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Abstract

The problem of interpretation of knowledge
learned by multi-head self-attention in trans-
formers has been one of the central questions
in NLP. However, a lot of work mainly fo-
cused on models trained for uni-modal tasks,
e.g. machine translation. In this paper, we ex-
amine masked self-attention in a multi-modal
transformer trained for the task of image cap-
tioning. In particular, we test whether the
multi-modality of the task objective affects the
learned attention patterns. Our visualisations
of masked self-attention demonstrate that (i) it
can learn general linguistic knowledge of the
textual input, and (ii) its attention patterns in-
corporate artefacts from visual modality even
though it has never accessed it directly. We
compare our transformer’s attention patterns
with masked attention in distilgpt-2 tested
for uni-modal text generation of image cap-
tions. Based on the maps of extracted attention
weights, we argue that masked self-attention in
image captioning transformer seems to be en-
hanced with semantic knowledge from images,
exemplifying joint language-and-vision infor-
mation in its attention patterns.

1 Introduction

Recently, we have seen a surge of interest in ex-
plainability research for large-scale neural net-
works, e.g. transformers (Vaswani et al., 2017).
A lot of the existing literature focuses on the anal-
ysis of attention (Bahdanau et al., 2015) in terms
of linguistic knowledge it encodes (Belinkov and
Glass, 2019). Clark et al. (2019) show that atten-
tion heads’ patterns in BERT (Devlin et al., 2019)
resemble syntactic dependencies present in the text.
They also use a probing classifier to identify how
knowledge of syntax is distributed between atten-
tion heads. Vig and Belinkov (2019); Hoover et al.
(2020) have shown that visualising the structure
of attention in transformer models can help us see

which parts of the model capture specific syntactic
knowledge. Voita et al. (2019) demonstrate that not
all attention heads are equally suitable for learning
syntactic information. Thus, pruning such heads
can be an option to reduce the model’s complex-
ity. While attention is not always an explanation
(Jain and Wallace, 2019), some work (Ravishankar
et al., 2021) has shown that extra fine-tuning on
a syntax-related task can guide the model’s atten-
tion to truly resemble syntactic information about
the text. Other approaches to the model’s inter-
pretability include, for example, a work by Reth-
meier et al. (2020), which inspects how knowledge
is transferred on the neuron level rather than atten-
tion level.

While most of the existing research has placed
the problem of model’s explainability in the context
of uni-modal text-based tasks, e.g. machine trans-
lation, the field of language-and-vision is some-
what lacking similar analysis for models trained to
solve multi-modal tasks. This becomes especially
important with the increasing interest in adopt-
ing transformers for learning better cross-modal
representations (Tan and Bansal, 2019). In addi-
tion, using large-scale models to improve ground-
ing between language and vision representations
(Lu et al., 2019) requires vigilance regarding how
information is learned in different parts of such
densely structured models. Multi-modal transform-
ers are required to not only learn to perform symbol
grounding, e.g. mapping natural language symbols
into visual representations as defined by Harnad
(1990) and a language model, but also learn to
fuse information from two modalities, the nature
of which has been an open question in the field
(Lu et al., 2017; Caglayan et al., 2019; Ilinykh and
Dobnik, 2020). The effect that such multi-modal
representations have on the attention in large-scale
models has not been addressed a lot in the language-
and-vision literature. More specifically, we need a
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better understanding of how self-attention in trans-
former processes the multi-modal information.

In this paper, we analyse the masked self-
attention part of the image captioning transformer,
which performs a standard language masking task
based on the textual input, and compare its attention
patterns with masked attention in distilgpt-2, a text-
only transformer. Our goal is to identify what kind
of knowledge is captured in representations learned
by this part of the model and whether it is affected
in any way by the visual modality, which is not
directly accessible for this particular self-attention.
We aim to answer the following questions:

• Does masked self-attention show patterns
which resemble any syntactic knowledge of
the input text?

• What are the differences in attention on pre-
vious words when generating the next word
in either the uni-modal or multi-modal task
set-up?

• What is the task’s effect (uni-modal vs. multi-
modal) on the semantics of words captured
by masked-self attention in image captioning
transformer?

In addressing these questions, we believe that
we show novel insights into how the information
is transferred between inner self-attentions of com-
plex architectures such as a transformer and how
representations from specific components of such
models are affected by the training objective and
multi-modality.

