelias, Scott M
Berry, Nicholas S Berry, Shivam Mathura, Ihor S
Sawczuk, Noa Biran, Ronaldo C Go, Steven Sper-
ber, Julia A Piwoz, Bindu Balani, Cristina Cicogna,
Rani Sebti, Jerry Zuckerman, Keith M Rose, Lisa
Tank, Laurie G Jacobs, Jason Korcak, Sarah L
Timmapuri, Joseph P Underwood, Gregory Sugalski,
Carol Barsky, Daniel W Varga, Arif Asif, Joseph C

113

Landolfi, and Stuart L Goldberg. 2020. Hydrox-
ychloroquine and tocilizumab therapy in COVID-
19 patients-An observational study. PloS one,
15(8):e0237693.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What Does BERT Learn about the Structure
of Language? In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3651–3657, Florence, Italy. Associa-
tion for Computational Linguistics.

Vivek Kulkarni, Rami Al-Rfou, Bryan Perozzi, and
Steven Skiena. 2015. Statistically Significant De-
tection of Linguistic Change. In Proceedings of the
24th International Conference on World Wide Web,
WWW ’15, pages 625–635, Republic and Canton of
Geneva, CHE. International World Wide Web Con-
ferences Steering Committee.

Andrey Kutuzov, Lilja Øvrelid, Terrence Szymanski,
and Erik Velldal. 2018. Diachronic word embed-
dings and semantic shifts: a survey. In Proceedings
of the 27th International Conference on Computa-
tional Linguistics, pages 1384–1397, Santa Fe, New
Mexico, USA. Association for Computational Lin-
guistics.

Mohammed Lester, Ali Sahin, and Ali Pasyar. 2020.
The use of dexamethasone in the treatment of
COVID-19. Annals of Medicine and Surgery,
56:218–219.

Hailan Li and Huaping Liu. 2020. Whether the timing
of patient randomization interferes with the assess-
ment of the efficacy of ruxolitinib for severe COVID-
19. Journal of Allergy and Clinical Immunology,
146(6):1453.

S Liu, X Wang, C Collins, W Dou, F Ouyang, M El-
Assady, L Jiang, and D A Keim. 2019. Bridging
Text Visualization and Mining: A Task-Driven Sur-
vey. IEEE Transactions on Visualization and Com-
puter Graphics, 25(7):2482–2504.

Shixia Liu, Michelle X Zhou, Shimei Pan, Yangqiu
Song, Weihong Qian, Weijia Cai, and Xiaoxiao Lian.
2012. Tiara: Interactive, topic-based visual text
summarization and analysis. ACM Transactions on
Intelligent Systems and Technology (TIST), 3(2):1–
28.

X. Liu, Z. Zhang, R. Leontie, A. Stylianou, and
R. Pless. 2020. 2-map: Aligned visualizations for
comparison of high-dimensional point sets. In 2020
IEEE Winter Conference on Applications of Com-
puter Vision (WACV), pages 2539–2547.

A T McCray, A Burgun, and O Bodenreider. 2001. Ag-
gregating UMLS semantic types for reducing con-
ceptual complexity. Studies in health technology
and informatics, 84(Pt 1):216–220.

Apolonia Moll, Mónica Lara, Jaume Pomar, Mónica
Orozco, Guiem Frontera, Juan A Llompart-Pou,
Lesmes Moratinos, Víctor González, Javier Ibáñez,

and Jon Pérez-Bárcena. 2020. Effects of dexam-
ethasone in traumatic brain injury patients with
pericontusional vasogenic edema: A prospective-
observational DTI-MRI study. Medicine, 99(43).

Mark Neumann, Daniel King, Iz Beltagy, and Waleed
Ammar. 2019. ScispaCy: Fast and Robust Mod-
els for Biomedical Natural Language Processing.
In Proceedings of the 18th BioNLP Workshop and
Shared Task, pages 319–327, Florence, Italy. Asso-
ciation for Computational Linguistics.

Denis Newman-Griffis and Eric Fosler-Lussier. 2019.
Writing habits and telltale neighbors: analyzing clin-
ical concept usage patterns with sublanguage em-
beddings. In Proceedings of the Tenth Interna-
tional Workshop on Health Text Mining and Informa-
tion Analysis (LOUHI 2019), pages 146–156, Hong
Kong. Association for Computational Linguistics.

Denis Newman-Griffis, Albert M Lai, and Eric Fosler-
Lussier. 2018. Jointly Embedding Entities and
Text with Distant Supervision. In Proceedings of
The Third Workshop on Representation Learning
for NLP, pages 195–206. Association for Computa-
tional Linguistics.

Dong Nguyen, Maria Liakata, Simon DeDeo, Jacob
Eisenstein, David Mimno, Rebekah Tromble, and
Jane Winters. 2020. How We Do Things With
Words: Analyzing Text as Social and Cultural Data.
Frontiers in Artificial Intelligence, 3:62.

Ohio Supercomputer Center. 1987. Ohio Supercom-
puter Center.

Hamid Rahmani, Effat Davoudi-Monfared, Anahid
Nourian, Morteza Nabiee, Setayesh Sadeghi, Hos-
sein Khalili, Ladan Abbasian, Fereshteh Ghias-
vand, Arash Seifi, Malihe Hasannezhad, Sara
Ghaderkhani, Mostafa Mohammadi, and Mir Saeed
Yekaninejad. 2020. Comparing outcomes of hospi-
talized patients with moderate and severe COVID-
19 following treatment with hydroxychloroquine
plus atazanavir/ritonavir. Daru : journal of Faculty
of Pharmacy, Tehran University of Medical Sciences,
28(2):625–634.

Andrew Runge and Eduard Hovy. 2020. Exploring
Neural Entity Representations for Semantic Infor-
mation. In Proceedings of the Third BlackboxNLP
Workshop on Analyzing and Interpreting Neural Net-
works for NLP, pages 204–216, Online. Association
for Computational Linguistics.

Dominik Schlechtweg, Barbara McGillivray, Simon
Hengchen, Haim Dubossarsky, and Nina Tahmasebi.
2020. SemEval-2020 Task 1: Unsupervised Lexical
Semantic Change Detection. In Proceedings of the
Fourteenth Workshop on Semantic Evaluation, pages
1–23, Barcelona (online). International Committee
for Computational Linguistics.

Daniel Smilkov, Nikhil Thorat, Charles Nicholson,
Emily Reif, Fernanda B. Viégas, and Martin Watten-
berg. 2016. Embedding projector: Interactive visu-
alization and interpretation of embeddings.

114

Manuela Spadea, Francesca Carraro, Francesco Saglio,
Elena Vassallo, Rosanna Pessolano, Massimo
Berger, Carlo Scolfaro, Sergio Grassitelli, and
Franca Fagioli. 2020. Successfully treated se-
vere COVID-19 and invasive aspergillosis in early
hematopoietic cell transplantation setting.

Blanca Talavera, David García-Azorín, Enrique
Martínez-Pías, Javier Trigo, Isabel Hernández-
Pérez, Gonzalo Valle-Peñacoba, Paula Simón-
Campo, Mercedes de Lera, Alba Chavarría-Miranda,
Cristina López-Sanz, María Gutiérrez-Sánchez,
Elena Martínez-Velasco, María Pedraza, Álvaro
Sierra, Beatriz Gómez-Vicente, Ángel Guerrero, and
Juan Francisco Arenillas. 2020. Anosmia is associ-
ated with lower in-hospital mortality in COVID-19.
Journal of the Neurological Sciences, 419.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579–2605.

Ekaterina Vylomova, Sean Murphy, and Nicholas
Haslam. 2019. Evaluation of Semantic Change of
Harm-Related Concepts in Psychology. In Proceed-
ings of the 1st International Workshop on Computa-
tional Approaches to Historical Language Change,
pages 29–34, Florence, Italy. Association for Com-
putational Linguistics.

Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar,
Russell Reas, Jiangjiang Yang, Darrin Eide, Kathryn
Funk, Rodney Kinney, Ziyang Liu, William Mer-
rill, and Others. 2020a. CORD-19: The Covid-
19 Open Research Dataset. arXiv preprint
arXiv:2004.10706.

Qingyun Wang, Manling Li, Xuan Wang, Nikolaus
Parulian, Guangxing Han, Jiawei Ma, Jingxuan Tu,
Ying Lin, Haoran Zhang, Weili Liu, and Others.
2020b. Covid-19 literature knowledge graph con-
struction and drug repurposing report generation.
arXiv preprint arXiv:2007.00576.

Vincent Warmerdam, Thomas Kober, and Rachael
Tatman. 2020. Going Beyond T-SNE: Exposing
whatlies in Text Embeddings. In Proceedings of Sec-
ond Workshop for NLP Open Source Software (NLP-
OSS), pages 52–60, Online. Association for Compu-
tational Linguistics.

Rebecca Weiss. 2014. MUCK: A toolkit for extracting
and visualizing semantic dimensions of large text
collections. In Proceedings of the Workshop on In-
teractive Language Learning, Visualization, and In-
terfaces, pages 53–58, Baltimore, Maryland, USA.
Association for Computational Linguistics.

Philippa M Wells, Katie J Doores, Simon Couvreur,
Rocio Martinez Nunez, Jeffrey Seow, Carl Graham,
Sam Acors, Neophytos Kouphou, Stuart J D Neil,
Richard S Tedder, Pedro M Matos, Kate Poulton,
Maria Jose Lista, Ruth E Dickenson, Helin Sertkaya,
Thomas J A Maguire, Edward J Scourfield, Ruth C E
Bowyer, Deborah Hart, Aoife O’Byrne, Kathryn J A

Steel, Oliver Hemmings, Carolina Rosadas, Myra O
McClure, Joan Capedevilla-pujol, Jonathan Wolf,
Sebastien Ourselin, Matthew A Brown, Michael H
Malim, Tim Spector, and Claire J Steves. 2020. Es-
timates of the rate of infection and asymptomatic
COVID-19 disease in a population sample from SE
England. Journal of Infection, 81(6):931–936.

Laura Wendlandt, Jonathan K Kummerfeld, and Rada
Mihalcea. 2018. Factors Influencing the Surprising
Instability of Word Embeddings. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 2092–2102. Association for Computa-
tional Linguistics.

Ikuya Yamada, Akari Asai, Jin Sakuma, Hiroyuki
Shindo, Hideaki Takeda, Yoshiyasu Takefuji, and
Yuji Matsumoto. 2020. Wikipedia2Vec: An Effi-
cient Toolkit for Learning and Visualizing the Em-
beddings of Words and Entities from Wikipedia. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 23–30, Online. Association
for Computational Linguistics.

Yiyun Zhao and Steven Bethard. 2020. How does
BERT’s attention change when you fine-tune? An
analysis methodology and a case study in negation
scope. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4729–4747, Online. Association for Computa-
tional Linguistics.

Tamara Zhordaniya, Andrey Kutuzov, and Elizaveta
Kuzmenko. Vec2graph: A python library for visu-
alizing word embeddings as graphs. Springer.

115

Proceedings of NAACL-HLT 2021: Demonstrations, pages 116–124
June 6–11, 2021. ©2021 Association for Computational Linguistics

Supporting Spanish Writers using Automated Feedback

Aoife Cahill1, James V. Bruno1, James T. Ramey2, Gilmar Ayala Meneses2,
Ian Blood1, Florencia Tolentino1, Tamar Lavee1 and Slava Andreyev1

1 Educational Testing Service, Princeton, NJ 08541, USA
2 Universidad Autónoma Metropolitana, Cuajimalpa, Mexico City, Mexico

Abstract

We present a tool that provides automated
feedback to students studying Spanish writ-
ing. The feedback is given for four cate-
gories: topic development, coherence, writ-
ing conventions, and essay organization.
The tool is made freely available via a
Google Docs add-on. A small user study
with post-secondary level students in Mex-
ico shows that students found the tool gen-
erally helpful and that most of them plan
to continue using it as they work to im-
prove their writing skills. In an analysis of
6 months of user data, we see that a small
number of users continue to engage with
the app, even outside of planned user stud-
ies.

1 Motivation and Background

There are a multitude of writing support tools
available for students who wish to improve their
English writing (e.g. Grammarly,1 Writing
Mentor,2 Ginger,3 Microsoft Word, or Revi-
sion Assistant4). These tools for English vary
in complexity from basic feedback on spelling
errors to advanced feedback about structure,
register, topic development, and use of evi-
dence to support claims. In the context of writ-
ing feedback for Spanish, there are automatic
grammar checkers available (e.g. Language-
Tool5 or SpanishChecker6). However, there
are no tools for Spanish that offer the kind
of comprehensive writing feedback that tools
such as Writing Mentor and Grammarly offer.
There is a huge native Spanish-speaking pop-
ulation (almost 500 million globally according

1www.grammarly.com
2mentormywriting.org
3www.gingersoftware.com
4www.revisionassistant.com/
5https://languagetool.org
6https://spanishchecker.com/

to Wikipedia7) that we could potentially sup-
port by providing advanced NLP tools to help
improve writing skills.

2 Related Work in Automated
Feedback

Studies have shown that automated feedback
on student writing can have a positive impact
on their learning (Attali, 2004; Shermis et al.,
2004; Nagata and Nakatani, 2010; Cotos, 2011;
Roscoe et al., 2014). The NLP technologies
used to provide feedback on writing have of-
ten gone hand-in-hand with the development
of automated scoring systems. The intuition is
that if the system is “measuring” some aspect of
writing in order to be able to grade it, it could
also use that same measurement in order to
give feedback. However, there are also studies
with mixed, or less favourable outcomes when
students use tools that provide automated feed-
back on their writing (Choi, 2010; Bai and Hu,
2017; Ranalli et al., 2017). This is an active
area of research, and one that requires signif-
icant resources to conduct valid user studies
and evaluations.

3 Spanish Writing Mentor

Building on previous work that developed com-
prehensive automated writing feedback for En-
glish, we have developed a tool to similarly
support Spanish writers by providing auto-
mated feedback. mentormywriting.org/es.
html contains information about the tool, links
to the download page, a video describing the
main features of the tool, as well as an FAQ sec-
tion. The tool is implemented as a Google Doc
add-on (front-end), freely available to down-
load from the app store, with a server-based

7https://en.wikipedia.org/wiki/Spanish_
language

116

back-end processing student texts and comput-
ing feedback. It is an extension of the original
work done for English (Burstein et al., 2018;
Madnani et al., 2018a) and the add-on allows
users to select either English or Spanish on a
per-document basis. Figure 1 shows the lan-
guage selection screen when the add-on is first
started.

Figure 1: Writing Mentor offers feedback in both
English and Spanish. The user makes a selection
for each document they write.

The server-based back-end of the tool is
implemented using a micro-service framework
based on Apache Storm8 – see Madnani et al.
(2018b) for more details. The framework allows
for robust, scalable, fault-tolerant processing
(automatically restarting components if they
fail). The back-end engine takes a text as input
and returns a JSON representation of feedback.
The feedback is computed using a network of
micro-services. Each micro-service is defined
in terms of inputs (prerequisites) and outputs,
and data flows in parallel (automatically man-
aged by Storm) to the final component (Storm
bolt) that sends JSON-encoded feedback to the

8https://storm.apache.org

front-end of the tool for display to the user.
The design of the back-end feedback engine

was based on the corresponding English one.
However, in terms of the implementation, much
of the functionality naturally differs in order
to account for the language differences. Fur-
thermore, we introduce some new functionality
– most notably the section on well-organized
writing – that could potentially also be made
available for the English version of the tool.
We take advantage of a number of publicly

available tools to build our feedback compo-
nents. We use the Spanish Stanford Core NLP9

for tokenization, tagging and constituency pars-
ing (Manning et al., 2014). We use the Spacy10

Spanish dependency parser (Honnibal et al.,
2020), aligning the dependency relations to the
tokenization provided by the Stanford tools.
We use the standalone version of Spanish Lan-
guageTool11 to compute a subset of the feed-
back relating to writing conventions (spelling
and grammatical errors).

3.1 Feedback Components

Spanish Writing Mentor gives feedback on four
broad areas of writing: topic development, co-
herence, writing conventions, and essay organi-
zation. Figure 2 shows the tool when the user
loads the app on an open document.

3.1.1 Topic Development
As in the English version of Writing Men-
tor, we include feedback on topic development
(Beigman Klebanov and Flor, 2013), which re-
lies on a database of pointwise mutual infor-
mation (PMI) values. In this instance, we are
able to re-use the code from the English im-
plementation and simply substitute a Spanish
PMI database. We build the database by re-
tokenizing the raw version of the Spanish Bil-
lion Word Corpus (Cardellino, 2019) with the
Stanford tools. This corpus is a union of Span-
ish resources in a wide range of domains and
formats, including legal, financial and medical

9https://stanfordnlp.github.io/CoreNLP/
download.html We use version 3.9.2 which has the
linguistically desirable feature of separating clitics from
the words they depend on during tokenization. Sadly
this feature is not available in the most recent versions
of the Stanford Spanish tools, as they have switched to
UD tokenization.

10https://spacy.io/models/es
11https://github.com/languagetool-org/

languagetool/

117

Figure 2: The Spanish Writing Mentor tool has four categories of feedback: topic development, coherence,
writing conventions, and essay organization

documents, books, and movie subtitles. This
variety of domains makes it a suitable back-
ground database for topic detection in essays
on many different subjects. Topic words are
identified if they have PMI values higher than a
set threshold when paired with all other words
in the text, i.e. only the PMI of words in the
student’s response are considered for this fea-
ture. The threshold for identified topic words
was tuned by experimenting with a range of
values and manually inspecting the output to
judge the appropriateness of the topics detected.
The tuning was done on a small set of 96 essays
written by native-speaker university students as
well as a sample of 60 essays representing vari-
ous levels of proficiency from a publicly avail-
able corpus of non-native Spanish essays.12 A
lower threshold yielded many word pairs that
were unrelated, while a higher threshold yielded
far fewer word pairs. Further threshold tun-
ing and assessment of the background database
on a broader dataset remains for future work.
The main topic of the essay is identified as the
topic word that participates in the most pairs
of words over the PMI threshold. As in the
English version, users are also able to provide
their own topic terms. If these are provided

12https://github.com/ucdaviscl/cowsl2h/blob/
master/README.md

they are highlighted and considered in the auto-
matic identification of the main topic regardless
of their PMI values. Users may also manually
identify topics of their own choosing, and re-
lated topic words are highlighted according to
the same rules.

