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Abstract
While NMT has achieved remarkable results in the last 5 years, production systems come with
strict quality requirements in arbitrarily niche domains that are not always adequately covered
by readily available parallel corpora. This is typically addressed by training domain specific
models, using fine-tuning methods and some variation of back-translation on top of in-domain
monolingual corpora. However, industrial practitioners can rarely afford to focus on a single
domain. A far more typical scenario includes a set of closely related, yet succinctly different
sub-domains. At Booking.com, we need to translate property descriptions, user reviews, as
well as messages, (for example those sent between a customer and an agent or property man-
ager). An editor might need to translate articles across a set of different topics. An e-commerce
platform would typically need to translate both the description of each item and the user gener-
ated content related to them. To this end, we propose MDT: a novel method to simultaneously
fine-tune on several sub-domains by passing multidimensional sentence-level information to
the model during training and inference. We show that MDT achieves results competitive to
N specialist models each fine-tuned on a single constituent domain, while effectively serving
all N sub-domains, therefore cutting development and maintenance costs by the same factor.
Besides BLEU (industry standard automatic evaluation metric known to only weakly correlate
with human judgement) we also report rigorous human evaluation results for all models and
sub-domains as well as specific examples that better contextualise the performance of each
model in terms of adequacy and fluency. To facilitate further research, we plan to make the
code available upon acceptance.

1 Introduction

Neural machine translation (NMT) has achieved remarkable results in recent years. A strong
testament to its success and efficacy is the increasingly widespread industrial adoption of NMT
solutions Johnson et al. (2017); Levin et al. (2017a); Crego et al. (2016). Model parameter
estimation in NMT architectures (Bahdanau et al., 2015; Gehring et al., 2017; Vaswani et al.,
2017) is still largely a supervised learning problem which requires large amounts of translated
sentence pairs (parallel data). Obviously, acquiring a sufficient number of high quality parallel
sentences in order to train a functional domain-specific NMT system can be prohibitively ex-
pensive; especially, if one needs to develop such systems for several domains across different
language pairs. On the other hand, large quantities of untranslated in-domain content (mono-
lingual data) are often readily available.

Various domain adaptation strategies have been developed to address the low-resource
setting of niche domains (Chu and Wang, 2018). Some of the more popular approaches involve
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Figure 1: Schematic diagram of MDT in our setting. We use generic parallel data to train
a base source-target and a reverse target-source models. We then back-translate target lan-
guage monolingual in-domain data using the reverse model, and mix it with upsampled in-
domain parallel data to fine-tune the base model. The data is tagged with two special tokens:
<SYNTHETIC={0,1}>, and <DOMAIN={reviews,messaging,descriptions}>.

generating synthetic in-domain data with the help of existing monolingual corpora, and using
that data to fine-tune the more general NMT systems Sennrich et al. (2016a).

In real-world scenarios practitioners often need to deploy translation engines for several
closely related, yet different sub-domains. For example, an online travel marketplace needs to
translate offering descriptions, user-generated reviews and customer service communications,
all related to travel, but all having different linguistic nuances. This fragmentation is further
compounded by the company’s need to provide services across many distinct languages. It can
be very expensive or outright impossible to develop and maintain separate translation pipelines
for every combination of language and sub-domain.

We propose a new method for training models which are simultaneously fine-tuned on sev-
eral closely related, yet succinctly different sub-domains. We show that those models achieve
competitive (and often superior) results to single domain fine-tuned baselines while effectively
serving N use cases, therefore cutting development and maintenance costs by a factor of N .

2 Related Work

Our work builds on a growing body of domain adaptation research, mainly related to fine-tuning
through tagged back-translation.

2.1 Domain tagging

There are a number of research directions related to using tags (or special tokens) within NMT,
primarily as a way to pass additional information to the model. Practically speaking, these
are attractive approaches as they usually do not require any special modifications to off-the-
shelf translation software. The majority of use cases tag sentences on the source side: Kobus
et al. (2017) use them to control domain, Sennrich et al. (2016) the politeness, Yamagishi et al.
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Arabic German Russian
Parallel

Generic 71M 92M 87M
Reviews 98k 63k 136k

Messaging 73k 76k 87k
Descriptions 60k 72k 80k

Monolingual
Reviews 1M 1M 1M

Messaging 1M 1M 1M
Descriptions 1M 1M 1M

Table 1: Parallel and monolingual sentences used in our experiments.

