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Abstract

In natural language generation tasks, a neu-
ral language model is used for generating a
sequence of words forming a sentence. The
topmost weight matrix of the language model,
known as the classification layer, can be
viewed as a set of vectors, each representing
a target word from the target dictionary. The
target word vectors, along with the rest of
the model parameters, are learned and updated
during training.

In this paper, we analyze the properties en-
coded in the target vectors and question the
necessity of learning these vectors. We sug-
gest to randomly draw the target vectors and
set them as fixed so that no weights updates are
being made during training. We show that by
excluding the vectors from the optimization,
the number of parameters drastically decreases
with a marginal effect on the performance. We
demonstrate the effectiveness of our method in
image-captioning and machine-translation.

1 Introduction

Deep neural networks enabled breakthroughs in
natural language generation tasks such as machine-
translation (Zhang and Zong, 2015), image caption-
ing (Hossain et al., 2019), and more. Generating
the text is done by employing a conditional lan-
guage model as the decoder component, responsi-
ble for predicting the next word at each step during
decoding, as depicted in Fig-1. For predicting the
next word, the language model first encodes into a
vector f ∈ Rd, denoted as context representation,
both the previously predicted words, and the task’s
related input (such as source sentence in machine-
translation or input image in image-captioning).
Then, at the classification layer, the context repre-
sentation is projected onto a set of weight vectors,
resulting in a vector termed as logits vector. Af-
terward, a softmax function is applied to output a
distribution over the target vocabulary words. The
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Figure 1: Scheme of a decoding step for predicting
the i-th word. The colored boxes and edges represent
the logits of two different target words and their corre-
sponding embedding vectors, respectively.

set of weight vectors used for producing the logits,
denoted here as matrix W ∈ Rd×|V |, where V is
the target vocabulary. Matrix W can be viewed as
|V | vectors, where each is a d-dimensional vector
representing a specific word from the target vocab-
ulary, we term these vectors through the paper as
target word embeddings and target vectors, inter-
changeably. The target embeddings, along with the
rest of the model parameters, are estimated so as to
minimize the loss function.

During training, an additional set of |V | vec-
tors are being learned to represent the previously
predicted words when given to the decoding step.
These vectors are referred as input word embed-
dings. Learning the input embeddings during train-
ing was shown to improve the performance of NLP
classifers and allows achieving a level of general-
ization that is not possible with classical n-gram
language models (Mikolov et al., 2013). Their main
advantages are capturing the relationship between
words and allowing similar words to have embed-
ding vectors close in space. While a large amount
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of work has done to understand the properties and
demonstrate the effectiveness of learning the in-
put word embeddings, the benefits of learning the
target word embeddings remain unexplored.

In this paper, we show that by randomly drawing
the target word embeddings and excluding them
from training, the number of trained parameters
are drastically decreased with a marginal effect
on the performance. By this, we show that the
properties captured in the target word embeddings,
such as word frequencies and relationships, are
surprisingly redundant and may be ignored in low
resource environments.

2 Background, Notations and Definitions

Consider a NLG task, such as machine-translation
or image-captioning, where for a given input in-
stance xi, a corresponding sentence Si should be
generated. Typically, an encoder-decoder based
neural network is trained for solving the task. The
encoder is responsible for encoding the input in-
stance into a vector, while the decoder responsible
for generating the next word given the input vec-
tor and previously generated words. Commonly,
an attention mechanism is incorporated during the
decoding (Bahdanau et al., 2014; Xu et al., 2015).

Denote by Dtrain = {(xi, Si)}Ni=1 a training
dataset where xi is the input to the model, Si is the
corresponding sentence, and N is the number of
training examples. Training the model is done by
maximizing the following objective function:

argmax
w1,...,w|V |,θ

∑
(xi,Si)∈Dtrain

logP (Si|xi) ,

where θ and w1, ..., w|V | are the learnable parame-
ters of the model. Since Si composed of a sequence
of words si1, ..., sij , where j is the length of Si, a
chain rule is applied to model the joint probability
over the sentence words as follows:

logP (Si|xi) =
j∑

z=1

logP (siz|xi, si1, ..., siz−1) .