3.1.2 Coherence
Spanish Writing Mentor gives feedback on the
following aspects of coherence:

Flow of ideas The same topic words that are
highlighted in the Topic Development com-
ponent are also highlighted in this compo-
nent, color-coded according to topic. This
enables the user to visually understand
the extent to which their topics are elabo-
rated in various parts of the document, and
they are advised that the most important
topics should be represented throughout
the entirety of the text.

Transition terms We have a fixed list of 100
words and phrases13 that we highlight.
This is intended to prompt users to con-
sider over/under use of transition terms
that link ideas and arguments. Examples

13Adapted from https://modlang.unl.edu/docs/
STC/Palabras_para_ordenar_el_discurso_escrito.
pdf

118

include porque (because), primeramente
(firstly), en conclusión (in conclusion), etc.

Title and section headers We identify ti-
tles and section headers using a set of
regular-expression-based rules. These are
used both to visually prompt the user
about the identified structure of their es-
say, as well as identify sections of the essay
that we do not want to give certain kinds
of feedback on. For example, we do not
want to highlight spelling or grammatical
errors in a list of references.

Sentence/paragraph length We highlight
complex sentences, which we consider to be
sentences containing 2 or more dependent
clauses as identified by the constituency
parse. This is intended to highlight sen-
tences that could perhaps be broken up to
make the text more readable. Using the
number of sentences identified by the tok-
enizer, we also highlight paragraphs that
are either too short (choppy, <4 sentences),
or too long (>9 sentences), to prompt users
to think about elaborating their claims
without losing coherence. This extends
what is available in the English version
which only gives feedback at the sentence
level.

Pronoun use We highlight a subset of pro-
nouns to help prompt the user to make
sure that the references that the pronouns
refer to are clear. The POS tags are used
to identify the pronouns.

3.1.3 Writing Conventions
We give the following types of feedback on Span-
ish Writing Conventions:

Grammar, Usage and Mechanics We fol-
low a similar categorization of error types
to the English Writing Mentor. Some of
these errors come directly from the Lan-
guageTool library, though only a subset of
errors detected are displayed to the user.
We include accent errors, agreement errors,
contraction errors, comma errors, spelling
errors, and incorrect word usage errors.
We also implemented new grammatical er-
ror detectors. For example, rules were
written to identify fragments and run-ons

based on subordinating and coordinating
conjunctions and their dependents identi-
fied by the dependency parses. Our ini-
tial work focused on trying to include only
feedback for errors for which we were confi-
dent we could achieve reasonable precision,
though of course no system is perfect. Fu-
ture work would extend the coverage of
these detectors.

Unnecessary Words Related to the concept
of pobreza léxica (lit. lexical poverty), we
highlight occurrences of unnecessary words.
These words, when over-used, lead to im-
precise and poor writing. This is done by
simple regular expression matching from a
list that includes words like absolutamente
(absolutely) and muy (very). Future work
would build out this functionality to ac-
count for more specific guidelines related
to this topic.

Contractions We highlight sequences of
words that should be contracted in Span-
ish, e.g. de el should be written as del .

Accents We highlight errors related to accent
use. This category of errors is new for the
Spanish version of the app. These errors
are identified using dictionary resources
and rules encoded in Language Tool.

3.1.4 Essay organization
A novel aspect of the Spanish tool is that we
give feedback on essay organization in the form
of a questionnaire. There are 9 main questions,
each with a corresponding follow-up question
(18 questions total), that prompt the user to
think about how they have structured the argu-
ments in their essay. This questionnaire draws
on concepts from various rhetoric and compo-
sition studies textbooks (e.g. Ramage et al.
(2015), Lunsford (2008), Hacker (2006), and
Crews (1992)). The questions were chosen to
implement insights and recommendations from
the writing literature. Figure 3 shows the tool
prompting the user to highlight the sentence
in the essay containing the main claim. When
the user has completed the survey, they are
presented with a summary of the aspects that
they highlighted, schematized in Figure 4. An
obvious extension of this component will be

119

Figure 3: Users are prompted to think about the structure of their essay in the Well-Organized question-
naire. Here the users are asked to select the sentence containing the main claim of the essay. This is
question 7 of 18 total.

I. Introduction. Thesis Statement: [The-
sis statement as highlighted by the
user]

II. Argumentative Paragraph 1: [Topic
sentence as highlighted by the user]

III. Argumentative Paragraph 2: [Topic
sentence as highlighted by the user]

IV. Argumentative Paragraph 3, etc...

V. Conclusion Paragraph: [Conclusion
paragraph as highlighted by the user]

Figure 4: A schematic of what the user sees after
completing the organization questionnaire.

to automate the detection of organizational
elements and present an automated sentence
outline (a formal representation of an essay
draft) to the user in the future.

3.2 Paragraph-Writing Support

Analogous to the English app, the Spanish app
also provides support for paragraph writing.
The idea behind the paragraph-writing part of
the tool is to support less proficient writers; for
example adult learners. The paragraph-writing-
support tool includes motivational badges, and
provides a subset of the feedback available in
the main tool. The focus in the paragraph-
writing tool is to help the user understand
what aspects of writing lead to a well-written
paragraph. Figure 5 shows a screenshot of the
paragraph-writing help, which provides scaffold-
ing and guidelines for writing a well-structured
paragraph in response to an argumentative
question. There are a number of questions
available to students to help them practice.
The questions come from the New York Times
Teaching Resources. (They are translations of

Figure 5: Users are prompted to think about
the structure of a paragraph. This interface
provides scaffolding to help them write a well-
structured paragraph in response to an argumen-
tative prompt.

the original questions supplied by the NYT who
approved the translations for use).

4 User Study

We conducted a user study to collect initial
usage and perception data from the tool. Our
participants were students in the Universidad
Autónoma Metropolitana, Cuajimalpa, in Mex-
ico City. Participants were recruited from two
groups: (1) a group of students taking optional
courses in the university Writing Center, which
provides support to students who want to im-
prove their writing skills and (2) a group of 3rd
and 4th year undergraduate students taking an
elective course in Latin American Literature.
Participation in the study was optional, and
each student who took part received a certifi-
cate of participation upon completion. Par-
ticipants were asked to use Spanish Writing
Mentor to support their regular coursework
writing assignments. No changes were made to
the assignments. Users were given instructions

120

on how to use the tool three weeks before the
end of the trimester, and could choose how to
use the tool (if at all) during those three weeks.
The user study focused only on extended writ-
ing. An investigation into the usefulness of
the paragraph writing component remains for
future work.
Our user study consists of two components:

(1) a measure of writing ability before and after
using the tool and (2) a user survey completed
after the three weeks. In order to measure
writing ability before and after using the tool,
each participant completed a standardized as-
sessment of writing ability. The assessment is
usually administered as a placement test in the
Writing Center to assign students to one of four
levels: low (0-49), moderate (50-69), acceptable
(70-89) or optimum (90-100). Our user survey
consisted of 13 questions (see Appendix A) and
participants were asked to complete it after
they had handed in their final assignments.

5 User Data Analysis

Table 1 gives an overview of our participants.
We have 13 students in total who completed
the entire study; 6 from the Spanish Writing
course, and 7 from the Latin American Litera-
ture course. All students take the standardized
test before their course and after, and receive
a score in the range 0-100. We see that the
writing ability of all participants, as measured
by the standardized test, increases between the
pre- and post-tests. Of course, this improve-
ment can be attributed to the content of the
courses, and at this point we have no way to
measure the direct impact (if any) of using the
Writing Mentor tool. A fully randomized con-
trolled experiment would be needed to study
this in more depth. For comparison, the aver-
age scores of all students (n=94) in the pre-test
was 38.7 and this increased to 51.9 in the post-
test (n=80 students). The writing proficiency
of our participants was, on average, higher than
the general population in these classes.
The main findings from the 13 questions in

the user survey were as follows:

• The average score for how useful the par-
ticipants found the tool was 3.7 (on a scale
from 1-5, 5 being the most useful; min=2,
max=5).

Student Course Initial Final
1 Writing 39 64
2 Writing 44 58
3 Writing 58 65
4 Writing 37 45
5 Writing 72 76
6 Writing 38 50
7 Literature 36 53
8 Literature 28 42
9 Literature 58 63
10 Literature 72 76
11 Literature 50 52
12 Literature 58 62
13 Literature 51 57
Average 49.3 58.6

Table 1: User Study Participants. Initial and Final
are the written evaluation results on a standardized
test (0-100 scale).

• 12 of 13 participants indicated that by
using the tool they had learned something
to help them improve their writing.

• The features that were selected as being
the most useful were: Coherence (flow of
ideas) – 10/13; Well organized – 10/13;
Topic development – 9/13.

• The features that were selected as being
the least useful were: Coherence (Title
and Section headers) – 4/13; Coherence
(Use of pronouns) – 3/13; Coherence (Sen-
tence/paragraph length) – 3/13.

• The most useful help article was the one
on Coherence (Flow of ideas) – 10/13.

• 12/13 participants plan to use Spanish
Writing Mentor again, and 11/13 planned
to recommend it to others.

• 11/13 participants indicated that one of
the main aspects they liked LEAST about
the tool was the interface, but only 2/13
participants commented that the function-
ality provided by the tool (i.e. what it was
presenting as feedback) were what they
liked least.

5.1 User Behavior

In addition to the user study, we also analyze
6 months of application log data. Figure 6a

121

(a) The total number of users by month.

(b) The average length of a Spanish Writing Mentor usage
session (in minutes) by month.

(c) The distribution of the time (in seconds) for each
section of the app for the time period October to March.

Figure 6: Analysis of 6 months of user data

shows the number of unique users each month
between October 2020 and March 2021. We
see that the number of users peaked during
our user study, but did not drop off entirely
once the study was over. Figure 6b shows the
average time (in minutes) for an active session
(i.e. we exclude sessions where no text was
entered). We see differences in average usage
across months, but for the months with the
most users, the average time spent using the
app was between 15 and 30 minutes. Finally,

Figure 6c shows the distribution of the time
(in seconds) for each section of the app from
the time period October 2020 to March 2021.
We restrict the plot to the interquartile range,
since there were many extreme outliers (proba-
bly due to users switching away from the app
and coming back later). Even still, we see quite
a range of values for the medial time spent per
section. Sections such as contractions, gram-
mar errors, word choice, transition terms, well
organized and long sentences engaged the users
for longer times, while sections such as flow of
ideas, pronoun use, title and section headers
engaged the users less.

6 Conclusions

We presented a tool to support writers of
Spanish by providing them automated feed-
back within a free Google Docs add-on. The
tool was built by adapting an existing tool for
English, and implementing Spanish-language-
specific components. We conducted a small
study with 13 post-secondary level students in
Mexico City, and in general found that they
considered the tool helpful and were planning
to continue using it and also recommend it to
others. We see that their writing ability, as mea-
sured by a standardized test, improved between
the pre- and post-tests, though we cannot yet
say whether the Spanish Writing Mentor app
contributed to this improvement. We find that
a small number of users engage with the app,
even outside of planned user studies, which is
encouraging.

References
Yigal Attali. 2004. Exploring the Feedback and

Revision Features of Criterion. Paper presented
at the National Council on Measurement in Ed-
ucation (NCME), Educational Testing Service,
Princeton, NJ.

Lifang Bai and Guangwei Hu. 2017. In the face of
fallible awe feedback: how do students respond?
Educational Psychology, 37(1):67–81.

Beata Beigman Klebanov and Michael Flor. 2013.
Word association profiles and their use for au-
tomated scoring of essays. In Proceedings of the
51st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1148–1158.

Jill Burstein, Norbert Elliot, Beata Beigman
Klebanov, Nitin Madnani, Diane Napolitano,

122

Maxwell Schwartz, Patrick Houghton, and
Hillary Molloy. 2018. Writing mentor: Writ-
ing progress using self-regulated writing support.
Journal of Writing Analytics, 2:280–284.

Cristian Cardellino. 2019. Spanish Billion Words
Corpus and Embeddings.

Jaeho Choi. 2010. The Impact of Automated Essay
Scoring (AES) for Improving English Language
Learner’s Essay Writing. Ph.D. thesis, Univer-
sity of Virginia Charlottesville, VA.

Elena Cotos. 2011. Potential of automated writing
evaluation feedback. Calico Journal, 28(2):420–
459.

Frederick Crews. 1992. The Random House Hand-
book, Sixth edition. McGraw Hill.

Diana Hacker. 2006. The Bedford Handbook, Sev-
enth edition. Bedford/St. Martin’s.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Process-
ing in Python.

Andrea A. Lunsford. 2008. St. Martin’s Handbook,
Sixth edition. Bedford/St. Martin’s.

Nitin Madnani, Jill Burstein, Norbert Elliot, Beata
Beigman Klebanov, Diane Napolitano, Slava An-
dreyev, and Maxwell Schwartz. 2018a. Writ-
ing mentor: Self-regulated writing feedback for
struggling writers. In Proceedings of the 27th
International Conference on Computational Lin-
guistics: System Demonstrations, pages 113–117,
Santa Fe, New Mexico. Association for Compu-
tational Linguistics.

Nitin Madnani, Aoife Cahill, Daniel Blanchard,
Slava Andreyev, Diane Napolitano, Binod
Gyawali, Michael Heilman, Chong Min Lee,
Chee Wee Leong, Matthew Mulholland, and
Brian Riordan. 2018b. A robust microservice
architecture for scaling automated scoring appli-
cations. ETS Research Report Series, 2018(1).

Christopher D. Manning, Mihai Surdeanu, John
Bauer, Jenny Finkel, Steven J. Bethard, and
David McClosky. 2014. The Stanford CoreNLP
natural language processing toolkit. In Associ-
ation for Computational Linguistics (ACL) Sys-
tem Demonstrations, pages 55–60.

Ryo Nagata and Kazuhide Nakatani. 2010. Eval-
uating Performance of Grammatical Error De-
tection to Maximize Learning Effect. In Pro-
ceedings of COLING (Posters), pages 894–900,
Beijing, China.

John D Ramage, John C Bean, and June Johnson.
2015. The Allyn & Bacon guide to writing, Sev-
enth edition. Pearson.

Jim Ranalli, Stephanie Link, and Evgeny
Chukharev-Hudilainen. 2017. Automated writ-
ing evaluation for formative assessment of sec-
ond language writing: investigating the ac-
curacy and usefulness of feedback as part of
argument-based validation. Educational Psy-
chology, 37(1):8–25.

Rod D Roscoe, Laura K Allen, Jennifer L Weston,
Scott A Crossley, and Danielle S McNamara.
2014. The writing pal intelligent tutoring sys-
tem: Usability testing and development. Com-
puters and Composition, 34:39–59.

Mark D. Shermis, Jill C. Burstein, and Leonard
Bliss. 2004. The Impact of Automated Essay
Scoring on High Stakes Writing Assessments. In
Annual Meeting of the National Council on Mea-
surement in Education.

Appendix

A User Survey

The following questions were included (in Span-
ish) in our final user survey:

123

1. Overall, how useful was Writing Mentor in helping you with your writing
assignment?

5 point scale (5 be-
ing most useful)

2. What (if anything) did you like most about Writing Mentor? free text
3. What (if anything) did you like the least about Writing Mentor? free text
4. Do you think you learned anything by using Writing Mentor that will help
you improve your writing?

Yes/No

a. If so, what? free text
5. Please mark the features that you found MOST useful (if any): Multiple-select

from list of all
possible sections in
the tool

6. Please mark the Writing Help articles that you found MOST useful (if any) Multiple-select
from list of all help
articles

7. Please mark the features that you found LEAST useful (if any): Multiple-select
from list of all
possible sections in
the tool

8. Please mark the Writing Help articles that you found LEAST useful (if
any):

Multiple-select
from list of all help
articles

9. What feature(s) should be added to writing mentor (if any) and why? free text
10. What other things should be improved in writing mentor (if any), and
why?

free text

11. Do you plan to use Writing Mentor again in the future to help you with
your writing assignments?

Yes/No

12. Do you plan to recommend Writing Mentor to others? Yes/No
13. Is there anything else you would like to share about your experience using
writing mentor?

free text

Table 2: Final User Survey Questions

124

Proceedings of NAACL-HLT 2021: Demonstrations, pages 125–132
June 6–11, 2021. ©2021 Association for Computational Linguistics

Alexa Conversations: An Extensible Data-driven Approach for Building
Task-oriented Dialogue Systems

Anish Acharya∗, Suranjit Adhikari, Sanchit Agarwal, Vincent Auvray, Nehal Belgamwar,
Arijit Biswas, Shubhra Chandra, Tagyoung Chung, Maryam Fazel-Zarandi, Raefer Gabriel,

Shuyang Gao, Rahul Goel∗, Dilek Hakkani-Tur, Jan Jezabek, Abhay Jha, Jiun-Yu Kao,
Prakash Krishnan, Peter Ku, Anuj Goyal, Chien-Wei Lin, Qing Liu, Arindam Mandal,
Angeliki Metallinou, Vishal Naik, Yi Pan, Shachi Paul∗, Vittorio Perera, Abhishek Sethi∗,

Minmin Shen, Nikko Strom and Eddie Wang
Amazon Alexa AI, Sunnyvale, California, USA†

Abstract

Traditional goal-oriented dialogue systems
rely on various components such as natural
language understanding, dialogue state track-
ing, policy learning and response generation.
Training each component requires annotations
which are hard to obtain for every new domain,
limiting scalability of such systems. Similarly,
rule-based dialogue systems require extensive
writing and maintenance of rules and do not
scale either. End-to-End dialogue systems, on
the other hand, do not require module-specific
annotations but need a large amount of data for
training. To overcome these problems, in this
demo, we present Alexa Conversations1, a new
approach for building goal-oriented dialogue
systems that is scalable, extensible as well as
data efficient. The components of this system
are trained in a data-driven manner, but instead
of collecting annotated conversations for train-
ing, we generate them using a novel dialogue
simulator based on a few seed dialogues and
specifications of APIs and entities provided
by the developer. Our approach provides out-
of-the-box support for natural conversational
phenomena like entity sharing across turns or
users changing their mind during conversation
without requiring developers to provide any
such dialogue flows. We exemplify our ap-
proach using a simple pizza ordering task and
showcase its value in reducing the developer
burden for creating a robust experience. Fi-
nally, we evaluate our system using a typical
movie ticket booking task and show that the
dialogue simulator is an essential component
of the system that leads to over 50% improve-
ment in turn-level action signature prediction
accuracy.