2 Model

Fig. 1 shows the architecture of the image cap-
tioning transformer that we use for our experi-
ments, first introduced by Herdade et al. (2019)
and built on top of the basic image captioning
transformer (Luo et al., 2018). This architecture
resembles many parts of the classic transformer
(Vaswani et al., 2017), which was initially intro-
duced for machine translation, consisting of three
multi-head self-attention mechanisms. The stan-
dard transformer’s encoder learns representations
of the input text by passing it through two sub-
layers: multi-head self-attention and feed-forward
network. Each sub-layer has a residual connection
around itself, followed by layer-normalisation oper-
ation. The decoder contains masked self-attention,
which is used to learn linguistic knowledge of the
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Figure 1: Object relation image captioning transformer.
The image is first passed through a pre-trained object
detector to extract visual and geometric features. The
left side self-attention (image encoder) consists of at-
tention heads, where each of them utilises both vi-
sual and geometry information. On the right side, the
masked self-attention (text encoder) is given the em-
beddings of the caption words and their positional in-
formation. The words are fed to the text encoder in an
auto-regressive manner, e.g. one word at a time plus all
the preceding words. The cross self-attention uses keys
K and values V from the visual encoder, while queries
Q are coming from the textual encoder and finally pre-
dicts the output probabilities of the next word.

ground-truth target translation. In a uni-directional
task, it masks the words in the future so that the
model learns to attend to the previously generated
words only. The third self-attention is perform-
ing a cross-modelling task, using information from
both encoder and decoder. This cross self-attention
identifies correlations between the source text and
currently generated target text in a machine transla-
tion context.

Once we reformulate the model’s task from ma-
chine translation to image captioning (Fig. 1), we
naturally change the encoder’s inputs. Instead of
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the source sentence, the encoder uses representa-
tions of objects from the image as its input. On
the decoder’s side, the ground-truth captions that
the model learns to generate are used as inputs
during training. To prepare inputs to our encoder,
we first extract visual features of the detected ob-
jects X = {x1, ..., xN}, where xn ∈ R1×D with
N = 36 and D = 2048. We use a bottom-up
feature extractor (Anderson et al., 2018), which is
based on Faster-RCNN (Ren et al., 2015) and pre-
trained on Visual Genome (Krishna et al., 2016)
with the ResNet-101 as its backbone (He et al.,
2016). For each detected object we also extract
geometry features G = (x, y, w, h) (centre coor-
dinates, width, height). In the next step, queries
Q = WQX and keys K = WKX are used to get
scaled dot product ΩV :

ΩV =
QKT

√
dk

(1)

Then, ΩV and geometric features G are com-
bined, taking into account the displacement be-
tween the objects and producing a fused represen-
tation Ω.1 Finally, each attention head h from each
encoder layer l outputs a combination of values V
and geometry-aware visual features Ω:

headl,h = self-attention(Q,K, V ) = ΩV (2)

Masked self-attention in the decoder The idea
of self-attention is that each token from the input
text learns to attend to the other tokens from the
same sequence. However, this is not feasible for the
caption generation task since attending to the future
tokens is unfair and it cannot be used when generat-
ing text. Therefore, the self-attention in the decoder
is using masking of future tokens to keep the auto-
regressive nature of the model. In particular, the
token wt and the future tokens wt+1, ..., wW are re-
placed with [MASK]. Then, wt is predicted using
the previous context in the standard left-to-right
fashion: W\t := (w1, ..., wt−1).

We have specifically focused on the analysis of
the attention weights in the decoder’s masked self-
attention of the image captioning transformer. We
extract the attention weights for each head h in
each layer l of this self-attention and use them for
our visualisations and analysis. These weights are

1For more details on how geometric information is com-
bined with visual features in this model, we refer the reader to
Herdade et al. (2019).

calculated similarly to the attended visual features
(Eq. 1). Our masked self-attention has six layers,
consisting of eight heads in each of them.

For the model checkpoint, we use the best model
released by the authors of the architecture2. This
checkpoint has been chosen on the basis of auto-
matic evaluation scores: the model uses bottom-up
representation of images, geometry features and
self-critical training (Rennie et al., 2017). The cap-
tions are generated using beam search with beam
width bw = 5 in the standard auto-regressive man-
ner.

