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Abstract

We offer a sketch of a fine-grained information
state annotation scheme that follows directly
from the Incremental Unit abstract model of
dialogue processing when used within a multi-
modal, co-located, interactive setting. We ex-
plain the Incremental Unit model and give an
example application using the Localized Nar-
ratives dataset, then offer avenues for future
research.

1 Introduction

Human experience is profoundly multimodal. As
people explore the world they are organizing per-
ception, action, and thought in a complex social en-
vironment (Smith and Gasser, 2005). Tied directly
to this multimodal experience is human language,
primarily spoken language (Fillmore, 1981), and
a growing body of literature across several disci-
plines make a strong case that language learning
and language meaning is grounded in rich multi-
modal (even embodied), interactive, and enactive
experience (Pulvermüller, 1999; Barsalou, 2008;
Smith and Samuelson, 2009; Di Paolo et al., 2018;
Bisk et al., 2020). Despite this, current state-of-
the-art language models such as BERT (Devlin
et al., 2018) are trained only using static text, and
while it is clear that such models are powerful and
useful for many tasks, they are clearly missing im-
portant multimodal semantic knowledge (Rogers
et al., 2020; Bender and Koller, 2020).1 We ar-
gue that what is needed is a semantic model that is
learned not only from text, but has knowledge of
multiple modalities and that the model operates in
a setting similar to how language is acquired for hu-
mans: multimodal, co-located, interactive spoken
dialogue:

1Though there have been recent efforts to augment lan-
guage models with some modalities such as vision, e.g., Lu
et al. (2019).

multimodality: A model of semantic meaning of
language must ground into not just vision, but other
modalities such as taste, touch, smell, proprioper-
ception, and even affect. This is as much a model-
ing challenge as an engineering challenge, because
each modality requires sensor hardware (e.g., cam-
eras for vision) and methods for fusing the sensor
information from different modalities.
co-location: Multimodal systems have multiple
sensors that sense things like objects, events, and
the interlocutor who has knowledge about the envi-
ronment, language used to denote objects, and uses
cues such as gaze and gestures in communication.
spoken interaction: Semantic meaning is learned
and used in coordination with members of a partic-
ular language community (Clark, 1996) and spo-
ken interaction is the setting where children learn
language. Moreover, spoken language differs dra-
matically from written text in that spoken language
contains communicative artifacts such as hesita-
tions, false starts, repetitions, repairs, and coordina-
tion of turn-taking. Furthermore, people produce
and understand language sequentially, not as com-
plete and fully grammatical units (Tanenhaus and
Spivey-Knowlton, 1995).

Taken together, these requirements imply tech-
nical and modeling challenges. Technical chal-
lenges include using multiple sensors and articula-
tors, fusing their information streams, temporally
aligning input and output. Modeling challenges in-
clude binding information from the sensors, learn-
ing meaningful patterns in a noisy setting, and rep-
resenting the states of the sensors and unfolding
interaction.

In this paper, we don’t formulate a semantic
model, but focus rather on a representation with
a fine-grained information state update approach
using the Incremental Unit abstract model of spo-
ken dialogue. We explain the Incremental Unit
model in the next section, including how multi-
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modal how information is represented, then offer
a simple scheme for using Incremental Units as a
basis for developing multimodal semantic models.

2 The Incremental Unit Framework

The Incremental Unit (IU) framework (Schlangen
and Skantze, 2011) is an abstract, conceptual ap-
proach for incremental processing for spoken dia-
logue. The IU framework consists of a network of
processing modules, each of which play a different
role in an unfolding dialogue, all of which work
together to create the fine-grained information state.
Modules take input data on their left buffers, pro-
cess the input, then produce output on their right
buffers. A critical part of the IU framework is how
the data are packaged and processed. The data are
packaged as the payload of incremental units (IUs)
which are passed between modules–each IU holds
a discrete amount of information.

Another critical part of the framework is that the
IUs themselves are interconnected via same level
links (SLL)–allowing the linking of IUs as a grow-
ing sequence–and grounded-in links (GRIN) which
allow that sequence to convey what IUs directly
affect another IU. Ideally, IUs (e.g., produced from
a sensor or processing module) can be guaranteed
to be correct, but often an IU that has been out-
putted to the next module needs to be updated in
light of new information. To make this possible,
the framework makes use of three operations: IUs
can be added to the IU network, but can be later
revoked, and also committed when a module can
guarantee that an added IU will not be revoked.
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Figure 1: Example of SLL, and Add, Revoke and Com-
mit operation for an incremental speech recognizer.