1 Introduction

Goal-oriented dialogue systems enable users to
complete specific goals such as making restau-

∗Work done while at Amazon
†Authors are ordered alphabetically

1https://tinyurl.com/y3lowd34

rant reservations and buying train tickets. User
goals may be complex and may require multiple
turns to achieve. Moreover, users can refer to
contextual values anaphorically, can correct pre-
viously informed preferences and provide addi-
tional or fewer entities (over-cooperative or under-
cooperative user) than requested by the agent. This
presents challenges for building robust dialogue
agents that need to understand different kinds of
user behavior, gather user requirements split over
multiple turns and complete user goals with min-
imal friction. There is also limited availability of
dialogue datasets and they span only a handful of
application domains. Designing suitable data col-
lection for dialogue systems is itself a research
area.

Traditional dialogue systems follow a pipelined
approach that ties together machine learning com-
ponents for natural language understanding (NLU),
dialogue state (belief) tracking, optimal action pre-
diction (policy learning), and natural language gen-
eration (Young, 2000). Advances in deep learning
techniques have led to the development of more
end-to-end neural dialogue systems that combine
some or all of the components of the traditional
pipeline reducing the need for component-wise
annotations and allowing for intermediate repre-
sentations to be learned and optimized end-to-end
(Wen et al., 2017; Liu et al., 2017). On the data side,
notable data collection approaches for dialogue sys-
tems include the Wizard-of-Oz (WOZ) framework
(Asri et al., 2017), rule-based or data-driven user
simulators (Pietquin, 2005; Cuayáhuitl et al., 2005;
Pietquin and Dutoit, 2006; Schatzmann et al., 2007;
Fazel-Zarandi et al., 2017; Gur et al., 2018), and the
recently-proposed Machines-Talking-To-Machines
(M2M) framework (Shah et al., 2018) where user
and system simulators interact with each other to
generate dialogue outlines.

In this demo, we present Alexa Conversations,
a novel system that enables developers to build ro-

125

bust goal-oriented dialogue experiences with min-
imal effort. Our approach is example-driven as it
learns from a small number of developer-provided
seed dialogues and does not require encoding di-
alogue flows as rigid rules. Our system contains
two core components: a dialogue simulator that
generalizes input examples provided by the devel-
oper and a neural dialogue system that directly
predicts the next optimal action given the conver-
sation history. The dialogue simulator component
extends the M2M framework (Shah et al., 2018)
in two main directions. First, instead of gener-
ating user goals randomly, we use various goal
sampling techniques biased towards the goals ob-
served in the seed dialogues in order to support
variations of those dialogues robustly. Second, in
M2M, the system agent is geared towards database
querying applications where the user browses a cat-
alogue, selects an item and completes a transaction.
In contrast, our formulation does not require any
knowledge of the purpose of the APIs provided by
the developer. Moreover, our system can generate
a richer set of dialogue patterns including com-
plex goals, proactive recommendations and users
correcting earlier provided entities. The proposed
neural dialogue model component follows an end-
to-end systems approach and bears some similari-
ties with Hybrid Code Networks (HCN) (Williams
et al., 2017). However, compared to HCN, our
system is more generic in the sense that it directly
predicts the full API signature that contains the
API name, values of the required API arguments,
relevant optional API arguments and their values.
The model chooses the API argument values to fill
from user mentioned, agent mentioned and API re-
turned entities present in the full dialogue context
that includes the current user utterance.

We showcase the significance of our approach
in reducing developer burden using the example of
a pizza ordering skill. Compared to a rule-based
system where a developer would have to code hun-
dreds of dialogue paths to build a robust experience
even for such a simple skill, Alexa Conversations
requires only a handful of seed dialogues. To eval-
uate our approach, we build a movie ticket booking
experience. On a test set collected via Wizard-
of-Oz (WOZ) framework (Asri et al., 2017), we
quantify the impact of our novel dialogue simula-
tion approach showing that it leads to over 50%
improvement in action signature prediction accu-
racy.

A: nlg: welcome()
U: “how long is [la la land | Movie→ mt1]”
A: call: GetDuration(movieTitle=$mt1)→ d1
A: nlg: inform_movie_duration(

duration=$d1, movieTitle=$mt1)
U: “who stars in it” //anaphoric reference
A: call: GetCast(movieTitle=$mt1)→ gcr1
A: nlg: inform_movie_cast(

cast=$gcr1, movieTitle=$mt)
...

U: “exit”
A: nlg: stop()

Table 1: A seed dialogue with DML annotations. Note
that variables are carried over to resolve anaphoric ref-
erences.

Template Name Template Text

inform_movie_duration “$movieTitle is $duration long”
inform_movie_cast “$cast.name was in $movieTitle”
offer_recommend_movie “Would you like a $genre movie?”

Table 2: Developer-provided system NLG responses

2 System Overview

In Alexa Conversations, we follow a data-driven
approach where the developer provides seed dia-
logues covering the main use cases they want to
support, and annotates them in a Dialogue Markup
Language (DML). Table 1 shows an example of an
annotated conversation. Developers are required
to provide their domain-specific APIs and custom
Natural Language Generation (NLG) responses for
interacting with the user, e.g., for informing an API
output response or for requesting an API input argu-
ment as shown in Table 2. These APIs and system
NLG responses, with their input arguments and
output values, define the domain-specific schema
of entities and actions that the dialogue system will
predict. Developers also provide example user-
utterances (as templates with entity-value place-
holders) which the users may use to invoke certain
APIs or to inform slot values.

To handle the wide variation of conversations a
user can have with the dialogue system, Alexa Con-
versations augments the developer provided seed
dialogues through a simulator. This component
takes the annotated seed dialogues as input, and
simulates different dialogue flows that achieve the
same user goals but also include common patterns
such as when a user confirms, changes, or repeats
an entity or action. Optionally, it uses crowdsourc-
ing through Amazon Mechanical Turk (MTurk) to
enrich the natural language variations of user ut-
terances provided by the developer. Overall, the

126

Figure 1: High-level overview of an input utterance’s
path

developer provides on the order of 10 seed dia-
logues and the simulator generates on the order
of 10K training dialogues with flow and language
variations.

Alexa Conversations consists of three main
domain-specific modeling components: 1) a
Named-Entity Recognition (NER) model that tags
entities in the user utterance (e.g., “La La Land”
as a MovieTitle), 2) an Action Prediction (AP)
model that predicts which API or NLG response
should be executed next (e.g., GetDuration or in-
form_movie_duration), and 3) an Argument Fill-
ing (AF) model that fills required (and possibly
optional) action arguments with entities (e.g., Get-
Duration(MovieTitle=“La La Land”)). We use the
entire dialogue history, i.e., user utterances, system
actions and responses, and API return values, as
input for all modeling components. In this sense,
this dialogue history is used as a generalized state
representation from which models can retrieve rel-
evant information. An overview of the runtime
flow of a dialogue is illustrated in Figure 1. Each
user utterance initiates a turn and is followed by
NER, after which one or more actions are predicted.
These actions could be either an API or NLG call,
or a special action indicating the end of a turn or
the end of dialogue. Every new action prediction
updates the dialogue history and therefore influ-
ences future action predictions. For each API/NLG
call the AF model is called to fill in the required ar-
guments. When <end of turn> is predicted,
the system waits for new user input. When <end
of dialogue> is predicted, the system ends
the interaction.

3 Dialogue Simulation

We propose a novel component called simulator to
generate diverse but consistent dialogues, which
can be used to train robust goal-oriented neural di-
alogue systems. We presented the simulator details

Goal Sampler API Simulator

User Agent System Agent

User NLG System NLG

user goal API
value

API +
arguments

dialog acts utterance utterancetemplate
id

dialog acts +
utterance

actions +
utterance

Figure 2: Simulator Architecture

in (Lin et al., 2020) and briefly provide an overview
of the overall system here. A high-level simulator
architecture is illustrated in Figure 2.

The simulator is structured in two distinct agents
that interact turn-by-turn: the user and the system.
The user samples a fixed goal at the beginning of
the conversation. We propose novel goal-sampling
techniques (Lin et al., 2020) to simulate variation
in dialogue flows. The agents communicate at the
semantic level through dialogue acts. Having the
exact information associated with each turn allows
us to define a simple heuristic system policy, whose
output can be used as supervised training labels to
bootstrap models. We note that the user policy
is also heuristic-based. In each conversation, the
user agent gradually reveals its goal and the system
agent fulfills it by calling APIs. The system agent
simulates each API call by randomly sampling a
return value without actually calling the API and
chooses an appropriate response action. Depending
on the returned API value, the chosen response is
associated with dialogue acts. The system agent
gradually constructs an estimate of the user goal
and makes proactive offers based on this estimated
goal. The dialogue acts generated through self-play
are also used to interface between agents and their
template-based NLG model. After sampling the
dialogue acts from their policy, each agent samples
the surface-form from available templates corre-
sponding to the dialogue acts. In addition to en-
riching the dialogue flows; we use crowd-sourcing
through MTurk to enrich the natural language vari-
ations of the user utterance templates. Goal sam-
pling and the self-play loop provide dialogue flow
variations while crowd-sourcing enriches language
variations, both of which are essential for training
robust conversational models.

We introduce additional variations to dialogues
during simulation for more natural conversation

127

Figure 3: An example of a dialogue context encoder.
Different downstream models use slightly different sub-
sets of these features as input.

generation. In goal-oriented conversations, users
often change their mind during the course of the
conversation. For example, while booking a movie
ticket a user may decide to purchase three adult
tickets but could eventually change their mind to
book only two tickets. We used additional heuris-
tics to introduce such variations to conversations
without any additional input requirements from
the developer. Another important non-task-specific
conversational behavior is the system’s ability to
suggest an appropriate next action based on the
conversation history, without requiring invocation
by a specific user utterance. We introduce proactive
offers in the system policy of the simulator to facil-
itate exploration of the available API functionality
in a manner consistent with human conversation.

4 Models

For each domain, we have three separate models:
NER, Action Prediction (AP) and Argument Fill-
ing (AF), all of which depend on features extracted
from conversation history and encoded using Dia-
logue Context Encoders.

4.1 Dialogue Context Encoders
Given a dialogue, we first apply fea-
ture extractors to extract both turn-level,
e.g. current_user_utterance and
current_entities (recognized by the
NER model), and dialogue-level features, e.g.
past_user_utterances, past_actions
and past_entities. We pass these extracted
features through feature-specific encoders and
concatenate the feature representations to obtain
the final representation for dialogue context. For
encoding turn-level features and dialogue-level
features, we use single LSTM and hierarchical

LSTM architectures, respectively. For example, for
encoding past_user_utterances, we use a
hierarchical LSTM, where we encode the sequence
of words with an inner LSTM and the sequence of
turns with an outer LSTM. For past_actions,
a single LSTM is sufficient. Figure 3 shows an
example of our dialogue context encoders. We
augment the context encoders with word and
sentence embedding vectors from pre-trained
language models (Peters et al., 2018; Devlin et al.,
2018).

4.2 NER
The NER model is used to extract domain-specific
entities from user utterances, which are then con-
sumed by downstream models. Our NER model
is based on bi-LSTM-CRF (Ma and Hovy, 2016)
model. To incorporate dialogue history, we con-
catenate the encoded dialogue context to the word
embedding of each token and use it as the input to
our model. To improve NER performance on en-
tities with large and dynamic possible values (e.g.
movie titles, restaurant names), we also incorporate
catalogue-based features based on domain-specific
catalogues of entity values provided by the devel-
oper and values returned by APIs. Specifically,
catalogue features are computed by scanning the ut-
terance with consecutive windows of size n tokens
and detecting any exact matches of the current win-
dow with the catalogue entries. For a domain with
K domain-specific catalogues, the binary feature
will be of dimension K, where value 1 indicates
an exact match in the catalogue. This approach
is inspired by (Williams, 2019), which proposed a
generic NER approach but not specific to conversa-
tional systems.

4.3 Action Prediction (AP)
The goal of the Action Prediction model is to pre-
dict the next action the agent should take, given
the dialogue history. As illustrated in Figure 1,
an action could be an API name (e.g. GetDu-
ration), a system NLG response name (e.g. in-
form_movie_duration) or a general system action
(e.g. <end of turn>). The model takes the
dialogue context encoding, as described in Sec-
tion 4.1 and passes it through linear and soft-
max layers to output a distribution over all ac-
tions within the domain. Our system selects n-
best action hypotheses using a simple binning strat-
egy. We reject actions in the low confidence bins
and if there is no actions available in the high-

128

Figure 4: Argument filling model architecture

confidence bin, we randomly sample an action from
the medium-confidence bin.

4.4 Argument Filling (AF)

The role of the Argument Filling model is to fill
the arguments given a particular action and the di-
alogue history. We formulate the argument filling
task as a variation of neural reading comprehen-
sion (Chen, 2018) where we treat the dialogue his-
tory as a passage to comprehend and ask machine
the question "what is the argument value of a par-
ticular action?". Specifically, for each argument
of an action and each entity mention detected by
NER, our model predicts whether to use that entity
mention to fill that argument. We do this by encod-
ing all the entities in the dialogue history and use
a pointer mechanism to point to the entity position
given a particular action and argument combina-
tion. The overall architecture for argument filling
is shown in Figure 4. Note that a similar method to
dialogue state tracking has been proposed by (Gao
et al., 2019). We impose constraints to only fill ar-
guments with entities of the correct type according
to the action schema provided by the developer. For
example, we only consider Time entity mentions to
fill arguments that accept Time type. Finally, we
combine the argument filling result with the action
prediction result to execute the next system action.
API arguments can also be optional. For these
type of arguments, we create special optional
token and insert in the dialogue context and train
the model to point to that token when an optional
API argument should not be filled.

5 Case Study 1: Pizzabot

To showcase how Alexa Conversations improves
the skill-building experience of a typical developer,
we discuss Pizzabot, a pizza ordering skill. Pizz-
abot is provided as one of the template Alexa Con-

versations skills to help bootstrap a new developer.
It allows a user to order a pizza of various sizes,
with different kinds of crusts and their choice of any
number of toppings. The skill has just one main
API OrderPizza with four slots types: toppingsList,
crust, cheese and size. Even with this simple skill,
ordering a two topping pizza with a choice of say
10 toppings, 5 crusts and 5 cheese in 4 different
sizes results in over hundreds of different possible
dialogue paths. With a typical rule-based dialogue
manager, a developer would need to code most, if
not all, of these flows for building a robust experi-
ence. On the other hand, with Alexa Conversations,
a Pizzabot developer needs to provide just 7 exam-
ple dialogues to support a total of 3 APIs and 6
entity types. The different variations are automati-
cally generated by the proposed simulator and are
consumed by the models, resulting in a robust skill
with significantly lower developer effort. Alexa
Conversations also provides out-of-the-box support
for features like context carryover, entity confirma-
tion, user correction, over/under-cooperative user,
and multi-value slots without requiring the devel-
oper to write custom rules or logic, making the skill
more robust to real user interactions. See Table 3
for an example interaction with Pizzabot.

U: I want to order a large pizza
A: You wanted a large pizza, is that correct?
(entity confirmation)
U: actually make it small (user correction)
A: You wanted a small pizza, is that correct?
U: yes
A: What would you like on your pizza?
U: olives tomatoes and green peppers with thin
crust and extra cheese (multi-value slots, over-
cooperative user)
A: So far I have a small olives, tomatoes, green
peppers pizza on thin crust with extra cheese. Is
that correct? (context carryover)
U: yes
A: Great! I placed your order for a total of $5.99.

Table 3: A seed conversation with Pizzabot

6 Case Study 2: Ticketbot

To showcase the end-customer impact of Alexa
Conversations, we built a movie ticket-booking ex-
perience which we call Ticketbot. Ticketbot allows
a user to browse and book movie tickets. Users can
browse currently playing movies by various search

129

criteria like date, time, location, theater and movie
title. They can specify one or more search crite-
ria either within a single turn or across multiple
turns. After finding their choice of movie and the-
ater, users can select a particular showtime, provide
booking details like number of tickets and finally
confirm booking. The experience was built based
on the information provided by the developer. This
is a complex experience with 10 APIs, 28 entity
types, 10 NLG responses and 35 seed dialogues all
provided as an input to the system. This experi-
ence was implemented using live APIs that were
provided by the developers and thus the users were
able to actually achieve their goals and complete
ticket-booking transactions.

6.1 Evaluation

To evaluate our models, we collected data using a
Wizard-of-Oz (WOZ) framework (Asri et al., 2017).
These collected dialogues were then annotated by a
team of professional annotators using the Dialogue
Markup Language. Annotators tagged entities, API
and NLG calls and unsupported requests. This is a
challenging task and we adopted various methods
like inter-annotator agreement and random vetting
to ensure high data annotation quality. The test set
contained 50 dialogues with an average length of
5.74 turns.