3 Learning syntactic knowledge

In our first experiment we investigate whether
the attention weights of the masked self-attention
are able to capture any general syntactic knowl-
edge about the input text. It has been shown
that the multi-head attention patterns in the trans-
former trained for the task of machine translation
resembles syntactic properties of language at the
level of part-of-speech tags and syntactic depen-
dencies (Mareček and Rosa, 2019; Ravishankar
et al., 2021). Since the self-attention that we are
focused on is trained in a very similar task (masked
language modelling), we first explore if particular
layers and heads attend to specific part-of-speech
tags the most. Then, we continue with the analysis
of how information about syntactic dependencies
is reflected in the learned attention patterns.

Attention on Part-of-Speech We follow Vig
and Belinkov (2019) who compute the proportion
of attention from each head that this head pays to
tokens of a particular part-of-speech tag and accu-
mulate the results over our test set:

P (α|tag) =
∑

s∈S

∑|s|
i=1

∑i
j=1 α(si,sj,pos(j)=tag)∑

s∈S

∑|s|
i=1

∑i
j=1 α(si,sj)

(3)

where S is the corpus of generated captions, tag
is the part-of-speech tag of the attended word, and
α(si, sj) is the attention from ith word to jth word
for the given head. We use Spacy (Honnibal et al.,
2020) to get part-of-speech tags of words and syn-
tactic dependencies between them for all our ex-
periments. We also perform normalisation (linear
scaling) on the values of the calculated attention
proportion to place all values in a single scale from
0 to 1. The masked self-attention is always given

2Available at: https://github.com/yahoo/
object_relation_transformer

https://github.com/yahoo/object_relation_transformer
https://github.com/yahoo/object_relation_transformer
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(a) Determiner (b) Noun (c) Adjective (d) Verb (e) Adposition

Figure 2: Each heat-map demonstrates the proportion of attention targeted towards a word of a specific part of
speech. Vertical and horizontal axes indicate layers and heads respectively.

the START token at the start of the generation. We
consider attention on this token non-informative (as
it is over-attended) and ignore the corresponding at-
tention weights for better visualisations. The heads
pay only ∼26% of their attention to the START
token on average per caption. We use BertViz tool
(Vig, 2019) to produce our visualisations.

The results for the five most frequently occur-
ring part-of-speech tags (more than 1000 individual
instances) are shown in Fig. 2. Words of such part-
of-speech tags, which can be grounded in visual
signals (nouns for objects, adjectives for attributes),
receive attention from a large number of attention
heads. On the other hand, only specific heads focus
on words describing relations (verbs, adpositions).
Specifically, seventeen heads (out of forty-eight)
put more than 40% of their attention to the nouns,
while only three heads give more than 30% of their
attention to the verbs.

We also find supporting evidence for the pre-
vious studies (Belinkov, 2018; Vig and Belinkov,
2019), showing that deeper layers focus on more
complex properties, e.g. relational part-of-speech
tags (verbs), which require knowledge of objects
learned from earlier layers (nouns). For example,
the top 3 attention heads that attend to basic parts-
of-speech such as determiners are all located in
the model’s first three layers. For adjectives, the
top 3 heads are similarly located in the first three
layers of the model, with the maximum value of
the attention head being 0.25. However, attention
on adjectives is more spread across many heads
in different layers, with the attention value being
0.14 for more than half of the heads, which is also
a mean value for attention on this part-of-speech
tag. A less clustered pattern is observed for nouns:
its top 3 heads are located in layers 1, 3, and 4,
with thirty-three heads paying more than 30% of
their attention to nouns. We argue that the reason
why the attention on nouns is scattered over many
heads, with most of them paying nearly one-third

of their attention to the nouns, is because nouns
are continuously required for caption generation:
the model needs to take them into account when
generating either a relation or an attribute.

Somewhat differently, verbs are attended mostly
in the model’s deeper layers: the top 3 most atten-
tive heads are located in layers 3, 4, and 5 with val-
ues higher than 0.3. The vast majority of the heads
(forty-three) have smaller attention values (less
than 0.2), indicating that the model needs verbs
only for specific situations, for example when a
relationship needs to be generated. Overall, our vi-
sualisations demonstrate that masked self-attention
weights resemble task-specific syntactic informa-
tion about part-of-speech tags. For example, nouns
are similarly attended across all heads since they
are required for the captioning task the most (to
describe, refer to, use in phrases, etc.). In contrast,
more function-dependent parts of speech (verbs,
adpositions) are attended to by fewer heads in the
deeper layers of the model.