For generating the next word, a context vector
fθ ∈ Rd is learned and is responsible for encoding
the given input along with the previously predicted
words. Then, the context vector is projected onto
each of the target word vectors wj ∈ Rd where j =
1, ..., |V |, by calculating the dot-product between
the vectors. Afterward, a bias term b ∈ R|V | is

added, and a softmax function is applied, resulting
in a distribution over the target words. Formally:

P (siz|xi, si1, ..., siz−1) = softmax(W · fθ + b)

Since wj · fθ = ||wj || · ||fθ|| · cos(αwj ,fθ), where
αwj ,fθ is the angle between the vectors, the pre-
dicted probability of the word sj can be written as:

e
||wj ||·||fθ||·cos(αwj,fθ )+bj∑|V |

m=1 e
||wm||·||fθ||·cos(αwm,fθ )+bm

(1)

Notice that both the angles and magnitudes of the
target word vectors are influencing the predicted
probability in Eq-1. The cosine of the angle be-
tween wj and fθ measures how well the word sj
fits into the context. Hence, interchangeable words
have their corresponding target vectors directed at
the same angle. The magnitudes of the target vec-
tors control on the predicted probability, in a way
that they have a stronger effect on words whose
embeddings have direction similar to fθ, and less
effect or even a negative effect on words in other
directions. Consider a case where the cosine of the
angle between wj and fθ is close to 1, meaning that
the angle between them is close to 0. In this case,
increasing the magnitude ||wj || would result in an
increased probability for the word sj . However,
when wj is directed in an opposite direction to f ,
the cosine of the angle between them would be
close to -1, and therefore, increasing the magnitude
would result in a lower probability. By fixing the
target vectors and the bias term, the model can max-
imize the probability in Eq-1 only by optimizing
the vector fθ.

In recent work, Press and Wolf (2016) proposed
tying the target and input embeddings by using the
same vectors to represent both. The paper showed
that the performance of weight tied models are on
par with learning two separate vectors in machine-
translation. However, the method forces the target
vectors to have the same dimension as the input em-
beddings and adds additional computational costs.
More recently, several works (Shalev et al., 2020;
Hoffer et al., 2018; Shalev et al., 2018) explored
the effects of fixing the classification layer in im-
age classification models and demonstrated that
the accuracy, number of parameters and out-of-
distribution detection ability improve.

In this paper, we empirically show that randomly
drawn, fixed target word embeddings allow models
to achieve high performance in natural language
generation tasks. From an efficiency perspective,
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Model B4 B3 VU R-L ME
Tell 27.28 36.59 721 49.72 23.09
Tell-Tied 27.11 36.23 699 49.21 22.83
Tell-Fixed 27.01 36.08 1378 49.34 22.99
Attend 29.12 38.51 784 50.91 24.02
Attend-Tied 29.01 38.11 773 50.76 23.90
Attend-Fixed 28.75 37.93 1026 50.96 23.91

Table 1: Image-captioning evaluation results. B3-4 re-
fer to BLEU3-4. R-L refers to ROUGE-L. ME refers
to METEOR. VU refers to vocabulary usage.

fixing these vectors decrease the number of param-
eters in the classification layer by d · |V |. Since
the target vocabulary typically contains thousands
of words, and the dimension of the context vector
fθ is in hundreds or thousands, the reduction in
parameters is significant.

3 Experiments

In this section, we present our experimental results.
We evaluate our approach on image-captioning and
machine-translation tasks. We start by describing
the experimental setup; then, we present the results
and analyze the target embeddings.

3.1 Experimental Setup

Image-captioning: For evaluating our approach in
image-captioning, we implemented LSTM-based
sentence generator as described in (Vinyals et al.,
2015), denoted as tell. We also implemented an
attention-based model as described in (Xu et al.,
2015), denoted as attend. Additionally, we created
identical models where the target embedding vec-
tors are tied (tell-tied and attend-tied) and also the
same models with randomly drawn target vectors
without being updated during training (tell-fixed
and attend-fixed). For the fixed target embeddings
models, we randomly draw per each cell in the
vectors a number in the range of [-10,10]. We eval-
uated the models on MSCOCO dataset (Lin et al.,
2014) and used the standard, publicly available
splits, as in previous work (Karpathy and Fei-Fei,
2015). For all models, we set a pre-trained Resnet-
101 (He et al., 2016) as the image encoder, pro-
vided by the TorchVision package. Due to space
limitations, we describe the training procedure in
the appendix.

Machine-translation: For evaluating our ap-
proach in machine-translation, we used MultiK30
(Elliott et al., 2016), IWSLT 2014 (Cettolo et al.,
2014) and WMT-14 datasets. For MultiK30 and
IWSLT 2014 sets, we trained an attention-based

Dataset Translation Non-Fixed Tied Fixed

Multi30k DE-EN 33.02 33.08 33.17
EN-DE 31.63 31.49 32.12

IWSLT 2014 DE-EN 28.77 28.94 29.03
EN-DE 25.48 25.66 25.97

WMT-14 EN-DE 25.84 25.62 25.49

Table 2: BLEU4 results for machine-translation.