(2016) the voice and Elaraby et al. (2018) the gender of translations. The idea also features in
multilingual NMT models, for example Johnson et al. (2017) tag training examples according
to which translation pair they belong to. An alternative approach by Britz et al. (2017) prepends
the domain tag to the training input on the target side, thus forcing the decoder to predict the
domain based on the source sentence alone.

2.2 Back-Translation for Domain Adaptation
Back-translation (BT) is a form of semi-supervised learning that can be used to fine-tune both
statistical Bertoldi and Federico (2009); Bojar and Tamchyna (2011) and neural (Sennrich et al.,
2016a) machine translation models to new domains. The idea behind this technique is to aug-
ment limited parallel in-domain data with a synthetic corpus produced by translating mono-
lingual data from the target language using a target-to-source translation system. A synthetic
corpus produced via back-translation will have machine-generated source sentences “translated
to” human-written in-domain targets. BT model fine-tuning then becomes a three-stage process:
first, genuine parallel data is used to train a reverse model in the target-to-source direction; sec-
ond, that reverse model is used to translate target-side in-domain monolingual data into the
source language; third, synthetic data is used in combination with few truly parallel in-domain
samples to fine-tune the base source-to-target model. This simple approach works surprisingly
well in practice Bojar et al. (2018); Barrault et al. (2019).

Recent research showed that the details of how we generate the synthetic BT data matter a
lot (Edunov et al., 2018; Imamura et al., 2018). Specifically, the authors find that randomized
sampling and noising is preferable to plain beam search. Edunov et al. (2018) hypothesise
that the improvement is due to randomization contributing to the source-side diversification of
the synthetic data. Caswell et al. (2019), on the other hand, suggest that synthetic data adds
both helpful and harmful signals, which sampling and noising BT strategies help the model to
separate. The TaggedBT technique which they introduce achieves competitive results by simply
tagging synthetic data with a special token indicating that the data is machine-generated.

3 Multidimensional tagging

As discussed in Section 2, introducing special tokens in the training data has been indepen-
dently useful at passing content-specific information (e.g. domain, voice, gender, etc.) and
data-specific information (e.g. whether a given data point is synthetic). The current work ex-
tends this idea into the multidimensional setting. Whenever several meaningful dimensions
describing the data are available at inference and training time, we can encode that information
with special tokens indicating the values along each of the dimensions (Figure 1).
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Reviews Messaging Descriptions Average
AR DE RU AR DE RU AR DE RU AR DE RU

Human score
Base model 3.65 3.73 3.50 3.27 3.44 3.18 2.67 3.28 2.95 3.20 3.48 3.21

+top10
3.75

(+.10)
3.80

(+.07)
3.57

(+.07)
3.36

(+.09)
3.65

(+.19)
3.53

(+.35)
3.02

(+.35)
3.70

(+.42)
2.95

(+.00)
3.38

(+.18)
3.71

(+.23)
3.47

(+.14)

+MDT
3.72

(+.07)
3.88

(+.15)
3.62

(+.12)
3.49

(+.22)
3.78

(+.34)
3.53

(+.35)
3.20

(+.53)
3.73

(+.45)
3.04

(+.09)
3.47

(+.27)
3.80

(+.31)
3.40

(+.19)
BLEU score

Base model 42.95 43.63 38.25 39.01 44.18 41.18 45.00 45.97 38.92 42.32 44.60 39.45

+top10
42.95

(+0.00)
44.99

(+1.36)
38.35

(+0.10)
41.93

(+2.92)
50.19

(+6.01)
41.15
(-0.03)

45.35
(+0.35)

50.98
(+5.01)

37.84
(-1.08)

43.41
(+1.09)

48.72
(+4.13)

39.11
(-0.34)

+MDT
42.61
-0.34

46.34
(+2.71)

41.12
(+2.87)

47.09
(+8.08)

49.85
(+5.67)

43.19
(+2.01)

46.54
(+1.54)

50.84
(+4.87)

39.14
(+0.22)

45.41
(+3.09)

49.01
(+4.41)

41.15
(+1.70)

Table 2: Human evaluations and BLEU scores for the multi-domain adaptation experiments.
MDT (our method) is competitive (and on average superior) against the strong fine-tuning base-
line (top10 from (Edunov et al., 2018)) despite having significantly lower training and deploy-
ment costs.