Attention on Syntactic Dependencies Fig. 3
shows the proportion of attention from the heads in
masked self-attention for the most frequently occur-
ring syntactic dependency relations. The propor-
tions are calculated similarly to Eq. 3. In particular,
we used the attention weights from root to the non-
root part of the dependency phrase or vice versa, ex-
tracting dependencies in advance. This choice was
affected by the auto-regressive nature of the gen-
eration task: for each word, we could only inspect
attention focus on previous words. The attention
on different dependencies seems to be distributed
similarly to the attention on part-of-speech tags.
More specifically, attention heads from the surface
layers (1:5 and 2:13) seem to be focused on the
determiner in the det relation. Comparing heat-
maps of attention distribution on part-of-speech
and syntactic dependency may give us intuition

3We use layer: head notation.
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(a) det (b) compound (c) nummod (d) pobj (e) prep

Figure 3: Attention distribution on different constituents of the specific syntactic dependencies. For det,
compound, nummod we visualise which heads look the most on the non-root element of the dependency (e.g.
“man”→ “a” in “a man”). For pobj and prep we show attention in a different direction (e.g. “table”→ “on” in
“on table”, “with”→ “bathroom” in “bathroom with”).

(a) Head = Noun (b) Head = Verb

Figure 4: Attention distribution for the prep syntactic
dependency. The left-side heat-map is computed for
phrases where noun is a head in the phrase (“kitchen
with”, while for the right-side heat-map it is the verb
(“sitting at”).

about the specific heads’ role. For example, the
heads 3:4 or 3:5 are not intensely active for the
det relation, although they are among the most
active heads when attending to the determiners.
This indicates that these heads 1:5 and 2:1 may
be more responsible for focusing on determiners
when the phrase in the det relation is generated.
Interestingly, many heads strongly attend to the
numeral in the nummod dependency compared to
all other relations. This could be related to the im-
portance of learning about the number of objects
in the scene, while other, simpler noun-based de-
pendencies (det, compound) do not have to be
attended so strongly.

Only a few heads specialise in dependencies that
capture more complex properties (e.g. relations
between different objects), with heads 3:3 and 3:6
being the most attending heads for pobj. The root
of the prep phrase is often attended in the first
layer, with only a few more heads in the later layers
being activated. Could this pattern be mapped with
the fact that roots in these phrases are often nouns
and verbs? Fig. 4 shows that heads 1:3 and 1:7 are
the most active heads when a noun is a root in the
phrase of prep dependency. Same heads in the

first layer are also active the most when looking at
the nouns, according to Fig. 2b. This indicates that
the model acquires basic knowledge of language
syntax (dependencies, part-of-speech information)
in its first layers. Similarly, as Fig. 4b demonstrates,
the head 3:6 is the single most active head for the
prep dependency. At the same time, according
to Fig. 2d, this particular head is one of the few
most active heads when the attention focus is on
verbs. This might be interpreted as if this head is
better at learning information about syntactic de-
pendencies than other activated heads. We argue
that it is helpful to look at the correspondence be-
tween attention on parts-of-speech and syntactic
dependency since it is informative when determin-
ing specific heads’ roles and how important they
are for different language tasks, e.g., part-of-speech
tagging and syntactic dependency identification.

4 Multi-modality and masked
self-attention

In this section, we look at how a multi-modal task
of image captioning affects attention on the pre-
vious words when a masked self-attention model
predicts the next word. We also compare our
model’s attention patterns with patterns from an
auto-regressive model, distilgpt-2 (Radford et al.,
2019), which has been pre-trained on OpenWeb-
TextCorpus. This model has 6 layers with 12 heads
in each layer, which makes it more comparable to
our captioning transformer than the standard GPT-2
model with 12 heads in each of the 12 layers.

Semantics of Attention Patterns Here, we com-
pare the text-only uni-modal language model and
its attention patterns with our multi-modal trans-
former’s masked self-attention. We do this because
we want to investigate to what extent the attention
patterns produced by the language model in the
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(a) Example Image 1 (b) Example Image 2 (c) Example Image 3 (d) Example Image 4

(e) Image 1: MSA-TRSF (f) Image 2: MSA-TRSF (g) Image 3: MSA-TRSF (h) Image 4: MSA-TRSF

(i) Image 1: MSA-GPT2 (j) Image 2: MSA-GPT2 (k) Image 3: MSA-GPT2 (l) Image 4: MSA-GPT2

(m) Image 1: AD-TRSF (n) Image 2: AD-TRSF (o) Image 3: AD-TRSF (p) Image 4: AD-TRSF