We measure the F1 scores for spans of entities
to evaluate NER performance. We also measure
the accuracy for action prediction (AP) and full
action signature prediction (ASP). The latter met-
ric reflects the performance of both the AP and AF
models combined: an action signature is counted as
correct when both the action and all the correspond-
ing arguments are predicted correctly. We compute
these metrics per turn given fixed dialogue context
from previous turns, where a turn can contain one
user action and multiple agent actions (multiple api
calls, nlg call, wait for user action). Turn-level ASP
accuracy most closely reflects the user experience
when interacting with the skill. Overall, the system
has reasonably high turn-level action signature pre-
diction accuracy, with relatively few failures. We
discuss some common failure patterns in 6.2.

We evaluate the proposed dialogue simulation
method to establish the impact of this novel compo-
nent. To do so, we train models with data generated
using different simulation approaches and compare
their performance on the test set. The baseline
approach, Base sampler from (Lin et al., 2020),

NER Span AP Relative ASP Relative
Relative F1 Accuracy Accuracy

+18.50% +20.92% +52.80%

Table 4: Relative NER span F1-score, AP accuracy and
ASP accuracy on Ticket Booking (TB) test set, aver-
aged over 5 runs.

simply resamples dialogues that are identical in
logical structure to the seed dialogues. It gener-
ates no new dialogue flows but does add language
variations via sampling from developer-provided
catalogs and user utterance templates. We observe
that models trained on data generated with Sec. 3
significantly outperform the models trained on data
generated with baseline as shown in Table 4.

6.2 Error Analysis

We conduct an error analysis of our models on the
TicketBot test set to investigate performance across
different tasks. We showcase a few common error
patterns in this section.

6.2.1 NER
We notice that NER model struggles to make cor-
rect predictions when the slot value is out of the
catalogue vocabulary. As we use fixed slot cata-
logues during dialogue simulation, it is a difficult
task for NER to generalize when real API calls
return unseen values. We see that using dynamic
catalogue feature significantly improves NER per-
formance, particularly for Movie slot. Dynamic
catalogues store entities mentioned in system’s re-
sponses and thus dynamic catalogue feature pro-
vides a strong signal to NER when the user later
mentions one of those entities. In addition to exact
match, the feature also fires for fuzzy matches lead-
ing to higher recall without significant drop in pre-
cision. Note that, NER model is not run on system
utterances; the entities are tagged by the developer
in the response NLG templates. Table 5 shows one
example in which “A Star Is Born” is not recog-
nized as Movie without this feature. Overall, by
adding dynamic catalogue feature, NER improves
by +11.26% on the Movie slot.

6.2.2 ASP
We find that Argument Filling Model makes mis-
takes when deciding whether or not to carryover a
particular argument. In most such failures, either
behavior (carryover or not carryover) is logically
correct. However, the user might have a specific be-

130

U: give me [sunday | Date] showtimes
A: I found [A Star Is Born | Movie] playing at
. . . (mentioned movie)
U: is [captain marvel | Movie] playing [sunday |
Date]
A: I found showtimes for [Captain Marvel |
Movie] at ...
U: is it playing anywhere else
A: Sorry, I could not find any matching show-
times
U: huh ok what are the showtimes for a star is
born again
...

Table 5: A partial dialogue from Ticketbot test set
showing NER mistake

havior in mind, while the model chooses the other
path. For example, in Table 6, AF model carryovers
theater and date information, while the particular
user wanted to know showtimes at all nearby the-
aters. As evident, this case is ambiguous as both
carrying over and not carrying over the theater and
date arguments is reasonable. To define the correct
carryover behavior, we advise application devel-
opers to provide a few examples demonstrating
the carryover behavior for each of their use cases.
These examples then bias the dialogue simulator to
generate data with the desired carryover behavior.

U: What is playing at Century Cinemas tomor-
row?
A: call: FindMovies(theater="Century Cine-
mas", date="tomorrow") -> show0
A: Cold Pursuit is playing at Century Cinemas
16 at 8 PM tomorrow
U: What are the showtimes for Joker?
A: call: FindMovies(movie="Joker", the-
ater="Century Cinemas", date="tomorrow") ->
show1
...

Table 6: A partial dialogue from Ticketbot test set
showing argument carryover mistake

7 Conclusions

We presented Alexa Conversations, a novel data-
driven and data-efficient approach for building
goal-oriented conversational experiences. Our pro-
posed system significantly reduces developer bur-

den while still allowing them to build robust expe-
riences. We envision that this system will be used
by a wide variety of developers who only need to
provide seed dialogues and action schema to build
conversational experiences1.

We expect our system to mature in the follow-
ing directions in future. We aim to reduce devel-
oper requirements for providing NLG responses
by introducing a statistical NLG system. We will
also develop robust mechanisms for incorporating
developer feedback through supervised and semi-
supervised methods to improve the performance of
our simulator and modeling components.

References
Layla El Asri, Hannes Schulz, Shikhar Sharma,

Jeremie Zumer, Justin Harris, Emery Fine, Rahul
Mehrotra, and Kaheer Suleman. 2017. Frames: A
corpus for adding memory to goal-oriented dialogue
systems. arXiv preprint arXiv:1704.00057.

Danqi Chen. 2018. Neural Reading Comprehension
and Beyond. Ph.D. thesis, Stanford University.

Heriberto Cuayáhuitl, Steve Renals, Oliver Lemon, and
Hiroshi Shimodaira. 2005. Human-computer dia-
logue simulation using hidden markov models. In
IEEE Workshop on Automatic Speech Recognition
and Understanding, 2005., pages 290–295. IEEE.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Maryam Fazel-Zarandi, Shang-Wen Li, Jin Cao, Jared
Casale, Peter Henderson, David Whitney, and Al-
borz Geramifard. 2017. Learning robust dialog poli-
cies in noisy environments. 1st Workshop on Con-
versational AI at NIPS.

Shuyang Gao, Abhishek Sethi, Sanchit Aggarwal,
Tagyoung Chung, and Dilek Hakkani-Tur. 2019. Di-
alog state tracking: A neural reading comprehension
approach. Proceedings of the 20th Annual SIGdial
Meeting on Discourse and Dialogue (SIGDIAL).

Izzeddin Gur, Dilek Zeynep Hakkani, Gökhan Tür, and
Pararth Shah. 2018. User modeling for task oriented
dialogues. 2018 IEEE Spoken Language Technology
Workshop (SLT), pages 900–906.

Chien-Wei Lin, Vincent Auvray, Daniel Elkind, Arijit
Biswas, Maryam Fazel-Zarandi, Nehal Belgamwar,
Shubhra Chandra, Matt Zhao, Angeliki Metallinou,

1iRobot (https://tinyurl.com/y5pjp3xn),
BigSky (https://tinyurl.com/y2ejvd3z) and Art
Museum (https://tinyurl.com/y3umpqo2) are
some of the external skills that have already been built using
Alexa Conversations

131

Tagyoung Chung, et al. 2020. Dialog simulation
with realistic variations for training goal-oriented
conversational systems. 1st Workshop on Human in
the Loop Dialogue Systems at Neurips.

Bing Liu, Gokhan Tur, Dilek Hakkani-Tur, Pararth
Shah, and Larry Heck. 2017. End-to-end optimiza-
tion of task-oriented dialogue model with deep rein-
forcement learning. arXiv:1711.10712.

X. Ma and E. Hovy. 2016. End-to-end sequence label-
ing via bi-directional lstm-cnns-crf. In Proc. of the
54th Annual Meeting of the ACL (ACL) 2016.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Olivier Pietquin. 2005. A framework for unsupervised
learning of dialogue strategies. Presses univ. de
Louvain.

Olivier Pietquin and Thierry Dutoit. 2006. A prob-
abilistic framework for dialog simulation and opti-
mal strategy learning. IEEE Transactions on Audio,
Speech, and Language Processing, 14(2):589–599.

Jost Schatzmann, Blaise Thomson, Karl Weilhammer,
Hui Ye, and Steve Young. 2007. Agenda-based user
simulation for bootstrapping a pomdp dialogue sys-
tem. In Human Language Technologies 2007: The
Conference of the North American Chapter of the As-
sociation for Computational Linguistics; Compan-
ion Volume, Short Papers, pages 149–152. Associ-
ation for Computational Linguistics.

Pararth Shah, Dilek Hakkani-Tür, Gokhan Tür, Ab-
hinav Rastogi, Ankur Bapna, Neha Nayak, and
Larry Heck. 2018. Building a Conversational Agent
Overnight with Dialogue Self-Play. (i).

Tsung Hsien Wen, David Vandyke, Nikola Mrkšíc, Mil-
ica Gašíc, Lina M. Rojas-Barahona, Pei Hao Su, Ste-
fan Ultes, and Steve Young. 2017. A network-based
end-to-end trainable task-oriented dialogue system.
15th Conference of the European Chapter of the
Association for Computational Linguistics, EACL
2017 - Proceedings of Conference, 1:438–449.

Jason D Williams, Kavosh Asadi, and Geoffrey
Zweig. 2017. Hybrid code networks: practical
and efficient end-to-end dialog control with super-
vised and reinforcement learning. arXiv preprint
arXiv:1702.03274.

Kyle Williams. 2019. Neural lexicons for slot tagging
in spoken language understanding. In 2019 Annual
Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL
’19).

Steve J Young. 2000. Probabilistic methods in
spoken–dialogue systems. Philosophical Transac-
tions of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences,
358(1769):1389–1402.

132

Proceedings of NAACL-HLT 2021: Demonstrations, pages 133–143
June 6–11, 2021. ©2021 Association for Computational Linguistics

RESIN: A Dockerized Schema-Guided Cross-document Cross-lingual
Cross-media Information Extraction and Event Tracking System

Haoyang Wen1, Ying Lin1, Tuan Manh Lai1, Xiaoman Pan1, Sha Li1, Xudong Lin2, Ben Zhou3

Manling Li1, Haoyu Wang3, Hongming Zhang3, Xiaodong Yu3, Alexander Dong3

Zhenhailong Wang1, Yi Ren Fung1, Piyush Mishra4, Qing Lyu3, Dídac Surís2
Brian Chen2, Susan Windisch Brown4, Martha Palmer4, Chris Callison-Burch3

Carl Vondrick2, Jiawei Han1, Dan Roth3, Shih-Fu Chang2, Heng Ji1
1 University of Illinois at Urbana-Champaign 2 Columbia University

3 University of Pennsylvania 4 University of Colorado, Boulder
hengji@illinois.edu,sc250@columbia.edu,danroth@seas.upenn.edu

Abstract

We present a new information extraction sys-
tem that can automatically construct temporal
event graphs from a collection of news doc-
uments from multiple sources, multiple lan-
guages (English and Spanish for our experi-
ment), and multiple data modalities (speech,
text, image and video). The system ad-
vances state-of-the-art from two aspects: (1)
extending from sentence-level event extraction
to cross-document cross-lingual cross-media
event extraction, coreference resolution and
temporal event tracking; (2) using human cu-
rated event schema library to match and en-
hance the extraction output. We have made
the dockerlized system publicly available for
research purpose at GitHub1, with a demo
video2.

1 Introduction

Event extraction and tracking technologies can help
us understand real-world events described in the
overwhelming amount of news data, and how they
are inter-connected. These techniques have already
been proven helpful in various application domains,
including news analysis (Glavaš and Štajner, 2013;
Glavaš et al., 2014; Choubey et al., 2020), aiding
natural disaster relief efforts (Panem et al., 2014;
Zhang et al., 2018; Medina Maza et al., 2020), fi-
nancial analysis (Ding et al., 2014, 2016; Yang
et al., 2018; Jacobs et al., 2018; Ein-Dor et al.,
2019; Özbayoglu et al., 2020) and healthcare mon-
itoring (Raghavan et al., 2012; Jagannatha and Yu,
2016; Klassen et al., 2016; Jeblee and Hirst, 2018).

However, it’s much more difficult to remem-
ber event-related information compared to entity-
related information. For example, most people in

1Github: https://github.com/RESIN-KAIROS/RESI
N-pipeline-public

2Video: http://blender.cs.illinois.edu/softwa
re/resin/resin.mp4

the United States will be able to answer the ques-
tion “Which city is Columbia University located
in?”, but very few people can give a complete an-
swer to “Who died from COVID-19?”. Progress
in natural language understanding and computer
vision has helped automate some parts of event
understanding but the current, first-generation, au-
tomated event understanding is overly simplistic
since most methods focus on sentence-level se-
quence labeling for event extraction. Existing meth-
ods for complex event understanding also lack of
incorporating knowledge in the form of a repository
of abstracted event schemas (complex event tem-
plates), understanding the progress of time via tem-
poral event tracking, using background knowledge,
and performing global inference and enhancement.

To address these limitations, in this paper we will
demonstrate a new end-to-end open-source dock-
erized research system to extract temporally or-
dered events from a collection of news documents
from multiple sources, multiple languages (English
and Spanish for our experiment), and multiple data
modalities (speech, text, image and video). Our
system consists of a pipeline of components that
involve schema-guided entity, relation and complex
event extraction, entity and event coreference res-
olution, temporal event tracking and cross-media
entity and event grounding. Event schemas encode
knowledge of stereotypical structures of events
and their connections. Our end-to-end system has
been dockerized and made publicly available for
research purpose.

2 Approach

2.1 Overview

The architecture of our system is illustrated in Fig-
ure 1. Our system extracts information from multi-
lingual multimedia document clusters. Each docu-

133

%3CmxGraphModel%3E%3Croot%3E%3CmxCell%20id%3D%220%22%2F%3E%3CmxCell%20id%3D%221%22%20parent%3D%220%22%2F%3E%3CmxCell%20id%3D%222%22%20value%3D%22Temporal%20Shift%20Module%20For%20Event%20Extraction%22%20style%3D%22rounded%3D1%3BwhiteSpace%3Dwrap%3Bhtml%3D1%3BfillColor%3D%23fff2cc%3BstrokeColor%3D%23d6b656%3B%22%20vertex%3D%221%22%20parent%3D%221%22%3E%3CmxGeometry%20x%3D%22239%22%20y%3D%22715%22%20width%3D%22130%22%20height%3D%2241.6%22%20as%3D%22geometry%22%2F%3E%3C%2FmxCell%3E%3C%2Froot%3E%3C%2FmxGraphModel%3E%3CmxGraphModel%3E%3Croot%3E%3CmxCell%20id%3D%220%22%2F%3E%3CmxCell%20id%3D%221%22%20parent%3D%220%22%2F%3E%3CmxCell%20id%3D%222%22%20value%3D%22Temporal%20Shift%20Module%20For%20Event%20Extraction%22%20style%3D%22rounded%3D1%3BwhiteSpace%3Dwrap%3Bhtml%3D1%3BfillColor%3D%23fff2cc%3BstrokeColor%3D%23d6b656%3B%22%20vertex%3D%221%22%20parent%3D%221%22%3E%3CmxGeometry%20x%3D%22239%22%20y%3D%22715%22%20width%3D%22130%22%20height%3D%2241.6%22%20as%3D%22geometry%22%2F%3E%3C%2FmxCell%3E%3C%2Froot%3E%3C%2FmxGraphModel%3E%3CmxGraphModel%3E%3Croot%3E%3CmxCell%20id%3D%220%22%2F%3E%3CmxCell%20id%3D%221%22%20parent%3D%220%22%2F%3E%3CmxCell%20id%3D%222%22%20value%3D%22Temporal%20Shift%20Module%20For%20Event%20Extraction%22%20style%3D%22rounded%3D1%3BwhiteSpace%3Dwrap%3Bhtml%3D1%3BfillColor%3D%23fff2cc%3BstrokeColor%3D%23d6b656%3B%22%20vertex%3D%221%22%20parent%3D%221%22%3E%3CmxGeometry%20x%3D%22239%22%20y%3D%22715%22%20width%3D%22130%22%20height%3D%2241.6%22%20as%3D%22geometry%22%2F%3E%3C%2FmxCell%3E%3C%2Froot%3E%3C%2FmxGraphModel%3E

Visual Event and Argument
Extraction Multi-Modal Event Coreference

Textual pipeline

ResNet-50-based Event
Classification

Joint Situation Localizer

Weakly-Supervised Event
Grounding

Rule-based Event Coreference

Cross-Document Cross-
Lingual Coreference

Entity
Coreference

Event
Coreference

Document clusters
Document clustersMultilingual
Multimedia

Document Clusters

Automatic Speech
Recognition

Amazon Transcript
API

%3CmxGraphModel%3E%3Croot%3E%3CmxCell%20id%3D%220%22%2F%3E%3CmxCell%20id%3D%221%22%20parent%3D%220%22%2F%3E%3CmxCell%20id%3D%222%22%20value%3D%22Temporal%20Shift%20Module%20For%20Event%20Extraction%22%20style%3D%22rounded%3D1%3BwhiteSpace%3Dwrap%3Bhtml%3D1%3BfillColor%3D%23fff2cc%3BstrokeColor%3D%23d6b656%3B%22%20vertex%3D%221%22%20parent%3D%221%22%3E%3CmxGeometry%20x%3D%22239%22%20y%3D%22715%22%20width%3D%22130%22%20height%3D%2241.6%22%20as%3D%22geometry%22%2F%3E%3C%2FmxCell%3E%3C%2Froot%3E%3C%2FmxGraphModel%3E

Entity, Relation, Event
Mention Extraction

BERT-based Joint Mention
Extraction

BART-based Document-
Level Argument Extraction

Temporal Ordering

T5-based Temporal
Relation Extraction

RoBERTa-based
Temporal Relation

Extraction

Background
KB

Schema
Repository

Schema Matching

LCS-based Beam
Search

Instantiated
Schema

placeholder placeholderCollective Entity Linking
and NIL Clustering

x

x

Machine
Translation

Temporal Event
Graph in English

Figure 1: The architecture of RESIN schema-guided information extraction and temporal event tracking system.

ment cluster contains documents about a specific
complex event. Our textual pipeline takes input
from texts and transcribed speeches. It first extracts
entity, relation and event mentions (Section 2.2-2.3)
and then perform cross-document cross-lingual en-
tity and event coreference resolution (Section 2.4).
The extracted events are then ordered by tempo-
ral relation extraction (Section 2.5). Our visual
pipeline takes images and videos as input and ex-
tracts events and arguments from visual signals and
ground the extracted knowledge elements onto our
extracted graph via cross-media event coreference
resolution (Section 2.6). Finally, our system se-
lects the schema from a schema repository that best
matches the extracted IE graph and merges these
two graphs (Section 2.7). Our system can extract
24 types of entities, 46 types of relations and 67
types of events as defined in the DARPA KAIROS3

ontology.