A real-world multi-domain adaptation setting lends itself very naturally to the MDT ap-
proach. For example, domain or topic is one such dimension, whether or not the data is syn-
thetic is another. The definition of a synthetic sample may also differ between applications.
Back-translation as used in this work is an obvious way of generating such samples, but so can
be pseudo-alignment (Imankulova et al., 2017; Schwenk et al., 2019). A hybrid dataset may
include samples from all three origins (genuine, machine translated and pseudo-aligned) and
a tag can help the model differentiate between them. Lastly, multilingual models where the
source languages are not trivially different, can be boosted with a language tag1. It is therefore
clear that although our experiments only cover a two-dimensional setting with the attributes
mentioned above (data domain and source), multidimensional tagging can be extended to cover
other data aspects.

4 Experimental Setup

This section describes our data sources, model architecture, and synthetic data generation and
mixing strategies that we employ in our experiments. Our principal goal is to evaluate MDT
fine-tuning approach as a scalable alternative to state-of-the-art domain fine-tuning for NMT.

4.1 Data

We run our experiments on three language pairs (Arabic-English, German-English and Russian-
English) which span three different scripts. Our parallel data sources include a large generic
corpus which is a mixture of publicly available and in-house data2, as well as three much
smaller domain-specific parallel datasets (Table 1). The monolingual data which we use to
create back-translated models contains 1M proprietary text segments for each language and do-
main. All three domains (“Reviews”, “Messaging” and “Descriptions”) are travel-related, and
in fact could be considered as sub-domains of a more general “Travel” domain. Nevertheless,
they all exhibit distinct linguistic characteristics which makes it challenging to treat them as a
single domain. Appendix C provides examples of sentences from different data sources.

1Independent experiments (not shown in this work) have shown improved results when a Portuguese model is
enhanced with a tag denoting a Brazilian versus a European Portuguese author.

2The publicly available portion of our data was sourced from http://opus.nlpl.eu/ Tiedemann (2012)
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4.2 Synthetic data generation

We generate all synthetic data using a target-source reverse model trained purely on the generic
parallel corpus. According to prior experiments we found top103 method from Edunov et al.
(2018) to be the best-performing domain adaptation method, and we use it as the main approach
to benchmark against. Because we do have limited in-domain parallel data, our fine-tuning
parallel data is not purely synthetic, but a mix of synthetic and genuine (which we upsample to
reach 1:1 composition).

top10 Following Edunov et al. (2018) we use our reverse target-source models to translate
monolingual data back to English, but at the generation stage we sample from the next token
distribution instead of using beam search to approximate MAP translation. At each sampling
step we only consider top 10 most probable candidates.

MDT As described in Section 3, we extend the idea of tagged BT Caswell et al. (2019) to
multi-attribute setting by prepending source-side tags which qualify various aspects of the data.
Specifically, in this experiment we tag the data according to two characteristics: (1) whether it
is synthetically generated or genuine, (2) which sub-domain it belongs to. Both types of tags
are treated just like any other tokens, i.e. their learned embeddings are stored in the shared
source-side embeddings table.

4.3 Model architecture

Prior to feeding parallel data into the sequence-to-sequence models, all text is preprocessed us-
ing the byte-pair encoding (BPE) tokenization scheme (Sennrich et al., 2016b). Our models fol-
low the transformer-base architecture from Vaswani et al. (2017) as implemented in OpenNMT-
tf4 v1.25 (Klein et al., 2017) with early stopping based on development sets of 5000 sentences
per each use case.

4.4 Evaluation

The context of this work is a real-world industrial setting which involves translating large vol-
umes of customer-facing text. Therefore our main evaluation criteria are human-based assess-
ments. The human evaluation was performed by professional translators on a 4-point adequacy
Likert scale using 250 samples per language, per domain. Appendix A provides details of the
scoring guidelines that human evaluators follow. Additionally we report case-sensitive BLEU
score (Papineni et al., 2002) as implemented by sacreBLEU5 Post (2018).

5 Results

5.1 Multi-domain adaptation

Table 2 summarizes our multi-domain adaptation results. On average MDT does not only
match, but in fact outperforms the strong top10 (Edunov et al., 2018) baseline. As mentioned
in Section 4.4, given the production quality requirement of our systems we consider human
scoring the gold standard for evaluating translations, not the BLEU score alone. Most hu-
man and BLEU scores do rank-wise agree, but there are some exceptions. Specifically the
German-English MDT model does better than the respective top10 models on Messaging and
Descriptions domains according to the human evaluators, however it is not reflected in the
BLEU scores.