(q) Image 1: AD-GPT2 (r) Image 2: AD-GPT2 (s) Image 3: AD-GPT2 (t) Image 4: AD-GPT2

Figure 5: Here are several examples of different attention visualisations for masked-self attention (MSA) from our
image captioning transformer (TRSF) and distilgpt-2 (GPT2). The top row shows example images for which
we generate a caption. The second and third rows show attention on the available context (indicated by the
Source axis) when generating the next word (the Target axis). Word of the generated caption are displayed on the
Source axis. To get more fine-grained visualisations in the third row, we exclude attention on the first token of each
sentence for distilgpt-2 attention patterns since, based on our experiments and literature (Vig and Belinkov, 2019),
attention on the first token is always very strong and not relevant. The fourth and the fifth rows show attention
dispersion (AD) for each head in each layer. The colour bar in the second row indicates the range of values in all
visualisations in this figure.

multi-modal setting differ from patterns where the
task is uni-modal. For this, we run distilgpt-2

(Radford et al., 2019) on the captions generated
by our image captioning transformer, where both
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(a) 0:0 (b) 1:3 (c) 3:1 (d) 5:1

(e) 5:8 (f) 0:11 (g) 2:11 (h) 0:1

Figure 6: Visualisation of attention for example attention heads. The first row shows heads from the masked self-
attention in our transformer; the second row depicts the head’s attention from distilgpt-2. The side to the left of the
vertical line in the middle includes heads with high entropy in either of the models, while the right side contains
heads with low entropy. The heads are denoted by a layer:head notation; they can be traced back to the more
general attention concentration in Fig. 5m and Fig. 5q. Each figure displays attention from target (left) to source
(right).

(a) distilgpt-2 (b) Image Captioning Trans-
former

Figure 7: Mean normalised entropy of attention per
head / layer calculated for the set of generated captions.

input and target are the same image descriptions.
This way, we receive two sets of masked self-
attention weights for the same texts from two mod-
els trained for different tasks. Both our decoder
and the distilgpt-2 model are trained for the masked
language modelling task; therefore, these models’
attention is comparable with each other. We save
the model’s attention weights similar to how we
did it for our captioning transformer’s masked self-
attention. The first three rows in Fig. 5 show vi-
sualisations of both models’ attention for several
captions and if applicable the corresponding im-
ages. Attention in our masked self-attention tends
to focus on nouns much more than on other parts
of the source (context). In comparison, distilgpt-
2 patterns are more diagonal: every next word is

focused on its surroundings the most, and the at-
tention does not generally look at a single word for
too long.

We believe that this is an artefact of the train-
ing for image captioning task: our masked self-
attention learns to focus on nouns because they
ground objects, and most of the time, the follow-
ing words form a single phrase referring to these
objects. For example, attention on “lamp” for the
third image is very strong throughout the genera-
tion of the whole phrase “lamp and a bunch of”.
Once a new object is introduced (“oranges”), the
attention shifts to this object for a different phrase
(“oranges on a table”). The visualisations show
that captioning transformer’s masked self-attention
learns global, phrase-based semantic features of
sentences. In contrast, in the text-only setting, the
model learns about local relations between words
in a sentence. For example, distilgpt-2 continu-
ously shifts its maximum attention after every 2-3
words are generated, indicating that it learns to
capture local relations between words (“bunch of”,
“oranges on”).

Attention Focus As demonstrated by Fig. 5, at-
tention can constantly focus on particular words
(e.g., nouns) while the caption is generated. We
seek to identify which attention heads are responsi-
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ble for such observed patterns in the masked self-
attention of the image captioning transformer. This
is potentially important for reducing the model’s
complexity by pruning non-important heads, which
do not have an interpretable role defined by the
measure of choice. Therefore, we calculate the en-
tropy of attention distribution (Ghader and Monz,
2017) and use it as the measure of dispersion be-
tween attention weights:

Entα(sj) = −
|s|∑
i=1

α(si, sj) log(α(si, sj)) (4)

As Fig. 7a demonstrates, many heads in distilgpt-
2 have high entropy scores which means that atten-
tion here is highly dispersed. The entropy increases
in the deeper layers of the model. This correlates
with the fact that deeper layers capture more distant
syntactic relations and, therefore, lead to higher en-
tropy scores (Vig and Belinkov, 2019). Fig. 7b
shows the entropy scores for attention heads in cap-
tioning transformer’s masked self-attention. Here,
most heads have a relatively low entropy, with only
some of them with higher entropy in the model’s
first layers.