2.2 Joint Entity, Relation and Event Mention
Extraction and Linking from Speech and
Text

For speech input, we apply the Amazon Transcribe
API 4 for converting English and Spanish speech
to text. When the language is not specified, it is
automatically detected from the audio signal. It
returns the transcription with starting and ending

3https://www.darpa.mil/program/knowledge-di
rected-artificial-intelligence-reasoning-over-
schemas

4https://aws.amazon.com/transcribe/

times for each detected words, as well as potential
alternative transcriptions.

Then from the speech recognition results and
text input, we extract entity, relation, and event
mentions using OneIE (Lin et al., 2020), a state-
of-the-art joint neural model for sentence-level in-
formation extraction. Given a sentence, the goal
of this module is to extract an information graph
G = (V,E), where V is the node set containing en-
tity mentions and event triggers and E is the edge
set containing entity relations and event-argument
links. We use a pre-trained BERT encoder (De-
vlin et al., 2018) to obtain contextualized word
representations for the input sentence. Next, we
adopt separate conditional random field-based tag-
gers to identify entity mention and event trigger
spans from the sentence. We represent each span,
or node in the information graph, by averaging
vectors of words in the span. After that, we calcu-
late the label scores for each node or edge using
separate task-specific feed forward networks. In
order to capture the interactions among knowledge
elements, we incorporate schema-guided global
features when decoding information graphs. For
a candidate graph G, we define a global feature
vector f = {f1(G), ..., fM (G)}, where fi(·) is a
function that evaluates whether G matches a spe-
cific global feature. We compute the global feature
score as uf , where u is a learnable weight vec-
tor. Finally, we use a beam search-based decoder
to generate the information graph with the highest
global score. After we extract these mentions, we

134

apply a syntactic parser (Honnibal et al., 2020) to
extend mention head words to their extents. Then
we apply a cross-lingual entity linker (Pan et al.,
2017) to link entity mentions to WikiData (Vran-
dečić and Krötzsch, 2014)5.

2.3 Document-level Event Argument
Extraction

The previous module can only operate on the sen-
tence level. In particular, event arguments can of-
ten be found in neighboring sentences. To make
up for this, we further develop a document-level
event argument extraction model (Li et al., 2021)
and use the union of the extracted arguments from
both models as the final output. We formulate the
argument extraction problem as conditional text
generation. Our model can easily handle the case
of missing arguments and multiple arguments in
the same role without the need of tuning thresholds
and can extract all arguments in a single pass. The
condition consists of the original document and a
blank event template. For example, the template for
Transportation event type is arg1 transported
arg2 in arg3 from arg4 place to arg5 place. The de-
sired output is a filled template with the arguments.

Our model is based on BART (Lewis et al.,
2020), which is an encoder-decoder language
model. To utilize the encoder-decoder LM for argu-
ment extraction, we construct an input sequence of
〈s〉 template 〈s〉〈/s〉document 〈/s〉. All argument
names (arg1, arg2 etc.) in the template are replaced
by a special placeholder token 〈arg〉. This model
is trained in an end-to-end fashion by directly opti-
mizing the generation probability.

To align the extracted arguments back to the
document, we adopt a simple postprocessing pro-
cedure and find the matching text span closest to
the corresponding event trigger.

2.4 Cross-document Cross-lingual Entity and
Event Coreference Resolution

After extracting all mentions of entities and events,
we apply our cross-document cross-lingual entity
coreference resolution model, which is an exten-
sion of the e2e-coref model (Lee et al., 2017).
We use the multilingual XLM-RoBERTa (XLM-
R) Transformer model (Conneau et al., 2020) so
that our coreference resolution model can handle
non-English data. Second, we port the e2e-coref
model to the cross-lingual cross-document setting.

5https://www.wikidata.org/

Given N hybrid English and Spanish input docu-
ments, we create N(N−1)

2 pairs of documents and
treat each pair as a single “mega-document”. We
apply our model to each mega-document and, at
the end, aggregate the predictions across all mega-
documents to extract the coreference clusters. Fi-
nally, we also apply a simple heuristic rule that
prevents two entity mentions from being merged
together if they are linked to different entities with
high confidence.

Our event coreference resolution method (Lai
et al., 2021) is similar to entity coreference res-
olution, while incorporating additional symbolic
features such as the event type information. If
the input documents are all about one specific com-
plex event, we apply some schema-guided heuristic
rules to further refine the predictions of the neural
event coreference resolution model. For example,
in a bombing schema, there is typically only one
bombing event. Therefore, in a document cluster,
if there are two event mentions of type bombing
and they have several arguments in common, these
two mentions will be considered as coreferential.

2.5 Cross-document Temporal Event
Ordering

Based on the event coreference resolution compo-
nent described above, we group all mentions into
clusters. Next we aim to order events along a time-
line. We follow Zhou et al. (2020) to design a
component for temporal event ordering. Specifi-
cally, we further pre-train a T5 model (Raffel et al.,
2020) with distant temporal ordering supervision
signals. These signals are acquired through two set
of syntactic patterns: 1) before/after keywords in
text and 2) explicit date and time mentions. We
take such a pre-trained temporal T5 model and fine-
tune it on MATRES (Ning et al., 2018b) and use
it as the system for temporal event ordering. We
perform pair-wise temporal relation classification
for all event mention pairs in a documents.

We further train an alternative model from fine-
tuning RoBERTa (Liu et al., 2019) on MATRES
(Ning et al., 2018b). This model has also been suc-
cessfully applied for event time prediction (Wen
et al., 2021; Li et al., 2020a). We only consider
event mention pairs which are within neighboring
sentences, or can be connected by shared argu-
ments.

Besides model prediction, we also learn high
confident patterns from the schema repository. We

135

consider temporal relations that appear very fre-
quently as our prior knowledge. For each given
document cluster, we apply these patterns as high-
precision patterns before two statistical temporal
ordering models separately. The schema matching
algorithm will select the best matching from two
graphs as the final instantiated schema results.

Because the annotation for non-English data can
be expensive and time-consuming, the temporal
event tracking component has only been trained
on English input. To extend the temporal event
tracking capability to cross-lingual setting, we ap-
ply Google Cloud neural machine translation 6 to
translate Spanish documents into English and ap-
ply the FastAlign algorithm (Dyer et al., 2013) to
obtain word alignment.

2.6 Cross-media Information Grounding and
Fusion

Visual event and argument role extraction:
Our goal is to extract visual events along with their
argument roles from visual data, i.e., images and
videos. In order to train event extractor from vi-
sual data, we have collected a new dataset called
Video M2E2 which contains 1,500 video-article
pairs by searching over YouTube news channels
using 18 event primitives related to visual concepts
as search keywords. We have extensively anno-
tated the the videos and sampled key frames for
annotating bounding boxes of argument roles.

Our Visual Event and Argument Role Extraction
system consists of an event classification model
(ResNet-50 (He et al., 2016)) and an argument role
extraction model (JSL (Marasović et al., 2020)). To
extract the events and associated argument roles,
we leverage a public dataset called Situation with
Groundings (SWiG) (Marasović et al., 2020) to
pretrain our system. SWiG is designed for event
and argument understanding in images with ob-
ject groundings but has a different ontology. We
mapped the event types, argument role types and
entity names in SWiG to our ontology (covering 12
event sub-types) so that our model is able to extract
event information from both images and videos.
For videos, we sample frames at a frame rate of 1
frame per second and process them as individual
images. In this way, we have a unified model for
both image and video inputs.

6https://cloud.google.com/translate/docs/ad
vanced/translating-text-v3

Multimodal event coreference: We further ex-
tended the previous visual event extraction model
to find coreference links between visual and text
events. For the video frames with detected events,
we apply a weakly-supervised grounding model
(Akbari et al., 2019) to find sentences and video
frames that have high frame-to-sentence similar-
ity, representing the sentence content similar to
the video frame content. We apply a rule-based
approach to determine if a visual event mention
and a textual event mention are coreferential: (1)
Their event types match; (2) No contradiction in
the entity types for the same argument role across
different modalities. (3) The video frame and sen-
tence have a high semantic similarity score. Based
on this pipeline, we are able to add visual prove-
nance of events into the event graph. Moreover,
we are able to add visual-only arguments to the
event graph, which makes the event graph more
informative.

2.7 Schema Matching

Once we have acquired a large-scale schema reposi-
tory by schema induction methods (Li et al., 2020c),
we can view it as providing a scaffolding that we
can instantiate with incoming data to construct tem-
poral event graphs. Based on each document clus-
ter, we need to find the most accurate schema from
the schema repository. We further design a schema
matching algorithm that can align our extracted
event, entities and relations to a schema.

We first perform topological sort for events
based on temporal relations for both IE graph and
schema graph so that we can get linearized event
sequences in chronological order. Then for each
pair of IE graph and schema graph, we apply the
longest common subsequence (LCS) method to
find the best matching. Our schema matching con-
siders coreference and relations, which will break
the optimal substructure when only considering
event sequences. We extend the algorithm by re-
placing the best results for subproblems with a
beam of candidates with ranking from a scoring
metric that considers matched events, arguments
and relations. The candidates consist of matched
event pairs, and then we greedily match their argu-
ments and relations for scoring. We merge the best
matched IE graph and schema graph to form the
final instantiated schema.

136

3 Experiments

3.1 Data

We have conducted evaluations including schema
matching and schema-guided information extrac-
tion.

3.2 Quantitative Performance

Schema Induction. To induce schemas, we col-
lect Wikipedia articles describing complex events
related to improvised explosive device (IED), and
extract event graphs by applying our IE system.
The data statistics are shown in Table 1. We induce
schemas by applying the path language model (Li
et al., 2020c) over event paths in the training data,
and merge top ranked paths into schema graphs
for human curation. The statistics of the human
curated schema repository are shown in Table 2.

Split #Docs #Events #Arguments #Relations

Train 5,247 41,672 136,894 122,846
Dev 575 4,661 15,404 13,320
Test 577 5,089 16,721 14,054

Table 1: Data statistics of IED Schema Learning Cor-
pus.

Schema #Steps #Arguments #Temporal
Links

Disease Outbreak 20 94 20
Disaster Relief 15 85 15
Medical Treatment 8 37 8
Search and Rescue 11 50 10
General Attack 21 89 27
General IED 33 144 43
Roadside IED 28 123 36
Car IED 34 148 45
Drone Strikes IED 32 142 48
Backpack IED 31 138 40

Table 2: Data statistics of the induced schema library.

Schema-guided Information Extraction. The
performance of each component is shown in
Table 3. We evaluate the end-to-end perfor-
mance of our system on a complex event cor-
pus (LDC2020E39), which contains multi-lingual
multi-media document clusters. The data statistics
are shown in Table 4. We train our mention ex-
traction component on ACE 2005 (Walker et al.,
2006) and ERE (Song et al., 2015); document-
level argument exraction on ACE 2005 (Walker
et al., 2006) and RAMS (Ebner et al., 2020); coref-
erence component on ACE 2005 (Walker et al.,

2006), EDL 20167, EDL 20178, OntoNotes (Prad-
han et al., 2012), ERE (Song et al., 2015), CoNLL
2002 (Tjong Kim Sang, 2002), DCEP (Dias, 2016)
and SemEval 2010 (Recasens et al., 2010); tempo-
ral ordering component on MATRES (Ning et al.,
2018b); visual event and argument extraction on
Video M2E2 and SWiG (Marasović et al., 2020).
The statistics of our output are shown in Table 5.
The DARPA program’s phrase 1 human assess-
ment on about 25% of our system output shows
that about 70% of events are correctly extracted.

Component Benchmark Metric Score

Mention
Extraction

En
Trigger ACE+ERE F1 64.1

Argument ACE+ERE F1 49.7
Relation ACE+ERE F1 49.5

Es
Trigger ACE+ERE F1 63.4

Argument ACE+ERE F1 46.0
Relation ACE+ERE F1 46.6

Document-level
Argument Extraction

ACE F1 66.7
RAMS F1 48.6

Coreference
Resolution

En Entity OntoNotes CoNLL 92.4
Event ACE CoNLL 84.8

Es Entity SemEval 2010 CoNLL 67.6
Event ERE-ES CoNLL 81.0

Temporal
Ordering

RoBERTa MATRES F1 78.8
T5 MATRES-b Acc. 89.6

Visual Event Extraction Video M2E2 Acc. 70.0

Table 3: Performance (%) of each component.
MATRES-b refers to MATRES binary classification
that only considers BEFORE and AFTER relations.

Category Complex
Events

Documents Images Videos

11 139 1,213 31

Table 4: Data statistics for schema matching corpus
(LDC2020E39).

Category Extracted
Events

Schema
Steps

Instantiated
Steps

3,180 1,738 958

Table 5: Results of schema matching.

3.3 Qualitative Analysis
Figure 2 illustrates a subset of examples for the best
matched results from our end-to-end system. We

7LDC2017E03
8LDC2017E52

137

TrialHearing Sentence ArrestJailDetain ReleaseParole

Broadcast ReleaseParole

Defendant

Place

Old Bailey

JudgeCourt

A court in British legal history

Defendant

JudgeCourt

Max Hill

Communicator

Defendant

JudgeCourt

Detainee Defendant
Defendant

Place

Manchester

Resident

ArrestJailDetain ReleaseParole

Defendant

Defendant

Attacker

Defendant Detainee

Defendant

ChargeIndict

ReleaseParole

Convict

TrialHearing SentenceDefendant

Defendant

... ...

... ...

Salman Abedi

Extracted Graph

Schema

Temporal Ordering

ChargeIndict

Figure 2: The visualization of schema matching results from extracted graph and schema. The unmatched portions
for both extracted graph and schema are blurred.

can see that our system can extract events, entities
and relations and align them well with the selected
schema. The final instantiated schema is the hybrid
of two graphs from merging the matched elements.

4 Related Work

Text Information Extraction. Existing end-to-
end Information Extraction (IE) systems (Wadden
et al., 2019; Li et al., 2020b; Lin et al., 2020; Li
et al., 2019) mainly focus on extracting entities,
events and entity relations from individual sen-
tences. In contrast, we extract and infer arguments
over the global document context. Furthermore,
our IE system is guided by a schema repository.
The extracted graph will be used to instantiate a
schema graph, which can be applied to predict fu-
ture events.

Multimedia Information Extraction. Previous
multimedia IE systems (Li et al., 2020b; Yazici
et al., 2018) only include cross-media entity coref-
erence resolution by grounding the extracted visual
entities to text. We are the first to perform cross-
media joint event extraction and coreference reso-
lution to obtain the coreferential events from text,
images and videos.

Coreference Resolution. Previous neural mod-
els for event coreference resolution use non-
contextual (Nguyen et al., 2016; Choubey et al.,
2020; Huang et al., 2019) or contextual word repre-
sentations (Lu et al., 2020; Yu et al., 2020). We in-
corporate a wide range of symbolic features (Chen
and Ji, 2009; Chen et al., 2009; Sammons et al.,
2015; Lu and Ng, 2016, 2017; Duncan et al., 2017),
such as event attributes and types, into our event
coreference resolution module using a context-
dependent gate mechanism.

Temporal Event Ordering. Temporal relations
between events are extracted for neighbor events
in one sentence (Ning et al., 2017, 2018a, 2019;
Han et al., 2019), ignoring the temporal dependen-
cies between events across sentences. We perform
document-level event ordering and propagate tem-
poral attributes through shared arguments. Further-
more, we take advantage of the schema repository
knowledge by using the frequent temporal order
between event types to guide the ordering between
events.

138

5 Conclusions and Future Work

We demonstrate a state-of-the-art schema-guided
cross-document cross-lingual cross-media informa-
tion extraction and event tracking system. This
system is made publicly available to enable users
to effectively harness rich information from a va-
riety of sources, languages and modalities. In the
future, we plan to develop more advanced graph
neural networks based method for schema match-
ing and schema-guided event prediction.

6 Broader Impact

Our goal in developing Cross-document Cross-
lingual Cross-media information extraction and
event tracking systems is to advance the state-of-
the-art and enhance the field’s ability to fully un-
derstand real-world events from multiple sources,
languages and modalities. We believe that to make
real progress in event-centric Natural Language Un-
derstanding, we should not focus only on datasets,
but to also ground our work in real-world applica-
tions. The application we focus on is navigating
news, and the examples shown here and in the
paper demonstrate the potential use in news under-
standing.

For our demo, the distinction between benefi-
cial use and harmful use depends, in part, on the
data. Proper use of the technology requires that
input documents/images are legally and ethically
obtained. We are particularly excited about the
potential use of the technologies in applications
of broad societal impact, such as disaster moni-
toring and emergency response. Training and as-
sessment data is often biased in ways that limit
system accuracy on less well represented popula-
tions and in new domains. The performance of our
system components as reported in the experiment
section is based on the specific benchmark datasets,
which could be affected by such data biases. Thus
questions concerning generalizability and fairness
should be carefully considered.