Figure 2: Left is the magnitude of the target vectors
learned by tell model versus the corresponding word
frequencies. Right is the magnitude of the randomly
drawn vectors of the fixed tell model versus the word
frequencies.

encoder-decoder model, as described in (Bahdanau
et al., 2014). We evaluated the models on English-
German and German-English translations. For the
WMT-14 EN-DE set we trained a convolutional se-
quence to sequence model as described in (Gehring
et al., 2017). Additionally, we trained the same
models with randomly drawn, fixed target vectors,
and also with tied-embeddings. The training proce-
dure described in detail in the appendix. We found
that translation models with fixed target vectors
perform best when the magnitude of the vectors is
small, thus we normalized the vectors by dividing
them with their L2 norm.

3.2 Results

The results for image-captioning and machine-
translation are shown in Table-1 and Table-2, re-
spectively. Results suggest that our method of ran-
domly drawing the target embeddings and fixing
them during training allows the models to achieve
high results in both tasks.

Next, we analyze the learned target word vectors.
We find that the word frequencies are reflected in
the magnitude of these vectors. As can be seen
in Fig-2, target vectors with large magnitude are
representing less frequent words. We measured the
spearman’s rank correlation coefficient between
the magnitude of the target vectors ,‖wj‖, and the
number of appearances of the corresponding word
sj in the training set. We obtain a strong corre-
lation between the two in all settings. In image-
captioning, we obtain a correlation of 0.79 and
0.77 when considering the target vectors of tell and
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attend, respectively. In machine-translation, for
Multi30K DE-EN and EN-DE, we obtain a corre-
lation of 0.84 and 0.93, respectively. For IWSLT
DE-EN and EN-DE, we find a correlation of 0.76
and 0.83, respectively. For WMT-14 EN-DE we
find a correlation 0f 0.81.

In addition, we observe that the target vectors
are able to capture word relationships. Recently,
(Press and Wolf, 2016) showed that the target and
input vectors of word2vec skip-gram are correlated
similarly with human judgments of the strength of
relationships between concepts. We followed the
same experiment, and found that the target vectors
correlate better with the human judgements than
the input vectors in 3 out of the 4 tested models.
Due to space limitations, results are shown in the
appendix.

Interestingly, we noticed that the image-
captioning models with fixed target embeddings
had an increased vocabulary usage rate (see Table-
1) and generated low-frequency words more often
compared to the equivalent non-fixed models. In
Fig-3, we demonstrate two images for which the
non-fixed tell model generated the frequent word
bird (appearing in 5135 training sentences), while
the fixed model generated the words seagull (ap-
pearing in 201 training sentences) and duck (ap-
pearing in 263 training sentences). More exam-
ples can be seen in the appendix. We suspect that
the increased usage of low-frequency words might
be due to the randomization of the target vectors,
which forces visually similar concepts to have
their target vectors far in space. As a result, the
model is encouraged to find a more discriminative
representations to distinguish between the concepts.
Recall that the cosine-similarity between fθ and wj
measures how well word sj fits into the context. If
wj and wi represent concepts sj and si which are
visually close but the vectors are far in space, the
model would have to find better representations for
fθ to determine whether it should be close in angle
to wj or wi, as fθ is the only term that can be opti-
mized in Eq-1 when the target vectors are fixed. In
the example above, the non-fixed tell model placed
the vectors representing the concepts close in space.
The cosine-similarity between wduck and wbird is
0.82, and is 0.81 between wseagull and wbird. In
contrast, the cosine-similarity between the equiva-
lent target vectors in the fixed models are roughly
0 due to the randomization.

Fixed:	a	seagull	is	standing	in	the
sand	on	a	beach

Non-Fixed:	a	bird	that	is
flying	over	the	water

Fixed:	a	duck	swims	through	the
body	of	water

Non-Fixed:	a	bird	that	is
standing	in	the	water

Figure 3: Captions generated by fixed and non-fixed
tell models.

Model Non-Fixed Fixed %
Tell 18,001,171 13,142,291 27%
Attend 25,342,739 20,483,859 19%
Multi30K DE-EN 13,893,381 10,870,272 22%
Multi30K EN-DE 14,898,861 10,870,272 28%
IWSLT DE-EN 20,237,792 14,307,512 30%
IWSLT EN-DE 21,158,627 14,307,512 33%
WMT-14 EN-DE 36,267,832 28,043,832 21%

Table 3: The number of learnable parameters in each
model with the relative decrease percentage.

3.3 Parameters and Computation Efficiency
Recall that the classification layers contains d · |V |
parameters, where V is the target vocabulary and d
is the dimension of the context vector fθ. Table-3
demonstrates the significant reduction in the num-
ber of learnable parameters. Our method also re-
sults in improved computational efficiency com-
pared to the tied-embeddings method (Press and
Wolf, 2016). When using tied-embedding, the tar-
get vectors are the same as the input vectors, and
therefor their dimensions are equal. As a result,
the context vector, fθ, should also be adjusted to
have the same dimension as the input and target
vectors. In contrast, our proposed method allows to
set low dimensional representations, which results
in increased computational efficiency at inference.
Additionally, the fixed target vectors can be ini-
tialized with sparse vectors which can result in
memory efficiency. An example is the Hadmard
matrix, used by (Hoffer et al., 2018) as the last fully
connected layer in image classification models.