Do heads have high/low entropy? Based on
the examples of attention heads from Fig. 6, we
can conclude that high entropy reflects a stronger
concentration of attention from target words on par-
ticular source words to learn specific information.
Such pattern can be observed, for example for cap-
tioning transformer’s masked self-attention heads
in Figures 6a and 6b. Note that these heads heavily
link several words with nouns (e.g. “plate”), which
increases the head’s entropy - many words in the
target sentence attend to a single word from the
context. Another important observation is that the
attention distribution from target to source is not
always strong: not every word on the left side has
a connecting line to the right side, indicating that
attention is used to learn only specific properties.
For example, as Fig. 6b demonstrates, focusing on
“plate” when other objects (“sandwich”, “salad”)
are mentioned may indicate that the model learns
the notion of scene structure reflected in the text.
At the same time, Fig. 6a shows that focusing on
“plate” can be required when generating relations
between objects, e.g. “plate with a sandwich and a
salad”. However, as figures 6e and 6f demonstrate,
distilgpt2 learns somewhat different attention be-
tween the source and the target words. While these

patterns demonstrate that many words in the target
sequence tend to focus on the specific words from
context, each attention connection is not as strong
as for the heads of the captioning transformer’s
masked self-attention. The distilgpt-2 model does
not focus on the caption’s specific relations or prop-
erties. Instead, it learns weak attention between
all words. The heads’ entropy is high as the atten-
tion is dispersed, but each attention connection’s is
also not as strong as it is in the captioning trans-
former’s masked self-attention. The examples of
heads with low entropy (the right side of the Fig. 6)
indicate that there is a word in the context that will
be attended for each generated word.

5 Attention Alignment

It may be the case that the observed differences in
attention patterns discussed in the previous section
are simply due to different frequencies of words
(in particular nouns) in the dataset on which the
models are trained. For example, the multi-modal
decoder also attends on the closest syntactic re-
lations in the same way as a uni-modal decoder,
but these happen to be nouns simply because there
are more nouns in image captions. To test this
hypothesis we calculated the Pearson correlation
coefficient between the frequency of the nouns
in our captions and attention distribution on the
context words attended by heads when the next
word is produced. The test has not shown a sta-
tistically significant correlation between the fre-
quency of the nouns versus attention distribution
on the context words in multi-modal decoder’s
self-attention (r = 0.49, p = 0.056). However,
we observed a moderate positive correlation be-
tween the frequency of the nouns versus attention
distribution in the uni-modal decoder’s attention
(r = 0.60, p = 0.014). These differences in corre-
lations show that the uni-modal architecture is more
biased to frequencies, whereas in a multi-modal
setting, the effect of noun frequency is diminished.
This provides support to our hypothesis, namely
that this bias towards nouns is coming from some-
where else, e.g. the multi-modal representations
that the language model is grounded in.

Since the model’s parameters are jointly up-
dated with an end-to-end training through back-
propagation, representations learned by differ-
ent self-attention mechanisms are expected to be
aligned with each other. We present a small prelim-
inary analysis of whether the attention weights in
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(a) Cross-modal attention on objects for Fig. 5a. (b) Cross-modal attention on objects for Fig. 5d.

Figure 8: Attention shifts in cross-modal attention. The left-side column of each sub-figure shows the generated
caption one word at a time. The right-side column depicts the labels of the 5 most attend objects in images when
generating each word.

the cross-modal self-attention (cross self-attention
from Fig. 1) are responsible for information fusion
between image encoder and text decoder. Our hy-
pothesis is as follows: if cross-modal self-attention
pays a significant portion of attention to the ob-
jects, which are generated as nouns in the caption
as content words, we can conclude that due to the
learning objective and nature of the information
flow within the model’s components, decoder’s self-
attention aligns with a higher-level cross-modal
self-attention. In this case, we also expect that for
every non-content word (e.g., determiner, prepo-
sition), the cross-attention keeps its attention on
the most recent content word similar to what we
observe for decoder’s self-attention in Figs. 5e–5h.
We use two example images and examine the dif-
ferences among the top 5 most-attended objects
for every word generated in image captions. We
use the predicted labels from the feature extrac-
tor (Anderson et al., 2018) to refer to the detected
objects. Fig. 8 shows changes in cross-modal atten-
tion on objects during generation of descriptions.
From Fig. 8a we can see that every time a new
content word is generated (“plate”, “sandwich”,
“salad”), the cross-modal attention tends to focus
on objects with labels that are similar to the gen-
erated content words. For example, “lettuce” and
“salad” are among the most attended objects when
the transformer is preparing to generate the content
word “salad”. Also, the same objects are contin-
ued to be attended when other non-content words
are generated. This example provides initial evi-
dence how text generation of nouns as exemplified
by the decoder’s attention is linked to multi-modal
representations as exemplified by cross-modal at-
tention on objects. The results suggest that in multi-
modal settings models learn representations that are