A general approach to ensure proper, rather
than malicious, application of dual-use technol-
ogy should: incorporate ethics considerations as
the first-order principles in every step of the system
design, maintain a high degree of transparency and
interpretability of data, algorithms, models, and
functionality throughout the system. We intend
to make our software available as open source and
shared docker containers for public verification and
auditing, and explore countermeasures to protect

vulnerable groups.

Acknowledgement

This research is based upon work supported in part
by U.S. DARPA KAIROS Program No. FA8750-
19-2-1004. The views and conclusions contained
herein are those of the authors and should not be
interpreted as necessarily representing the official
policies, either expressed or implied, of DARPA,
or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copy-
right annotation therein. We thank all the anno-
tators who have contributed to the annotations of
our training data for the joint IE component (in
alphabetical order): Daniel Campos, Anthony Cuff,
Yi R. Fung, Xiaodan Hu, Emma Bonnette Hamel,
Samual Kriman, Meha Goyal Kumar, Manling Li,
Tuan M. Lai, Ying Lin, Sarah Moeller, Ashley
Nobi, Xiaoman Pan, Nikolaus Parulian, Adams
Pollins, Rachel Rosset, Haoyu Wang, Qingyun
Wang, Zhenhailong Wang, Spencer Whitehead,
Lucia Yao, Pengfei Yu, Qi Zeng, Haoran Zhang,
Hongming Zhang, Zixuan Zhang.

References
Hassan Akbari, Svebor Karaman, Surabhi Bhargava,

Brian Chen, Carl Vondrick, and Shih-Fu Chang.
2019. Multi-level multimodal common semantic
space for image-phrase grounding. In Proceedings
of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 12476–12486.

Zheng Chen and Heng Ji. 2009. Graph-based event
coreference resolution. In Proceedings of the 2009
Workshop on Graph-based Methods for Natural Lan-
guage Processing (TextGraphs-4), pages 54–57.

Zheng Chen, Heng Ji, and Robert M Haralick. 2009.
A pairwise event coreference model, feature impact
and evaluation for event coreference resolution. In
Proceedings of the workshop on events in emerging
text types, pages 17–22.

Prafulla Kumar Choubey, Aaron Lee, Ruihong Huang,
and Lu Wang. 2020. Discourse as a function of
event: Profiling discourse structure in news arti-
cles around the main event. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5374–5386, Online. As-
sociation for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In

139

Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Francisco Dias. 2016. Multilingual Automated Text
Anonymization. Msc dissertation, Instituto Superior
Técnico, Lisbon, Portugal, May.

Xiao Ding, Yue Zhang, Ting Liu, and Junwen Duan.
2014. Using structured events to predict stock price
movement: An empirical investigation. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
1415–1425, Doha, Qatar. Association for Computa-
tional Linguistics.

Xiao Ding, Yue Zhang, Ting Liu, and Junwen Duan.
2016. Knowledge-driven event embedding for stock
prediction. In Proceedings of COLING 2016, the
26th International Conference on Computational
Linguistics: Technical Papers, pages 2133–2142,
Osaka, Japan. The COLING 2016 Organizing Com-
mittee.

Chase Duncan, Liang-Wei Chan, Haoruo Peng, Hao
Wu, Shyam Upadhyay, Nitish Gupta, Chen-Tse Tsai,
Mark Sammons, and Dan Roth. 2017. Ui ccg tac-
kbp2017 submissions: Entity discovery and linking,
and event nugget detection and co-reference. In
TAC.

Chris Dyer, Victor Chahuneau, and Noah A Smith.
2013. A simple, fast, and effective reparameteriza-
tion of ibm model 2. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 644–648.

Seth Ebner, Patrick Xia, Ryan Culkin, Kyle Rawlins,
and Benjamin Van Durme. 2020. Multi-sentence ar-
gument linking. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics.

Liat Ein-Dor, Ariel Gera, Orith Toledo-Ronen, Alon
Halfon, Benjamin Sznajder, Lena Dankin, Yonatan
Bilu, Yoav Katz, and Noam Slonim. 2019. Finan-
cial event extraction using Wikipedia-based weak
supervision. In Proceedings of the Second Work-
shop on Economics and Natural Language Process-
ing, pages 10–15, Hong Kong. Association for Com-
putational Linguistics.

Goran Glavaš, Jan Šnajder, Marie-Francine Moens, and
Parisa Kordjamshidi. 2014. HiEve: A corpus for
extracting event hierarchies from news stories. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
pages 3678–3683, Reykjavik, Iceland. European
Language Resources Association (ELRA).

Goran Glavaš and Sanja Štajner. 2013. Event-centered
simplification of news stories. In Proceedings of the
Student Research Workshop associated with RANLP
2013, pages 71–78, Hissar, Bulgaria. INCOMA Ltd.
Shoumen, BULGARIA.

Rujun Han, Qiang Ning, and Nanyun Peng. 2019.
Joint event and temporal relation extraction with
shared representations and structured prediction. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, pages 434–444.
Association for Computational Linguistics.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Processing in
Python. Zenodo.

Yin Jou Huang, Jing Lu, Sadao Kurohashi, and Vincent
Ng. 2019. Improving event coreference resolution
by learning argument compatibility from unlabeled
data. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 785–
795.

Gilles Jacobs, Els Lefever, and Véronique Hoste. 2018.
Economic event detection in company-specific news
text. In Proceedings of the First Workshop on Eco-
nomics and Natural Language Processing, pages 1–
10, Melbourne, Australia. Association for Computa-
tional Linguistics.

Abhyuday N Jagannatha and Hong Yu. 2016. Bidi-
rectional RNN for medical event detection in elec-
tronic health records. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 473–482, San Diego,
California. Association for Computational Linguis-
tics.

Serena Jeblee and Graeme Hirst. 2018. Listwise tempo-
ral ordering of events in clinical notes. In Proceed-
ings of the Ninth International Workshop on Health
Text Mining and Information Analysis, pages 177–
182, Brussels, Belgium. Association for Computa-
tional Linguistics.

Prescott Klassen, Fei Xia, and Meliha Yetisgen. 2016.
Annotating and detecting medical events in clin-
ical notes. In Proceedings of the Tenth Inter-
national Conference on Language Resources and
Evaluation (LREC’16), pages 3417–3421, Portorož,
Slovenia. European Language Resources Associa-
tion (ELRA).

140

Tuan Lai, Heng Ji, Trung Bui, Quan Hung Tran, Franck
Dernoncourt, and Walter Chang. 2021. A context-
dependent gated module for incorporating symbolic
semantics into event coreference resolution. In
Proc. The 2021 Conference of the North American
Chapter of the Association for Computational Lin-
guistics - Human Language Technologies (NAACL-
HLT2021).

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
lution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188–197, Copenhagen, Denmark. Association
for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Manling Li, Ying Lin, Joseph Hoover, Spencer White-
head, Clare Voss, Morteza Dehghani, and Heng Ji.
2019. Multilingual entity, relation, event and human
value extraction. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics (Demonstra-
tions), pages 110–115.

Manling Li, Ying Lin, Tuan Manh Lai, Xiaoman Pan,
Haoyang Wen, Sha Li, Zhenhailong Wang, Pengfei
Yu, Lifu Huang, Di Lu, Qingyun Wang, Haoran
Zhang, Qi Zeng, Chi Han, Zixuan Zhang, Yujia Qin,
Xiaodan Hu, Nikolaus Parulian, Daniel Campos,
Heng Ji, Brian Chen, Xudong Lin, Alireza Zareian,
Amith Ananthram, Emily Allaway, Shih-Fu Chang,
Kathleen McKeown, Yixiang Yao, Michael Spec-
tor, Mitchell DeHaven, Daniel Napierski, Marjorie
Freedman, Pedro Szekely, Haidong Zhu, Ram Neva-
tia, Yang Bai, Yifan Wang, Ali Sadeghian, Haodi
Ma, and Daisy Zhe Wang. 2020a. GAIA at SM-
KBP 2020 - a dockerlized multi-media multi-lingual
knowledge extraction, clustering, temporal tracking
and hypothesis generation system. In Proceedings
of Thirteenth Text Analysis Conference (TAC 2020).

Manling Li, Alireza Zareian, Ying Lin, Xiaoman Pan,
Spencer Whitehead, Brian Chen, Bo Wu, Heng Ji,
Shih-Fu Chang, Clare Voss, Daniel Napierski, and
Marjorie Freedman. 2020b. GAIA: A fine-grained
multimedia knowledge extraction system. In Pro-
ceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics: System
Demonstrations, pages 77–86, Online. Association
for Computational Linguistics.

Manling Li, Qi Zeng, Ying Lin, Kyunghyun Cho, Heng
Ji, Jonathan May, Nathanael Chambers, and Clare
Voss. 2020c. Connecting the dots: Event graph
schema induction with path language modeling. In

Proc. The 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP2020).

Sha Li, Heng Ji, and Jiawei Han. 2021. Document-
level event argument extraction by conditional gen-
eration. In Proc. The 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics - Human Language Technologies
(NAACL-HLT2021).

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
A joint end-to-end neural model for information ex-
traction with global features. In Proc. The 58th An-
nual Meeting of the Association for Computational
Linguistics (ACL2020).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Jing Lu and Vincent Ng. 2016. Event coreference
resolution with multi-pass sieves. In Proceedings
of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 3996–
4003.

Jing Lu and Vincent Ng. 2017. Joint learning for
event coreference resolution. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
90–101.

Yaojie Lu, Hongyu Lin, Jialong Tang, Xianpei Han,
and Le Sun. 2020. End-to-end neural event corefer-
ence resolution. arXiv preprint arXiv:2009.08153.

Ana Marasović, Chandra Bhagavatula, Jae Sung Park,
Ronan Le Bras, Noah A Smith, and Yejin Choi.
2020. Natural language rationales with full-
stack visual reasoning: From pixels to semantic
frames to commonsense graphs. arXiv preprint
arXiv:2010.07526.

Salvador Medina Maza, Evangelia Spiliopoulou, Ed-
uard Hovy, and Alexander Hauptmann. 2020. Event-
related bias removal for real-time disaster events. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 3858–3868, Online.
Association for Computational Linguistics.

Thien Huu Nguyen, Adam Meyers, and Ralph Grish-
man. 2016. New york university 2016 system for
kbp event nugget: A deep learning approach. In
TAC.

Qiang Ning, Zhili Feng, and Dan Roth. 2017. A struc-
tured learning approach to temporal relation extrac-
tion. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 1027–1037, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

141

Qiang Ning, Zhili Feng, Hao Wu, and Dan Roth. 2018a.
Joint reasoning for temporal and causal relations. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2018,
Melbourne, Australia, July 15-20, 2018, Volume
1: Long Papers, pages 2278–2288. Association for
Computational Linguistics.

Qiang Ning, Sanjay Subramanian, and Dan Roth. 2019.
An improved neural baseline for temporal relation
extraction. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing, EMNLP-IJCNLP
2019, Hong Kong, China, November 3-7, 2019,
pages 6202–6208. Association for Computational
Linguistics.

Qiang Ning, H. Wu, and D. Roth. 2018b. A multi-
axis annotation scheme for event temporal relations.
ArXiv, abs/1804.07828.

Ahmet Murat Özbayoglu, Mehmet Ugur Gudelek, and
Omer Berat Sezer. 2020. Deep learning for finan-
cial applications : A survey. Appl. Soft Comput.,
93:106384.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel
Nothman, Kevin Knight, and Heng Ji. 2017. Cross-
lingual name tagging and linking for 282 languages.
In Proc. the 55th Annual Meeting of the Association
for Computational Linguistics (ACL2017).

Sandeep Panem, Manish Gupta, and Vasudeva Varma.
2014. Structured information extraction from nat-
ural disaster events on twitter. In Proceedings of
the 5th International Workshop on Web-scale Knowl-
edge Representation Retrieval & Reasoning, Web-
KR@CIKM 2014, Shanghai, China, November 3,
2014, pages 1–8. ACM.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. Conll-
2012 shared task: Modeling multilingual unre-
stricted coreference in ontonotes. In Joint Con-
ference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning - Proceedings of the Shared Task:
Modeling Multilingual Unrestricted Coreference in
OntoNotes, EMNLP-CoNLL 2012, July 13, 2012,
Jeju Island, Korea, pages 1–40. ACL.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, M. Matena, Yanqi Zhou, W. Li,
and Peter J. Liu. 2020. Exploring the limits of trans-
fer learning with a unified text-to-text transformer. J.
Mach. Learn. Res., 21:140:1–140:67.

Preethi Raghavan, Eric Fosler-Lussier, and Albert Lai.
2012. Temporal classification of medical events.
In BioNLP: Proceedings of the 2012 Workshop on
Biomedical Natural Language Processing, pages
29–37, Montréal, Canada. Association for Compu-
tational Linguistics.

Marta Recasens, Lluís Màrquez, Emili Sapena, M. An-
tònia Martí, Mariona Taulé, Véronique Hoste, Mas-
simo Poesio, and Yannick Versley. 2010. Semeval-
2010 task 1: Coreference resolution in multiple lan-
guages. In Proceedings of the 5th International
Workshop on Semantic Evaluation, SemEval@ACL
2010, Uppsala University, Uppsala, Sweden, July
15-16, 2010, pages 1–8. The Association for Com-
puter Linguistics.

Mark Sammons, Haoruo Peng, Yangqiu Song, Shyam
Upadhyay, Chen-Tse Tsai, Pavankumar Reddy,
Subhro Roy, and Dan Roth. 2015. Illinois ccg tac
2015 event nugget, entity discovery and linking, and
slot filler validation systems. In TAC.

Zhiyi Song, Ann Bies, Stephanie Strassel, Tom Riese,
Justin Mott, Joe Ellis, Jonathan Wright, Seth Kulick,
Neville Ryant, and Xiaoyi Ma. 2015. From light to
rich ere: annotation of entities, relations, and events.
In Proceedings of the the 3rd Workshop on EVENTS:
Definition, Detection, Coreference, and Representa-
tion, pages 89–98.

Erik F. Tjong Kim Sang. 2002. Introduction to the
CoNLL-2002 shared task: Language-independent
named entity recognition. In COLING-02: The
6th Conference on Natural Language Learning 2002
(CoNLL-2002).

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledge base. Commu-
nications of the ACM, 57(10).

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP2019).

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2006. Ace 2005 multilin-
gual training corpus. Linguistic Data Consortium,
Philadelphia, 57.

Haoyang Wen, Yanru Qu, Heng Ji, Qiang Ning, Jiawei
Han, Avi Sil, Hanghang Tong, and Dan Roth. 2021.
Event time extraction and propagation via graph at-
tention networks. In Proc. The 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics - Human Language Tech-
nologies (NAACL-HLT2021).

Hang Yang, Yubo Chen, Kang Liu, Yang Xiao, and
Jun Zhao. 2018. DCFEE: A document-level Chi-
nese financial event extraction system based on au-
tomatically labeled training data. In Proceedings
of ACL 2018, System Demonstrations, pages 50–
55, Melbourne, Australia. Association for Compu-
tational Linguistics.

Adnan Yazici, Murat Koyuncu, Turgay Yilmaz, Saeid
Sattari, Mustafa Sert, and Elvan Gulen. 2018. An

142

intelligent multimedia information system for multi-
modal content extraction and querying. Multimedia
Tools and Applications, 77(2):2225–2260.

Xiaodong Yu, Wenpeng Yin, and Dan Roth. 2020.
Paired representation learning for event and entity
coreference. arXiv preprint arXiv:2010.12808.

Boliang Zhang, Ying Lin, Xiaoman Pan, Di Lu,
Jonathan May, Kevin Knight, and Heng Ji. 2018.
Elisa-edl: A cross-lingual entity extraction, linking
and localization system. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Demon-
strations, pages 41–45.

Ben Zhou, Kyle Richardson, Qiang Ning, Tushar Khot,
A. Sabharwal, and D. Roth. 2020. Temporal rea-
soning on implicit events from distant supervision.
ArXiv, abs/2010.12753.

143

Proceedings of NAACL-HLT 2021: Demonstrations, pages 144–152
June 6–11, 2021. ©2021 Association for Computational Linguistics

MUDES: Multilingual Detection of Offensive Spans

Tharindu Ranasinghe
University of Wolverhampton

Wolverhampton, UK
tharindu.ranasinghe@wlv.ac.uk

Marcos Zampieri
Rochester Institute of Technology

Rochester, NY, USA
mazgla@rit.edu

Abstract

The interest in offensive content identification
in social media has grown substantially in re-
cent years. Previous work has dealt mostly
with post level annotations. However, identify-
ing offensive spans is useful in many ways. To
help coping with this important challenge, we
present MUDES, a multilingual system to de-
tect offensive spans in texts. MUDES features
pre-trained models, a Python API for develop-
ers, and a user-friendly web-based interface. A
detailed description of MUDES’ components
is presented in this paper.

1 Introduction

Offensive and impolite language are widespread
in social media posts motivating a number of stud-
ies on automatically detecting the various types of
offensive content (e.g. aggression (Kumar et al.,
2018, 2020), cyber-bullying (Rosa et al., 2019),
hate speech (Malmasi and Zampieri, 2018), etc.).
Most previous work has focused on classifying full
instances (e.g. posts, comments, documents) (e.g.
offensive vs. not offensive) while the identification
of the particular spans that make a text offensive
has been mostly neglected.

Identifying offensive spans in texts is the goal
of the SemEval-2021 Task 5: Toxic Spans Detec-
tion (Pavlopoulos et al., 2021). The organisers of
this task argue that highlighting toxic spans in texts
helps assisting human moderators (e.g. news por-
tals moderators) and that this can be a first step in
semi-automated content moderation. Finally, as
we demonstrate in this paper, addressing offensive
spans in texts will make the output of offensive
language detection systems more interpretable thus
allowing a more detailed linguistics analysis of pre-
dictions and improving the quality of such systems.