Figure 1 shows an example of how a speech
recognition module would process incrementally,
typically word-by-word. It takes a continuous au-
dio signal as input from a microphone and produces
discrete word IUs as output. As the utterance I will

leave now is uttered, the speech recognizer out-
puts words as they are recognized at the word level
and adds them to the IU network. The recognizer
mis-recognized the word live, but in light of new
information from the unfolding utterance, revoked
live and replaced it with leave. Horizontal arrows
show SLLs; i.e., how the IUs are related to each
other temporally, and at the end of the utterance
when the recognizer knows it will no longer revoke,
it marks all of the IUs as committed. IUalso contain
information about their creation time.

It’s important to distinguish at this point the net-
worked IU modules or processors that pass IUs to
each other and the network of IUs themselves. For
example, a speech recognizer might pass its tran-
scribed speech as IUs with payloads of word strings
to a part-of-speech module that produces a part-of-
speech for each word as payloads of part-of-speech
strings, which are then the input of a language un-
derstanding component that operates on both the
words and parts-of-speech to produce some kind
of semantic abstraction of the unfolding utterance.
Thus the three processors–speech recognizer, part-
of-speech tagger, and language understanding–are
separate modules, but each use the add, revoke,
commit operations to alter the shared network of
IUs. The IU framework, including the operations,
can be used as a fine-grained model of the dynam-
ics of the creation of the information state of an
agent in a situated interaction, comprising both
its world model and its discourse model, and the
interaction between them.

Multimodal Example Following Kennington
et al. (2014), Figure 2 shows an example of mod-
ules and IUs created by a multimodal system co-
located with a human interlocutor. For this ex-
ample, the system is tasked with learning about
objects. In this specific turn of the interaction, the
interlocutor utters this is my phone accompanied
by a display of the phone and a deictic pointing
gesture. The system has two sensors, a camera
and a microphone. The microphone feeds con-
tinuous audio to the automatic speech recognizer
(ASR), which transcribes the utterance into word
IUs. Those are outputted to a part-of-speech (POS)
tagger that produces part-of-speech IUs. Those in
turn are outputted to the semantic parser (SEM)
which produces a semantic abstraction over the ut-
terance; the semantic parser uses both words and
parts-of-speech to produce the under-specified se-
mantic parse IUs. Those are given to a natural
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Figure 2: Example of a system made up of two modalities (i.e., audio and vision), camera and microphone sensors,
and processing modules. An interlocutor says this is my phone accompanied by a deictic gesture to the phone; the
modules process the scene and audio; the DM (dialogue manager) makes a decision to ask a clarification question
which is rendered by the NLG as is that a phone?. The modules create the IUs, which are connected to each other
via same-level links (solid lines) and grounded in links (dashed lines), the latter denote the IUs that played a role
in that IU’s creation. For example, the bottom IU for NLU needed information from IUs created by the ObjRec,
GestRec, and SEM modules. The full network constitutes a multimodal meaning representation.

language understanding (NLU) module that pro-
duces a semantic frame (that is more closely tied
to the particular task of learning new words), and
the dialogue manager (DM) makes a decision about
the action to take next; in this case it decides to
ask a question to the user about the denoted object
and the associated word, then the natural language
generation (NLG) formulates the utterance that is ut-
tered through a speaker using a speech synthesizer
to the interlocutor.

Prior Work As a theoretical model, the IU frame-
work formed the basis for a model of temporally
aligning different sensor modalities; Kennington
et al. (2017a) showed that timestamp information
in the IUs can be used to inform modules to add
IUs to the IU network at the same time, thereby
giving downstream modules information about an
event that may have happened, even if the sensors
produced processing delays. Buß and Schlangen
(2011) leveraged the IU operations for an incremen-
tal dialogue manager that could make self correc-
tions (e.g., if the system began an utterance, but
a revoke meant that the utterance should change,
the system would self-correct), and Lison and Ken-
nington (2017) used the IU operations to inform
a neural conversation model. The IU framework
has also been the inspiration for several spoken
dialogue system architectures, and several imple-

mentations based on the IU framework have been
developed. InproTK (Baumann and Schlangen,
2012) is the most commonly used (written in Java),
and was extended to incorporate modalities beyond
just speech (Kennington et al., 2017b). More re-
cently, ReTiCo (Michael and Möller, 2019) was
developed (written in Python) and extended to in-
corporate multiple modalities, evaluated in a multi-
modal robotic system (Kennington et al., 2020).