3.4 Conclusions and Future Work
In this paper, we demonstrated that by randomly
drawing the target embeddings, and setting them as
fixed during training, the number of learnable pa-
rameters is significantly decreased while allowing
to achieve high performance in machine-translation
and image-captioning.
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4 Appendix

4.1 Training procedures
Image-captioning Training descriptions were
preprocessed with basic tokenization, keeping all
words that appeared at least 5 times in the train-
ing set. Words appearing less are map into UNK
symbol. For training the models, we use Adam opti-
mizer and set the initial learning rate to 0.0004. We
multiply the learning rate by 0.8 for every 8 epochs
without improvement in the BLEU score. Training
is ended once the model achieves 20 epochs with-
out improvement in the BLEU score. The batch
size is set to 32 instances. At training, we apply
teacher-forcing by feeding at each time step the
ground-truth word. During decoding, we use beam-
search as the decoding strategy, with a beam size
of 10.



11

Machine-translation Training procedure for
MultiK30 dataset is as follows: the training sen-
tences were preprocessed with basic tokenization,
keeping all words that appeared at least 2 times
in the training set. Words appearing less are map
into UNK symbol. For training the models, we use
Adam optimizer and set the initial learning rate to
0.001. We multiply by 0.8 the learning rate for
every 8 epochs without improvement in the BLEU
score. Training is ended once the model achieves
20 epochs without improvement in the BLEU score.
The batch size is set to 128 instances. At training,
we apply teacher-forcing by feeding at each time
step the ground-truth word.

For training the models on IWSLT we use the
same procedure as in MultiK30 with the following
modifications: We keep words that appeared at
least 5 times in the training set, and filter data to
have sentences with max length of 20. The initial
learning rate is set to 0.002 and multiplied by 0.25
for every 8 epochs without improvement in the
BLEU score. The batch size is set to 64 instances.

4.2 Word Relationships

For evaluating the quality of the non-fixed target
vectors in both image-captioning and machine-
translation, we follow the evaluation proposed in
the tied embeddings paper. We calculate the pair-
wise (cosine) distances between embeddings and
correlate these distances with human judgments
of the strength of relationships between concepts.
Results are shown in Table-4.

Model Simlex999 MEN MTurk-771
tell 0.30/0.24 0.26/0.46 0.20/0.34
attend 0.38/0.26 0.49/0.45 0.40/0.32
IWSLT DE-EN 0.07/0.07 0.16/0.07 0.14/0.11
MultiK30 DE-EN 0.19/0.04 0.36/0.01 0.31/0.06

Table 4: Spearman’s correlation between word vectors
and human judgments of the strength of relationships
between concepts. The correlation of the target vector
are in the left column. The correlation of the input vec-
tors are in the right column.

4.3 Diversity

Despite the substantial progress in recent years,
sentences produced by existing image captioning
methods are still often overly rigid and lacking in
variability. Several works (Shetty et al., 2017; Dai
et al., 2017; Sadeh et al., 2019) address these issues
with an alternative training and inference methods
to generate more natural and diverse image descrip-

tions. In Fig-4 we show how simple technique such
as fixing the classification layer, which does not
require any additional computational cost, might
improve the diversity and accuracy of the generated
captions.

NF: a cat that is sitting on
a chair. 
F: two tabby cat sitting on
a blue bench.       

NF: a truck that is sitting
in the grass.
F: an old rusty truck
parked in the grass.

NF: a man standing in
front of a bathroom
mirror.
F: a man taking a selfie in
a bathroom.

NF: a group of people
standing next to each
other.
F: two men in suits
standing next to each
other

NF: a group of men
standing next to each
other.
F: a group of men cutting
a sheet cake on top of a
table.

NF: a man riding on the
back of a motorcycle
F: a police officer is riding
a yellow motorcycle

NF: a pile of luggage
sitting on top of a bed
F: an	open	suitcase	is
packed	with	various
items.

NF: a bird sitting on top of
a wooden post.
F: a brown and gray bird
sitting on a window sill.

NF: a display case filled
with lots of donuts.
F: a display case in a
bakery filled with donuts
and pastries

NF: a cat laying on top of
a wooden desk.
F: an orange cat sitting
on top of a dresser.

NF: a tall building with a
clock on the top
F: the big ben clock tower
towering over the city of
london

NF: a train that is on a
train track.
F: a train traveling
through a lush green
countryside.

Figure 4: Examples of captions generated by tell and
attend models. NF and F refer to models with non-
fixed and fixed target embeddings, respectively. Low-
frequency words are underscored.