With these important points in mind, we devel-
oped MUDES: Multilingual Detection of Offen-

WARNING: This paper contains text excerpts and words
that are offensive in nature.

sive Spans. MUDES is a multilingual framework
for offensive language detection focusing on text
spans. The main contributions of this paper are the
following:

1. We introduce MUDES, a new Python-based
framework to identify offensive spans with
state-of-the-art performance.

2. We release four pre-trained offensive lan-
guage identification models: en-base, en-
large models which are capable of identify-
ing offensive spans in English text. We also
release Multilingual-base and Multilingual-
large models which are able to recognise of-
fensive spans in languages other than English.

3. We release a Python Application Program-
ming Interface (API) for developers who are
interested in training more models and per-
forming inference in the code level.

4. For general users and non-programmers, we
release a user-friendly web-based User Inter-
face (UI), which provides the functionality
to input a text in multiple languages and to
identify the offensive span in that text.

2 Related Work

Early approaches to offensive language identifica-
tion relied on traditional machine learning clas-
sifiers (Dadvar et al., 2013) and later on neural
networks combined with word embeddings (Ma-
jumder et al., 2018; Hettiarachchi and Ranasinghe,
2019). Transformer-based models like BERT (De-
vlin et al., 2019) and ELMO (Peters et al., 2018)
have been recently applied to offensive language
detection achieving competitive scores (Wang et al.,
2020; Ranasinghe and Hettiarachchi, 2020) in re-
cent SemEval competitions such as HatEval (Basile
et al., 2019) OffensEval (Zampieri et al., 2020).

In terms of languages, the majority of studies on
this topic deal with English (Malmasi and Zampieri,

144

Post Offensive Spans

Stupid hatcheries have completely fucked everything [0, 1, 2, 3, 4, 5, 34, 35, 36, 37, 38, 39]
Victimitis: You are such an asshole. [28, 29, 30, 31, 32, 33, 34]
So is his mother. They are silver spoon parasites. []
You’re just silly. [12, 13, 14, 15, 16]

Table 1: Four comments from the dataset, with their annotations. The offensive words are displayed in red and the
spans are indicated by the character position in the instance.

2017; Yao et al., 2019; Ridenhour et al., 2020;
Rosenthal et al., 2020) due to the the wide avail-
ability of language resources such as corpora and
pre-trained models. In recent years, several studies
have been published on identifying offensive con-
tent in other languages such as Arabic (Mubarak
et al., 2020), Dutch (Tulkens et al., 2016), French
(Chiril et al., 2019), Greek (Pitenis et al., 2020),
Italian (Poletto et al., 2017), Portuguese (Fortuna
et al., 2019), and Turkish (Çöltekin, 2020). Most
of these studies have created new datasets and re-
sources for these languages opening avenues for
multilingual models as those presented in Ranas-
inghe and Zampieri (2020). However, all studies
presented in this section focused on classifying full
texts, as discussed in the Introduction. MUDES’
objective is to fill this gap and perform span level
offensive language identification.

3 Data

The main dataset used to train the machine learn-
ing models presented in this paper is the dataset
released within the scope of the aforementioned
SemEval-2021 Task 5: Toxic Spans Detection for
English. The dataset contains posts (comments)
from the publicly available Civil Comments dataset
(Borkan et al., 2019). The organisers have ran-
domly selected 10,000 posts, out of a total of 1,2
million posts in the original dataset. The offen-
sive spans have been annotated using a crowd-
annotation platform, employing three crowd-raters
per post. By the time of writing this paper, only
the trial set and the training set have been released
and the gold labels for the test set have not yet
been released. Therefore, training of the machine
learning models presented in MUDES was done
on the training set which we refer to as TSDTrain
and the evaluation was conducted on the trial set
which we refer to as TSDTrial set. In Table 1 we
show four randomly selected examples from the
TSDTrain dataset with their annotations.

The general idea is to learn a robust model from
this dataset and generalize to other English datasets
which do not contain span annotation. Another
goal is to investigate the feasibility of annotation
projection to other languages.

Other Datasets In order to evaluate our frame-
work in different domains and languages we used
three publicly available offensive language identifi-
cation datasets. As an off-domain English dataset,
we choose the Offensive Language Identification
Dataset (OLID) (Zampieri et al., 2019a), used in Of-
fensEval 2019 (SemEval-2019 Task 6) (Zampieri
et al., 2019b), containing over 14,000 posts from
Twitter. To evaluate our framework in different lan-
guages, we selected a Danish (Sigurbergsson and
Derczynski, 2020) and a Greek (Pitenis et al., 2020)
dataset. These two datasets have been provided by
the organisers of OffensEval 2020 (SemEval-2020
Task 12) (Zampieri et al., 2020) and were annotated
using OLID’s annotation guidelines. The Danish
dataset contains over 3,000 posts from Facebook
and Reddit while the Greek dataset contains over
10,000 Twitter posts, allowing us to evaluate our
dataset in an off-domain, multilingual setting. As
these three datasets have been annotated at the in-
stance level, we followed an evaluation process
explained in Section 5.

4 Methodology

The main motivation behind this methodology is
the recent success that transformer models had in
various NLP tasks (Devlin et al., 2019) including
offensive language identification (Ranasinghe and
Zampieri, 2020; Ranasinghe et al., 2019; Wiede-
mann et al., 2020). Most of these transformer-based
approaches take the final hidden state of the first
token ([CLS]) from the transformer as the represen-
tation of the whole sequence and a simple softmax
classifier is added to the top of the transformer
model to predict the probability of a class label
(Sun et al., 2019). However, as previously men-

145

Figure 1: Model Architecture. Architecture consists of two parts. Part A is the language modelling and Part B is
the token classification.

tioned, these models classify whole comments or
documents and do not identify the spans that make
a text offensive. Since the objective of this task
is to identify offensive spans rather than classify-
ing the whole comment, we followed a different
architecture.

As shown in Figure 1, the complete architecture
contains two main parts; Language Modeling (LM)
and Token Classification (TC). In the LM part, we
used a pre-trained transformer model and retrained
it on the TSDTrain dataset using Masked Language
Modeling (MLM). In the second part of the archi-
tecture, we used the saved model from the LM part
and we perform a token classification. We added
a token level classifier on top of the transformer
model as shown in Figure 1. The token-level classi-
fier is a linear layer that takes the last hidden state
of the sequence as the input and produce a label for
each token as the output. In this case each token
can have two labels; offensive and not offensive.
We have listed the training configurations in the
Appendix.

We experimented with several popular trans-
former models like BERT (Devlin et al., 2019),
XLNET (Yang et al., 2019), ALBERT (Lan et al.,
2020), RoBERTa (Liu et al., 2019) etc. From the
pre-trained transformer models we selected, we
grouped the large models and base models sepa-
rately in order to release two English models. A
large model; en-large which is more accurate, but
has a low efficiency regarding space and time. The
base model; en-base is efficient, but has a compar-
atively low accuracy than the en-large model. All

the experiments have been executed for five times
with different random seeds and we took the mode
of the classes predicted by each random seed as the
final result (Hettiarachchi and Ranasinghe, 2020).

Multilingual models - The motivation behind
the use of multilingual models comes from re-
cent works (Ranasinghe and Zampieri, 2020, 2021;
Ranasinghe et al., 2020) which used transfer learn-
ing and cross-lingual embeddings. These studies
show that cross-lingual transformers like XLM-R
(Conneau et al., 2019) can be trained on an En-
glish dataset and have the model weights saved to
detect offensive language in other languages outper-
forming monolingual models trained on the target
language dataset. We used a similar methodology
but for the token classification architecture instead.
We used XLM-R cross-lingual transformer model
(Conneau et al., 2019) as the Transformer in Fig-
ure 1 on TSDTrain and carried out evaluations on
the Danish and Greek datasets. We release two
multilingual models; multilingual-base based on
XLM-R base model and multilingual-large based
on XLM-R large model.

5 Evaluation and Results

We followed two different evaluation methods. In
Section 5.1 we present the methods used to evaluate
offensive spans on the TSDTrial set. In Section
5.2 we presented the methods used to evaluate the
other three datasets which only contained post level
annotations.

146

5.1 Offensive Spans Evaluation

For the Toxic Spans Detection dataset, we followed
the same evaluation procedure of the SemEval
Toxic Spans Detection competition. The organisers
have used F1 score mentioned in Da San Martino
et al. (2019) to evaluate the systems. Let system
Ai return a set St

Ai
of character offsets, for parts of

the post found to be toxic. Let Gt be the character
offsets of the ground truth annotations of t. We
compute the F1 score of system Ai with respect
to the ground truth G for post t as mentioned in
Equation 1, where | ·| denotes set cardinality.

F t
1 (Ai, G) =

2 · P t (Ai, G) ·Rt (Ai, G)

P t (Ai, G) +Rt (Ai, G)
(1)

P t (Ai, G) =

∣∣∣St
Ai
∩St

G

∣∣∣∣∣∣St
Ai

∣∣∣
Rt (Ai, G) =

∣∣∣St
Ai
∩St

G

∣∣∣
|St

G|

We present the results along with the baseline pro-
vided by the organisers in Table 2. The baseline
is implemented using a spaCy NER pipeline. The
spaCy NER system contains a word embedding
strategy using sub word features and Bloom em-
bedding (Serrà and Karatzoglou, 2017), and a deep
convolution neural network with residual connec-
tions. Additionally, we compare our results to a
lexicon-based word match approach mentioned in
Ranasinghe et al. (2021) where the lexicon is based
on profanity words from online resources1,2.

Model Name Base Model F1 score
en-large roberta-large 0.6886
en-base xlnet-base-cased 0.6734

multilingual-large XLM-R-large 0.6338
multilingual-base XLM-R-base 0.6160
spaCy baseline NA 0.5976

Lexicon word match
(Ranasinghe et al., 2021)

NA 0.3378

Table 2: Results ordered by F1 score for TSD Trial.

The results show that all MUDES’ models out-
perform the spaCy baseline and the lexicon-based
word match. From all of the large transformer mod-
els we experimented roberta-large performed better
than others. Therefore, we released it as en-large

1https://www.cs.cmu.edu/~biglou/
resources/bad-words.txt

2https://github.com/RobertJGabriel/
Google-profanity-words

model in MUDES. From the base models we exper-
imented, XLNet-base-cased model outperformed
all the other base models so we released it as en-
base model. We also released two multilingual
models; multilingual-base and multilingual-large
based on XLM-R-base and XLM-R-large respec-
tively. All the pre-trained MUDES’ models are
available to download from HuggingFace model
hub 3 (Wolf et al., 2020).

5.2 Off-Domain and Multilingual Evaluation

For the English off-domain and multilingual
datasets we followed a different evaluation process.
We used a pre-trained MUDES’ model trained on
TSDTrain to predict the offensive spans for all texts
in the test sets of two non-English datasets (Danish,
and Greek) and English off-domain dataset, OLID,
which is annotated at the document level. If a cer-
tain text contains at least one offensive span we
marked the whole text as offensive following the
OLID annotation guidelines described in Zampieri
et al. (2019a). We compared our results to the best
systems submitted to OffensEval 2020 in terms of
macro F1 reported by the task organisers (Zampieri
et al., 2020). We present the results along with the
majority class baseline for each dataset in Table
3. For English off domain dataset (OLID) we only
used the MUDES en models while for Danish and
Greek datasets we used the MUDES multilingual
models.

Language Model M F1
Pàmies et al. (2020) 0.8119

Danish multilingual-large 0.7623
multilingual-base 0.7143
Majority Baseline 0.4668
Wiedemann et al. (2020) 0.9204

English en-large 0.9023
en-base 0.8892
Majority Baseline 0.4193
Ahn et al. (2020) 0.8522

Greek multilingual-large 0.8143
multilingual-base 0.7820
Majority Baseline 0.4202

Table 3: Results ordered by macro (M) F1 for Danish,
English and Greek datasets

Results show that despite the change of domain
and the language, MUDES perform well in all the
datasets and compares favourably to the best sys-
tems submitted. It should be noted that the best

3MUDES’ models are available on https:
//huggingface.co/mudes

147

systems have been predominantly trained on of-
fensive languages identification task on post level
while MUDES’ objective is different. Yet MUDES
come closer to the best systems in all the datasets.

From the results, it is clear that MUDES english
models can perform in a different domain like Twit-
ter. Also the results show that MUDES multilingual
models are capable of identifying offensive spans
in other languages too. Since XLM-R supports
104 languages, this approach will benefit all those
languages without any training data at all.

6 System Demonstration

6.1 Application Programming Interface

MUDES is available as a Python package in the
Python Package Index (PyPI)4. The package is re-
lated to MUDES GitHub repository5. Users can
install it easily with the following command after
installing PyTorch (Paszke et al., 2019).

1: $ p i p i n s t a l l mudes

The Python package contains the following func-
tionalities.

Get offensive spans with a pretrained model
The library provides the functionality to load a
pretrained model and use it to identify offensive
spans. The following code segment downloads and
loads MUDES’ en-base model in a CPU only en-
vironment and identifies offensive spans in the the
text; "This is fucking crazy!!". If the users prefer a
GPU, the argument use_cuda should be set to True.

Listing 1 English Inference Example
1: from mudes.app.mudes_app
2: import MUDESApp
3:
4: sentence = "This is fucking crazy!!"
5:
6: app = MUDESApp("en-base",
7: use_cuda=False)
8: app.predict_toxic_spans(sentence)

Train a MUDES model The library provides the
functionality to train a MUDES model from scratch
using the code segment present next. It takes a
Pandas dataframe in the format of TSDTrain, for-
mats it for the token classification task and train
a MUDES model from scratch. MUDES support
popular transformer types as bert, xlnet, roberta etc.
as the MODEL_TYPE and name of the model as

4https://pypi.org/project/mudes/
5https://github.com/tharindudr/MUDES

appear in Hugging Face (Wolf et al., 2020) model
repository. 6

Listing 2 Training Example
1: from mudes.algo.mudes_model
2: import MUDESModel
3: from mudes.algo.preprocess
4: import read_datafile,
5: format_data
6:
7: train_df = format_data(train)
8: tags = train_df[’labels’]
9: .unique().tolist()

10:
11: model = MUDESModel(MODEL_TYPE,
12: MODEL_NAME, labels=tags)
13: model.train(train_df)

6.2 User Interface
We developed a prototype of the User Interface (UI)
to demonstrate the capabilities of the system. The
UI is based on Streamlit7 which provides function-
alities to easily develop dashboards for machine
learning projects. The code base for the UI is avail-
able in GitHub 8. This UI is hosted in a Linux
server. 9 We also release a Docker container im-
age of the UI in Docker Hub10 for those who are
interested in self hosting the UI. Docker enables
developers to easily deploy and run any application
as a lightweight, portable, self-sufficient container,
which can run virtually anywhere. The released
Docker container image follows Continuous Inte-
gration/Continuous Deployment (CI/CD) from the
GitHub repository which allows sharing and de-
ploying the code quickly and efficiently.

Once Docker is installed, one can easily run our
UI with this command.

1: $ d oc ke r run t h a r i n d u d r / mudes

This command will automatically install all the re-
quired packages, download and load the pre-trained
models and open the system in the default browser.
We provide the following functionalities from the
user interface.

Switch through pretrained models - The users
can switch through the pre-trained models using
the radio buttons available in the left side of the UI
under Available Models section. They can select

6https://huggingface.co/models
7www.streamlit.io
8https://github.com/tharindudr/

MUDES-UI.
9http://rgcl.wlv.ac.uk/mudes/

10Docker Hub is a hosted repository service provided by
Docker for finding and sharing container images.

148

(a) Example from Civil Comments Dataset (b) Example from Tamil. (Pussy like this !!!!)

Figure 2: Examples in English and in a low-resource languages. The experiments were conducted with en-large
and the multilingual-large models respectively.

an option from en-base, en-large, multilingual-base
and multilingual-large. These models have been
already downloaded from the HuggingFace model
hub and they are loaded in to the random-access
memory of the hosting computer.

Switch through available datasets - We have
made the four datsets used in this paper avail-
able from the UI for the users to experiment with
(Borkan et al., 2019; Zampieri et al., 2019a; Pitenis
et al., 2020; Sigurbergsson and Derczynski, 2020).
Once the user selects a particular option, the sys-
tem will automatically load the test set of the se-
lected dataset. Once it is loaded the user can iterate
through the dataset using the scrollbar. For each
text the UI will display the offensive spans in red.

Get offensive spans for a custom text - The
users can also enter a custom text in the text box,
hit ctrl+enter and see the offensive spans avail-
able in the input text. Once processed through
the system, any offensive spans available in the text
will be displayed in red. Figure 2 shows several
screenshots from the UI. It illustrates an example
on English for the texts taken from civil comments
dataset (Borkan et al., 2019) conducted with en-
large model. To show that MUDES framework
works on low resource language too, Figure 2 also
displays an example from Tamil.

6.3 System Efficiency

The time taken to predict the offensive spans for a
text will be critical in an online system developed
for real time use. Therefore, we evaluated the time
MUDES takes to predict the offensive spans in 100
texts for all the released models in a CPU and GPU
environment. The results show that large models
take around 3 seconds for a sentence in a CPU and

take around 1 second for a sentence in a GPU on
average while the base models take approximately
one third of that time in both environments. From
these results it is clear that MUDES is capable of
predicting toxic spans efficiently in any environ-
ment. The full set of results are reported in the
Appendix. We used a batch size of one, in order to
mimic the real world scenario. The full specifica-
tions of the CPU and GPU environments are listed
in the Appendix.

