@inproceedings{fivez-etal-2021-integrating,
title = "Integrating Higher-Level Semantics into Robust Biomedical Name Representations",
author = "Fivez, Pieter and
Suster, Simon and
Daelemans, Walter",
editor = "Holderness, Eben and
Jimeno Yepes, Antonio and
Lavelli, Alberto and
Minard, Anne-Lyse and
Pustejovsky, James and
Rinaldi, Fabio",
booktitle = "Proceedings of the 12th International Workshop on Health Text Mining and Information Analysis",
month = apr,
year = "2021",
address = "online",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/add-emnlp-2024-awards/2021.louhi-1.6/",
pages = "49--58",
abstract = "Neural encoders of biomedical names are typically considered robust if representations can be effectively exploited for various downstream NLP tasks. To achieve this, encoders need to model domain-specific biomedical semantics while rivaling the universal applicability of pretrained self-supervised representations. Previous work on robust representations has focused on learning low-level distinctions between names of fine-grained biomedical concepts. These fine-grained concepts can also be clustered together to reflect higher-level, more general semantic distinctions, such as grouping the names nettle sting and tick-borne fever together under the description puncture wound of skin. It has not yet been empirically confirmed that training biomedical name encoders on fine-grained distinctions automatically leads to bottom-up encoding of such higher-level semantics. In this paper, we show that this bottom-up effect exists, but that it is still relatively limited. As a solution, we propose a scalable multi-task training regime for biomedical name encoders which can also learn robust representations using only higher-level semantic classes. These representations can generalise both bottom-up as well as top-down among various semantic hierarchies. Moreover, we show how they can be used out-of-the-box for improved unsupervised detection of hypernyms, while retaining robust performance on various semantic relatedness benchmarks."
}
Markdown (Informal)
[Integrating Higher-Level Semantics into Robust Biomedical Name Representations](https://preview.aclanthology.org/add-emnlp-2024-awards/2021.louhi-1.6/) (Fivez et al., Louhi 2021)
ACL