Using a network (or a graph) to represent mean-
ing has received recent attention, yet has a long
history. Koller et al. (2019) provides an overview
of several formalisms, including Abstract Meaning
Representation (Banarescu et al., 2013), a partic-
ular representation that has seen adoption in the
community. However, these graph-based semantic
representations are focused only on representing
sentences, not multimodal information, and does
abstract away from the dynamics of creating the
network.

3 The IU Framework for Fine-grained
Information State Representation

In this section, we sketch a scheme for the IU net-
work as a representation of a fine-grained informa-
tion state. The scheme follows the IU approach to
processing live speech; all annotations are pack-
aged as IUs with links between them, all add op-
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Figure 3: Example of Pointer, Word, POS, and SEM IU annotations for a sample from the Localized Narrative
dataset. Solid lines denote SLLs, dashed denote GRINs, and the dotted lines denote an alignment between two
modalities. Image taken from https://google.github.io/localized-narratives/.

erations are accounted for (and revoke operations
under live annotation conditions), each operation
is timestamped, and the creation time of each IU is
timestamped. We don’t specify how the modalities
or modules interact with each other, the goal here
is to focus on the information state.

We give an example in Figure 3 using a sample
from the Localized Narratives dataset (Pont-Tuset
et al., 2020). The dataset consists of images de-
scribed by annotators. Descriptions have speech
and mouse pointer modalities that are later tempo-
rally aligned. Speech is automatically transcribed
as the annotators speak, but annotators are tasked
with hand-transcribing their descriptions after they
are complete. The dataset on its own has multi-
modal annotations, though it’s unclear how they
would work in a live interaction with a system.

The IU network annotation in Figure 3 shows lo-
cations of mouse pointer (x,y coordinates), words,
and added part-of-speech tags and semantic ab-
straction similar to that in Figure 2. The SLL

and GRIN links are also present, and additional
links between the speech and pointer modalities
are depicted. What is not depicted in the figure
are the add and revoke operations that enable the
network to grow as an interaction unfolds in real
time, though it is obvious that all IUs in the figure
were created through an add operation. In the case
where a perfect transcription exists, only add op-
erations are necessary, but a live interaction would
require the ability to revoke erroneous words then
add correct ones in real time, in alignment with the
movements of the mouse pointer. Timestamp infor-
mation is not present in the figure; time generally
flows downward as IUs are added to the network.

The scheme can be applied during the data col-
lection process. This requires some up-front effort
to setup each individual module to operate incre-
mentally. For the Localized Narratives dataset, in-
cremental text can come from ASR or typed text,
and the other annotations from respective mod-
ules. Annotated data can be represented in any
format, e.g., JSON. This scheme highlights the im-
portance of annotating data that is representing a
fine-grained information state collected in a mul-
timodal, co-located, and spoken interactive task.
Such a representation is potentially useful for a
formal representation of situated conversation and
embodiment.

4 Conclusion and Future Work

In this paper, we outlined an IU network-based ap-
proach to representing multimodal states within the
requirements of multimodality, co-location, and in-
teractive speech. Implicit in this representation is
the requirement that the system is modular, though
it is potentially possible to represent the IU network
in an end-to-end neural architecture. The modal-
ities explored here were only a minimal exam-
ple of what the network could potentially handle–
added modalities enrich the semantic representa-
tion. For example, we have used the IU framework
to represent audio, visual, and internal robot state
modalities in prior work (Kennington et al., 2020).
We leave formalizing semantic operations, such as
compositionality, meaning derived from handling
uncertainty or requests for clarification, and global
decoding strategies in the IU network semantic rep-
resentation for future work.

https://google.github.io/localized-narratives/
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