fused and aligned with each other. Since the self-
attention in the uni-modal architecture only needs
to generate the text one word at a time by taking
into account only previously generated words, it
learns a pattern over local syntactic dependencies.
In our future work, we would like to provide a more
detailed analysis of the cross-modal attention and
the uni-modal visual attention and therefore fur-
ther strengthen the arguments how multi-modality
affects knowledge that different parts in the large
scale transformer models learn.

6 Conclusion

We have shown that attention patterns learned by
a sentence decoder module of a multi-modal trans-
former are highly affected by the task that the
model is optimised for. We focused on the masked
self-attention in a sentence decoder in an image cap-
tioning transformer, demonstrating that its attention
weights resemble linguistic knowledge, which is
affected by the task of image captioning. This indi-
cates that such language model acquired important
aspects of grounded semantics. Simultaneously, we
show that that it is important to be cautious when
applying large-scale pre-trained models on specific
tasks to different semantic tasks as the original task
does have an impact on the semantic representa-
tions learned. Our future work will focus on further
examination of self-attention in the other two com-
ponents of the multi-modal models which will give
us an even clearer picture on what representations
are learned by them.
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David Mareček and Rudolf Rosa. 2019. From
balustrades to pierre vinken: Looking for syntax in
transformer self-attentions. In Proceedings of the
2019 ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, pages 263–
275, Florence, Italy. Association for Computational
Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. Techni-
cal report, OpenAI.

Vinit Ravishankar, Artur Kulmizev, Mostafa Abdou,
Anders Søgaard, and Joakim Nivre. 2021. Atten-
tion can reflect syntactic structure (if you let it). In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 3031–3045, Online.
Association for Computational Linguistics.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. 2015. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Ad-
vances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc.

S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and
V. Goel. 2017. Self-critical sequence training for im-
age captioning. In 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
1179–1195.

Nils Rethmeier, Vageesh Kumar Saxena, and Isabelle
Augenstein. 2020. Tx-ray: Quantifying and explain-
ing model-knowledge transfer in (un-)supervised
nlp. In Proceedings of the 36th Conference on
Uncertainty in Artificial Intelligence (UAI), volume
124 of Proceedings of Machine Learning Research,
pages 440–449. PMLR.

Hao Tan and Mohit Bansal. 2019. LXMERT: Learning
cross-modality encoder representations from trans-
formers. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5100–5111, Hong Kong, China. Association for
Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30, pages 5998–6008. Cur-
ran Associates, Inc.

Jesse Vig. 2019. A multiscale visualization of atten-
tion in the transformer model. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages
37–42, Florence, Italy. Association for Computa-
tional Linguistics.

Jesse Vig and Yonatan Belinkov. 2019. Analyzing
the structure of attention in a transformer language
model. In Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 63–76, Florence, Italy. As-
sociation for Computational Linguistics.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5797–5808, Florence,
Italy. Association for Computational Linguistics.

https://proceedings.neurips.cc/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Luo_Discriminability_Objective_for_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Luo_Discriminability_Objective_for_CVPR_2018_paper.pdf
https://doi.org/10.18653/v1/W19-4827
https://doi.org/10.18653/v1/W19-4827
https://doi.org/10.18653/v1/W19-4827
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://www.aclweb.org/anthology/2021.eacl-main.264
https://www.aclweb.org/anthology/2021.eacl-main.264
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://doi.org/10.1109/CVPR.2017.131
https://doi.org/10.1109/CVPR.2017.131
http://proceedings.mlr.press/v124/rethmeier20a.html
http://proceedings.mlr.press/v124/rethmeier20a.html
http://proceedings.mlr.press/v124/rethmeier20a.html
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/D19-1514
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/P19-3007
https://doi.org/10.18653/v1/P19-3007
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580