3Our fine-tuned top10 baseline was actually our customer-facing production system at the time for several languages.
4https://github.com/OpenNMT/OpenNMT-tf
5https://github.com/mjpost/sacreBLEU
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5.2 Ablation experiment
In order to assess the role of tags, we perform an ablation experiment for German language,
in which we compare the MDT performance to that of a model trained without the tags (but
on the same mix of training data). It appears that the tags indeed on average improve the
performance (Table 3). The models without tags perform worse on “Reviews” and “Messaging”
domains according to human evaluations, and on all three domains according to the BLEU score
evaluations.

Human score BLEU score

Reviews
MDT Model 3.88 46.34

(-tags) 3.82 (-.06) 44.24 (-2.10)
Messaging
MDT Model 3.78 49.85

(-tags) 3.48 (-.30) 49.21 (-0.64)
Descriptions
MDT Model 3.73 50.84

(-tags) 3.80 (+.07) 49.79 (-1.05)

Average -.10 -1.26

Table 3: The effect of tags removal on human and BLEU score in German-English MDT model.

6 Conclusions

In this work we introduce multidimensional tagging and demonstrate that it can be a scalable
solution for multi-domain adaptation in a realistic resource-constrained setting. Somewhat sur-
prisingly we find that MDT models in fact outperform on average our best alternative fine-tuning
technique (top10 from Edunov et al. (2018)), even though the alternative method trains a cus-
tom model for each sub-topic. Although the present work offers limited empirical evaluations
of MDT (two dimensions: 3 sub-domains and 2 data sources; three language pairs), we think
that the technique can prove useful in a broader setting. We believe it to be particularly well
suited to many real-world scenarios in which practitioners develop solutions for multiple re-
lated domains, while leveraging data from different sources, both genuine and synthetic. All
experimental results reported in this work follow rigorous human evaluations in addition to the
standard BLEU scores assessments.
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Supplementary Material

A Human evaluations criteria

Each reported human evaluation reading is based on a random test set of 250 text samples
which are evaluated by professional translators. Even though all translators were aligned and
calibrated during previous evaluations, all sentences from the sample are always sent to the same
individual translator to preserve consistency. We use an internally built tool (Figure 2) which
allows scoring on a four-point Likert scale, a modified version of the ”Accuracy” dimension of
the Fluency/Adequacy framework White et al. (1994); Callison-Burch et al. (2007); Levin et al.
(2017b). We observed that fluency is almost never an issue in neural machine translation, so we
do not score it explicitly. The following are the scoring guidelines for the four-point accuracy
scale that are given to the translators:

4 All aspects of the review are comprehensible.

3
The fundamental information provided is accurately conveyed in the translation. Minor errors
in non-essential supplementary information that are vague or obscured, but do not contend with
the core of the meaning in the description, are allowed.

2
The fundamental information provided is obscured/distorted. The translation either indicates
different factual information to what is present in the source, or the translation introduces in-
correct information.

1 The translation does not make any sense, and/or does not even allude to the core of the source
text.

B Reproducibility

Prior to feeding parallel data into the sequence-to-sequence models, all text is pre-processed
using byte-pair encoding (BPE) tokenization scheme (Sennrich et al., 2016b). For all language
pairs the BPE vocabulary size is set to 32k. For EN-DE language pair the vocabulary is learned
jointly, while for EN-RU and EN-AR we use separate 32k vocabularies due to different alpha-
bets in source and target. All our models follow the transformer-base architecture as described

Figure 2: A screenshot of the internal human evaluation tool used by the language specialists.
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in Vaswani et al. (2017) and implemented in OpenNMT-tf software (Klein et al., 2017)6. We
trained the models using Adam Kingma and Ba (2014) optimizer with β1 = 0.9 and β2 = 0.998
with label smoothing set to 0.1 and noam decay with an initial learning rate of 2.0. While no
hyper-parameter tuning is done, early stopping is based on a dev set of 5000 sentences. Fur-
thermore, we use an effective batch size of 25,000 tokens accumulated over different GPUs and
keep training until validation loss does not decrease for two consecutive steps. We select the
checkpoint with minimum sentence level validation loss - therefore completely ignoring BLEU
at model selection. We report both BLEU and human evaluation results using beam width equal
to four on a separate test set.