7 Conclusion

This paper introduced MUDES: Multilingual
Detection of Offensive Spans. We evaluated
MUDES on the recently released SemEval-2021
Toxic Spans Detection dataset. Our results show
that MUDES outperforms the strong baselines of
the competition. Furthermore, we show that once
MUDES is trained on English data using state of
the art cross-lingual transformer models, it is capa-
ble of detecting offensive spans in other languages.
With MUDES, we release a Python library, four
pre-trained models and an user interface. We show
that MUDES is efficient to use in real time scenar-
ios even in a non GPU environment. In future work,
we would like to further evaluate MUDES on other
datasets. Finally, we would like to implement a
flexible multitask architecture capable of detecting
offense at both span and post level.

Acknowledgments

We would like to thank the SemEval-2021 Toxic
Spans Detection shared task organisers for mak-
ing this interesting dataset available. We further
thank the anonymous reviewers for their insightful
feedback.

149

References
Hwijeen Ahn, Jimin Sun, Chan Young Park, and

Jungyun Seo. 2020. NLPDove at SemEval-2020
task 12: Improving offensive language detection
with cross-lingual transfer. In Proceedings of Se-
mEval.

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-
ora Nozza, Viviana Patti, Francisco Manuel Rangel
Pardo, Paolo Rosso, and Manuela Sanguinetti. 2019.
Semeval-2019 task 5: Multilingual detection of hate
speech against immigrants and women in twitter. In
Proceedings of SemEval.

Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum
Thain, and Lucy Vasserman. 2019. Nuanced metrics
for measuring unintended bias with real data for text
classification. In Proceedings of WWW.

Çağrı Çöltekin. 2020. A Corpus of Turkish Offen-
sive Language on Social Media. In Proceedings of
LREC.

Patricia Chiril, Farah Benamara Zitoune, Véronique
Moriceau, Marlène Coulomb-Gully, and Abhishek
Kumar. 2019. Multilingual and multitarget hate
speech detection in tweets. In Proceedings of TALN.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of ACL.

Giovanni Da San Martino, Seunghak Yu, Alberto
Barrón-Cedeño, Rostislav Petrov, and Preslav
Nakov. 2019. Fine-grained analysis of propaganda
in news article. In Proceedings of EMNLP-IJCNLP.

Maral Dadvar, Dolf Trieschnigg, Roeland Ordelman,
and Franciska de Jong. 2013. Improving Dyberbul-
lying Detection with User Context. In Proceedings
of ECIR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of NAACL.

Paula Fortuna, Joao Rocha da Silva, Leo Wanner, Sér-
gio Nunes, et al. 2019. A Hierarchically-labeled
Portuguese Hate Speech Dataset. In Proceedings of
ALW.

Hansi Hettiarachchi and Tharindu Ranasinghe. 2019.
Emoji powered capsule network to detect type and
target of offensive posts in social media. In Proceed-
ings of RANLP.

Hansi Hettiarachchi and Tharindu Ranasinghe. 2020.
InfoMiner at WNUT-2020 task 2: Transformer-
based covid-19 informative tweet extraction. In Pro-
ceedings of W-NUT.

Ritesh Kumar, Atul Kr Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking aggression
identification in social media. In Proceedings of
TRAC.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2020. Evaluating Aggression
Identification in Social Media. In Proceedings of
TRAC.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations. In Proceed-
ings of ICLR.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Prasenjit Majumder, Thomas Mandl, et al. 2018. Filter-
ing Aggression from the Multilingual Social Media
Feed. In Proceedings TRAC.

Shervin Malmasi and Marcos Zampieri. 2017. Detect-
ing Hate Speech in Social Media. In Proceedings of
RANLP.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1 – 16.

Hamdy Mubarak, Ammar Rashed, Kareem Darwish,
Younes Samih, and Ahmed Abdelali. 2020. Arabic
offensive language on twitter: Analysis and experi-
ments. arXiv preprint arXiv:2004.02192.

Marc Pàmies, Emily Öhman, Kaisla Kajava, and Jörg
Tiedemann. 2020. LT@Helsinki at SemEval-2020
task 12: Multilingual or language-specific BERT?
In Proceedings of SemEval.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learn-
ing library. In Proceedings of NeurIPS.

John Pavlopoulos, Léo Laugier, Jeffrey Sorensen, and
Ion Androutsopoulos. 2021. Semeval-2021 task 5:
Toxic spans detection. In Proceedings of SemEval.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep Contextualized Word Rep-
resentations. In Proceedings of NAACL.

Zeses Pitenis, Marcos Zampieri, and Tharindu Ranas-
inghe. 2020. Offensive Language Identification in
Greek. In Proceedings of LREC.

150

Fabio Poletto, Marco Stranisci, Manuela Sanguinetti,
Viviana Patti, and Cristina Bosco. 2017. Hate
Speech Annotation: Analysis of an Italian Twitter
Corpus. In Proceedings of CLiC-it.

Tharindu Ranasinghe, Sarthak Gupte, Marcos
Zampieri, and Ifeoma Nwogu. 2020. WLV-RIT at
HASOC-Dravidian-CodeMix-FIRE2020: Offensive
Language Identification in Code-switched YouTube
Comments. In Proceedings of FIRE.

Tharindu Ranasinghe and Hansi Hettiarachchi. 2020.
BRUMS at SemEval-2020 task 12: Transformer
based multilingual offensive language identification
in social media. In Proceedings of SemEval.

Tharindu Ranasinghe, Diptanu Sarkar, Marcos
Zampieri, and Alex Ororbia. 2021. WLV-RIT
at SemEval-2021 Task 5: A Neural Transformer
Framework for Detecting Toxic Spans. In Proceed-
ings of SemEval.

Tharindu Ranasinghe and Marcos Zampieri. 2020.
Multilingual Offensive Language Identification with
Cross-lingual Embeddings. In Proceedings of
EMNLP.

Tharindu Ranasinghe and Marcos Zampieri. 2021.
Multilingual Offensive Language Identification for
Low-resource Languages. ACM Transactions on
Asian and Low-Resource Language Information Pro-
cessing (TALLIP).

Tharindu Ranasinghe, Marcos Zampieri, and Hansi
Hettiarachchi. 2019. BRUMS at HASOC 2019:
Deep Learning Models for Multilingual Hate Speech
and Offensive Language Identification. In Proceed-
ings of FIRE.

Michael Ridenhour, Arunkumar Bagavathi, Elaheh
Raisi, and Siddharth Krishnan. 2020. Detecting
Online Hate Speech: Approaches Using Weak Su-
pervision and Network Embedding Models. arXiv
preprint arXiv:2007.12724.

Hugo Rosa, N Pereira, Ricardo Ribeiro, Paula Costa
Ferreira, Joao Paulo Carvalho, S Oliveira, Luísa Co-
heur, Paula Paulino, AM Veiga Simão, and Isabel
Trancoso. 2019. Automatic cyberbullying detection:
A systematic review. Computers in Human Behav-
ior, 93:333–345.

Sara Rosenthal, Pepa Atanasova, Georgi Karadzhov,
Marcos Zampieri, and Preslav Nakov. 2020. A
Large-Scale Weakly Supervised Dataset for Offen-
sive Language Identification. In arXiv preprint
arXiv:2004.14454.

Joan Serrà and Alexandros Karatzoglou. 2017. Get-
ting deep recommenders fit: Bloom embeddings for
sparse binary input/output networks. In Proceedings
of RecSys.

Gudbjartur Ingi Sigurbergsson and Leon Derczynski.
2020. Offensive Language and Hate Speech Detec-
tion for Danish. In Proceedings of LREC.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang.
2019. How to fine-tune bert for text classification?
In Proceedings of CCL.

Stéphan Tulkens, Lisa Hilte, Elise Lodewyckx, Ben
Verhoeven, and Walter Daelemans. 2016. A
Dictionary-based Approach to Racism Detection in
Dutch Social Media. In Proceedings of TA-COS.

Shuohuan Wang, Jiaxiang Liu, Xuan Ouyang, and
Yu Sun. 2020. Galileo at SemEval-2020 task 12:
Multi-lingual learning for offensive language iden-
tification using pre-trained language models. In Pro-
ceedings of SemEval.

Gregor Wiedemann, Seid Muhie Yimam, and Chris
Biemann. 2020. UHH-LT at SemEval-2020 task 12:
Fine-tuning of pre-trained transformer networks for
offensive language detection. In Proceedings of Se-
mEval.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of EMNLP.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le.
2019. XLNet: Generalized Autoregressive Pretrain-
ing for Language Understanding. In Proceedings of
NeurIPS.

Mengfan Yao, Charalampos Chelmis, and Daphney-
Stavroula Zois. 2019. Cyberbullying Ends Here: To-
wards Robust Detection of Cyberbullying in Social
Media. In Proceedings of WWW.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the type and target of offensive
posts in social media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of SemEval.

Marcos Zampieri, Preslav Nakov, Sara Rosenthal, Pepa
Atanasova, Georgi Karadzhov, Hamdy Mubarak,
Leon Derczynski, Zeses Pitenis, and Çağrı Çöltekin.
2020. SemEval-2020 Task 12: Multilingual Offen-
sive Language Identification in Social Media (Offen-
sEval 2020). In Proceedings of SemEval.

151

Appendix

i Training Configurations We used an Nvidia
Tesla K80 GPU to train the models. We divided
the dataset into a training set and a validation
set using 0.8:0.2 split. We fine tuned the learn-
ing rate and number of epochs of the model
manually to obtain the best results for the vali-
dation set. We obtained 1e−5 as the best value
for learning rate and 3 as the best value for
number of epochs for all the languages. We
performed early stopping if the validation loss
did not improve over 10 evaluation steps. Train-
ing large models took around 30 minutes while
training base models took around 10 minutes.
In addition to the learning rate and number
of epochs we used the parameter values men-
tioned in Table 4. We kept these values as
constants.

Parameter Value
adam epsilon 1e-8
warmup ratio 0.1
warmup steps 0
max grad norm 1.0
max seq. length 140
gradient accumulation steps 1

Table 4: Parameter Specifications.

ii Hardware Specifications

In Table 5 and in Table 6 we mention the speci-
fications of the GPU and CPU we used for the
experiments of the paper. For the training of
the MUDES models, we mainly used the GPU.
For the efficiency experiments mentioned in
Section 6.3 we used both GPU and CPU envi-
ronments.

Parameter Value
GPU Nvidia K80
GPU Memory 12GB
GPU Memory Clock 0.82GHz
Performance 4.1 TFLOPS
No. CPU Cores 2
RAM 12GB

Table 5: GPU Specifications.

iii Run time

As expected base models perform efficiently
than the large models in both environments.
Large models take around 3 seconds for a sen-
tence in a CPU and take around 1 second for a

Parameter Value
CPU Model Name Intel(R) Xeon(R)
CPU Freq. 2.30GHz
No. CPU Cores 2
CPU Family Haswell
RAM 12GB

Table 6: CPU Specifications.

sentence in a GPU while the base models take
approximately one third of that time in both
environments. From these results it is clear that
MUDES is capable of predicting toxic spans
efficiently in any environment.

Model GPU Time CPU Time
en-base 35.51 100.81
en-large 100.36 315.72
multilingual-base 36.23 115.98
multilingual-large 120.54 335.65

Table 7: Time taken to do predictions on 100 sentences
in seconds.

Ethics Statement

MUDES is essentially a web-based visualization
tool with predictive models trained on multiple pub-
licly available datasets. The authors of this paper
used datasets referenced in this paper which were
previously collected and annotated. No new data
collection has been carried out as part of this work.
We have not collected or processed writers’/users’
information nor have we carried out any form of
user profiling protecting users’ privacy and identity.

We understand that every dataset is subject to
intrinsic bias and that computational models will in-
evitably learn biased information from any dataset.
We believe that MUDES will help coping with
biases in datasets and models as it features: (1)
a freely available Python library that other re-
searchers can use to train new models on other
datasets; (2) a web-based visualizing tool that can
help efforts in reducing biases in offensive lan-
guage identification as they can be used to process
and visualize potentially offensive spans new data.
Finally, unlike models trained at the post level, the
projected annotation of spans allows users to un-
derstand which part of the instance is considered
offensive by the models.

152

Author Index

Acharya, Anish, 125
Adhikari, Suranjit, 125
Agarwal, Sanchit, 125
Andreyev, Slava, 116
Auvray, Vincent, 125
Ayala Meneses, Gilmar, 116

Bansal, Mohit, 42
Belgamwar, Nehal, 125
Biemann, Chris, 99
Biswas, Arijit, 125
Blood, Ian, 116
Brown, Susan Windisch, 133
Bruno, James, 116

Cahill, Aoife, 116
Callison-Burch, Chris, 133
Chakrabarty, Tuhin, 26
Chandra, Shubhra, 125
Chang, Shih-Fu, 66, 133
Chauhan, Aabhas, 66
Chen, Brian, 133
Chung, Tagyoung, 125
Ciosici, Manuel, 8
Cummings, Joseph, 8

DeHaven, Mitchell, 8
Dong, Alexander, 133

ELsayed, Ahmed, 66

Fazel-Zarandi, Maryam, 125
Fosler-Lussier, Eric, 106
Freedman, Marjorie, 8
Fung, Yi, 66, 133

Gabriel, Raefer, 125
Galstyan, Aram, 26
Gao, Shuyang, 125
Ghazarian, Sarik, 26
Goel, Karan, 42
Goel, Rahul, 125
Goyal, Anuj, 125
Guan, Yingjun, 66

Hager, Philipp, 78

Hakkani-Tur, Dilek, 125
Han, Guangxing, 66
Han, Jiawei, 66, 133
Han, Rujun, 56
Hedges, Alex, 8
Hochheiser, Harry, 106
Hsu, Wynne, 84
Hu, Sen, 18
Huang, Kung-Hsiang, 56

Jezabek, Jan, 125
Jha, Abhay, 125
Ji, Heng, 66, 133

Kankanampati, Yash, 8
Kao, Jiun-Yu, 125
Krestel, Ralf, 78
Krishnan, Prakash, 125
Ku, Peter, 125

Lai, Tuan, 133
Lavee, Tamar, 116
Lee, Dong-Ho, 8
Lee, Mong Li, 84
Li, Bangzheng, 66
Li, Manling, 66, 133
Li, Ruisong, 66
Li, Sha, 133
Li, Yanzeng, 35
Liem, David, 66
Lin, Chien-Wei, 125
Lin, Xudong, 133
Lin, Ying, 66, 133
Lin, Yinnian, 18
Liu, Qing, 125
Liu, Tingwen, 35
Liu, Weili, 66
Liu, Zixi, 26
Lyu, Qing, 133

Ma, Jiawei, 66
Ma, Mingyu Derek, 56
Ma, Xuezhe, 26
Mandal, Arindam, 125
Metallinou, Angeliki, 125

153

Mishra, Piyush, 133

Naik, Vishal, 125
Nakashole, Ndapa, 92
Newman-Griffis, Denis, 106
Nguyen, Dat Quoc, 1
Nguyen, Linh The, 1

Onyshkevych, Boyan, 66

Palmer, Martha, 66, 133
Pan, Xiaoman, 133
Pan, Yi, 125
Parulian, Nikolaus, 66
Paul, Shachi, 125
Peng, Nanyun, 26, 56
Perer, Adam, 106
Perera, Vittorio, 125
Pustejovsky, James, 66

Quangang, Li, 35

Rah, Jasmine, 66
Rajani, Nazneen Fatema, 42
Ramey, James, 116
Ranasinghe, Tharindu, 144
Ré, Christopher, 42
Risch, Julian, 78
Roth, Dan, 133

Samarinas, Chris, 84
Schneider, Cynthia, 66
Sethi, Abhishek, 125
Shao, Yutong, 92
Shen, Minmin, 125
Singh, Shikhar, 56
Sivaraman, Venkatesh, 106
Song, Xiangchen, 66
Strom, Nikko, 125
Sun, Jiao, 56
Surís, Dídac, 133

Taschdjian, Zachary, 42
Tolentino, Florencia, 116
Tu, Jingxuan, 66

Vig, Jesse, 42
Vondrick, Carl, 133
Voss, Clare, 66

Wang, Eddie, 125
Wang, Haoyu, 133
Wang, Qingyun, 66
Wang, Xuan, 66

Wang, Yihan, 92
Wang, Zhenhailong, 133
Weischedel, Ralph, 8
Wen, Haoyang, 133
Wen, Nuan, 56
Wiechmann, Max, 99

Yang, Mu, 56
Yimam, Seid Muhie, 99
Yu, Bowen, 35
Yu, Xiaodong, 133

Zampieri, Marcos, 144
Zhang, Hongming, 133
Zhang, Minhao, 18
Zhang, Ranran Haoran, 66
Zhang, Ruoyu, 18
Zhou, Ben, 133
Zou, Lei, 18

	Program
	PhoNLP: A joint multi-task learning model for Vietnamese part-of-speech tagging, named entity recognition and dependency parsing
	Machine-Assisted Script Curation
	NAMER: A Node-Based Multitasking Framework for Multi-Hop Knowledge Base Question Answering
	DiSCoL: Toward Engaging Dialogue Systems through Conversational Line Guided Response Generation
	FITAnnotator: A Flexible and Intelligent Text Annotation System
	Robustness Gym: Unifying the NLP Evaluation Landscape
	EventPlus: A Temporal Event Understanding Pipeline
	COVID-19 Literature Knowledge Graph Construction and Drug Repurposing Report Generation
	Multifaceted Domain-Specific Document Embeddings
	Improving Evidence Retrieval for Automated Explainable Fact-Checking
	Interactive Plot Manipulation using Natural Language
	ActiveAnno: General-Purpose Document-Level Annotation Tool with Active Learning Integration
	TextEssence: A Tool for Interactive Analysis of Semantic Shifts Between Corpora
	Supporting Spanish Writers using Automated Feedback
	Alexa Conversations: An Extensible Data-driven Approach for Building Task-oriented Dialogue Systems
	RESIN: A Dockerized Schema-Guided Cross-document Cross-lingual Cross-media Information Extraction and Event Tracking System
	MUDES: Multilingual Detection of Offensive Spans