Training our base models took around 5 days using 8 NVIDIA V100 GPUs. Fine-tuning
(both the single-domain baseline and the multi-domain MDT variant) took around 16 hours on
a single GPU of the same model showing that there is no noticeable difference in training time.
Inference time is the same for all models and only depends on sequence length.

C Text samples

The table below provides a few typical text samples from each domain for each of the three
source languages. We also show English reference (human) translation as well as translation
outputs from each of the three engines: base model, domain fine-tuned model (top10) and MDT
(our method).

Reviews
Source Были всего одну ночь, поэтому в полной мере оценить не смогли.

Reference We only stayed there for one night, so we couldn’t fully appreciate it.
Base model There was only one night, so we could not fully appreciate it.

top10 We were there only for one night, so we couldn’t fully appreciate it.
MDT We were only there for one night, so we could not fully appreciate it.

Source die Abwesenheit von Personal der Raum lies sich nicht heizen
Reference absence of staff the room could not be heated

Base model the absence of personnel in the room could not be heated
top10 the absence of staff the room could not be heated
MDT the absence of staff the room could not be heated

Source Xq� ¢�Ak�

Reference Its location only
Base model Just his place.

top10 Its location only
MDT Its location only

6https://github.com/OpenNMT/OpenNMT-tf
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Messaging
Source если можно не выше второго этажа спасибо

Reference If possible not higher than the second floor thank you.
Base model If you can’t go above the second floor thank you

top10 if possible not higher than the second floor thank you
MDT if possible no higher than the second floor thank you

Source wir möchten Elli, unsere Dalmatiner Hündin mitbringen.
Reference we would like to bring Elli, our Dalmatian dog.

Base model We’d like to bring Elli our Dalmatian bitch.
top10 we would like to bring Elli, our Dalmatian dog.
MDT we would like to bring our Dalmatian dog Elli.

Source ryl�A� ¨�Ay� �®�� Tflkt�� ��¤ ? ryl�A� ��d�� �¡ Ab�r�

Reference Hello, is the payment in Lira? What is the cost for three nights in Lira?
Base model Hey. Is it a lira? How much for three nights a lira?

top10 Hello! Is the payment in pounds? And how much is it for 3 nights in lira
MDT Hello Is the payment in lira? And how much it cost for 3 nights per lira.

Descriptions
Source Просторные апартаменты обставленные в современном стиле, но при

этом по домашнему уютные.
Reference Spacious apartments are fitted in a modern style, but are still cosy like home.

Base model Spacious apartment with modern furnishings and homelike interiors.
top10 Spacious apartments furnished in a modern style, but at the same time homely.
MDT Spacious apartments furnished in a modern style, but at the same time homely.

Source Feste und Kulinarik auf höchster Ebene garantieren Abwechslung das ganze Jahr!
Reference Festivals and culinary delights of the highest standard guarantee variety all year

round!
Base model Festive and culinary cuisine at the highest level guarantees variety all year round!

top10 Festivals and culinary delights at the highest level guarantee variety all year round!
MDT Festivals and culinary delights at the highest level guarantee variety all year round!

Source ¢n�s�� �y`�A� Lty� �¤AF w�Cw� T§r� Y� �q§ ¢`tm� ¢�A�³ �¶�C  Ak�

T`ybW��¤ �b��A� r�b�� �}�wt§ �y�¤ T�®��� T`ybW��¤ �tmm�� w��� �y�

T�®���

Reference A great place for a pleasant stay located in the village of Porto South Beach in Ain
Sokhna, where the atmosphere is enjoyable and picturesque nature, and where the
sea meets the mountain and picturesque nature

Base model A great place for an enjoyable stay, located in the village of Porto South Beach
with the hot eye, where the atmosphere is enjoyable and nature is picturesque and
where the sea communicates with the mountain and picturesque nature

top10 A great place to stay, located in the village of Porto South Beach in Ain Sokhna,
where the atmosphere is pleasant and the nature is wonderful and where the sea
communicates with the mountain and the wonderful nature

MDT A great place for a pleasant stay located in the village of Porto South Beach in Ain
Sokhna, where the atmosphere is pleasant and the nature is picturesque and where
the sea communicates with the mountain and the picturesque nature
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