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Abstract

For domain-specific NLP tasks, applying
word embeddings trained on general cor-
pora is not optimal. Meanwhile, training
domain-specific word representations poses
challenges to dataset construction and embed-
ding evaluation. In this paper, we present
and compare ELMo and Word2Vec models
trained/finetuned on philosophical data. For
evaluation, a conceptual network was used.
Results show that contextualized models pro-
vide better word embeddings than static mod-
els and that merging embeddings from differ-
ent models boosts task performance.

1 Introduction

Statistical distributions of terms in context can be
used to characterize their semantic behavior (Lenci,
2018). This is the fundamental idea that distribu-
tional models of language are built upon. When
trained on large corpora, these models can provide
valid word representations which can be further
utilized in various downstream NLP tasks. Two
common models are Word2Vec’s skipgram model
(W2V, Mikolov et al., 2013) and the ELMo model
(Peters et al., 2018). Although word embeddings
pretrained on large corpora provide good mean-
ing representations, using them in domain-specific
tasks does not achieve good results (Nooralahzadeh
et al., 2018). This is because the semantic space
of a certain domain can be different from that of
general language. For instance, the word substance
refers to matter in ordinary language but in philo-
sophical contexts it is a technical term from meta-
physics pertaining to entities (Robinson, 2020).

Contextualized models like ELMo address this
problem to some extent, but require a lot of domain-
specific data to obtain a tailored model, while such
datasets are typically smaller. The main contribu-
tions of this paper are:

• We trained and finetuned ELMo models with
a philosophical corpus.

• We examined and compared models with con-
textual embeddings and static embeddings
with intrinsic evaluations.

• We experimented with combining finetuned
W2V and pretrained ELMo embeddings for
representations of philosophical terms.

2 Related work

Efforts have been made in the following direc-
tions with regards to creating domain-specific word
embeddings. Firstly, the construction of domain-
specific corpora. Roy et al. (2017) appended man-
ual annotations (predicate-argument structure) to
training data in the field of cybersecurity. The addi-
tional annotation makes the original dataset more
suited to the task of training cybersecurity embed-
dings. Secondly, refinement can be carried out
on existing embeddings. Boukkouri et al. (2019)
combined W2V embeddings trained on a small
domain-specific corpus with ELMo embeddings
and evaluated them on a clinical entity recognition
task. They found combined embeddings outper-
formed embeddings trained on large corpora in
the medical domain. Lastly, one can also explore
suitable models for training with small amount of
data. Herbelot and Baroni (2017) proposed a re-
fined W2V model called Nonce2Vec (N2V), which
learns word meanings from tiny data. The N2V
model takes a high-risk learning approach with
heightened learning rate and larger window size
to process contexts greedily. Besides N2V, simple
additive models have also proven to work well on
small data (Lazaridou et al., 2016; Bloem et al.,
2019).

As for evaluations of domain-specific word em-
beddings, the usual approach is to design in-domain



tasks (Nooralahzadeh et al., 2018) or ground truths
(Betti et al., 2020; Oortwijn et al., 2021). However,
many domains lack such evaluation data. Bloem
et al. (2019) proposed a general evaluation metric
of consistency, based on the idea that a stable model
could provide similar word embeddings given the
same term across similar sources.

3 Task Description

The overall goal of this paper is to examine and
compare different models by evaluating word em-
beddings trained on a small philosophy corpus.

3.1 Dataset
We used the dataset from Bloem et al. (2019), con-
sisting of version 0.4 of the QUINE corpus (Betti
et al., 2020) and evaluation terms. This corpus is
made up of all philosophical texts written by the au-
thor Willard Van Orman Quine, consisting of 228
articles, books and bundles. The corpus consists
of OCR-processed, manually corrected text and
contains about 2 millions tokens after tokenization.

3.2 Model
ELMo We trained two ELMo models of different
sizes and finetuned one. For training, we used the
above dataset with a split of training data (17000
sentences) and testing data (5016 sentences). For
finetuning, we continued training a pre-trained
ELMo model1 on the philosophical texts. Key train-
ing parameters for the three ELMo models can be
found in Appendix A. The learning rate was set to
default (0.2) for all models.

Word2Vec We trained Word2Vec skipgram mod-
els in the Gensim (Rehurek and Sojka, 2011) imple-
mentation with our data based on a pretrained-256
dimensional embedding model: the Nonce2Vec
background model (Herbelot and Baroni, 2017)
trained on Wikipedia data. We used consistency
(Bloem et al., 2019) as a metric to choose the best
hyper-parameters. It is measured as cosine similar-
ity between two vectors of the same seed word. Our
seed words were chosen from general philosophical
terms2 (Appendix B), excluding target terms from
the Quine dataset used for evaluation (Appendix D).
We abandoned terms ending with -ism and multi-
token terms and selected terms whose frequency
is over 50 in our corpus. We selected sentences
containing seed words, divided each selected set

1https://github.com/allenai/bilm-tf
2source1 URL, source2 URL

into two parts and combined each part with the rest
of the corpus. As a result, we have three corpora in
total: the whole corpus and two sub-corpora. The
model with the background semantic space is most
consistent with a learning rate of 0.005 and led to
0.97 cosine similarity.

Nonce2Vec We trained a Nonce2Vec (N2V)
model with consistency as the metric for tuning
hyper-parameters. Unlike the W2V models, N2V
only changes the embeddings of targeted terms,
with the remaining semantic space frozen. We mea-
sured consistency with seed words, as we did with
W2V. Since N2V is designed to be trained on “tiny
data”, we limited the contexts of each target term
to up to 10 sentences both during tuning and model
training. With the best selected hyperparameters,
the model has a 0.97 consistency score.

3.3 Combined Embeddings

According to Boukkouri et al. (2019), combin-
ing contextualized word embeddings with their
static counterparts works better on downstream
tasks than merely using contextualized or static
ones. The combination methods used in their paper
were concatenation and addition. In our study, we
further explored whether assigning weight works
better than simply adding the two types of em-
beddings. The new embeddings are defined as
Emix = α ∗ Eelmo + (1 − α) ∗ Ew2v, where α
is the weight assigned to the ELMo embeddings
and (1 − α) the W2V. We experimented 11 values
from 0 to 1 for α with an interval of 0.1.

3.4 Evaluation

We evaluated models based on word embeddings
of specific terms. These terms were proposed by
Oortwijn et al. (2021) as a ground truth for evalu-
ation. They constructed a conceptual network of
all relevant index terms of Quine’s Word and Ob-
ject (1960). The index terms were categorized by
domain experts into one of the six clusters they
defined (language, ontology, reality, mind, meta-
linguistic and relational terms, reproduced in Ap-
pendix D. We generated word embeddings for the
73 terms in the first five categories. 30 of these
terms have a frequency less than 100 in the corpus
(n < 100), 9 terms over 1000 (n ≥ 1000) and 34
in between (100 ≤ n < 1000). For ELMo, type
embeddings were generated by averaging token
embeddings for the same type in different contexts.
For multi-token terms that were not in the model’s

https://github.com/allenai/bilm-tf
https://global.oup.com/us/companion.websites/9780199812998/studentresources/pdf/perry_glossary.pdf
https://www.translationdirectory.com/glossaries/glossary078.htm


vocabulary, we used the averaged embeddings to
represent the whole. This is done for all models
and evaluations and no other multiword term pro-
cessing takes place (e.g. on the corpus). The em-
beddings were evaluated by the following metrics:

Cluster similarity Following Oortwijn et al.
(2021), for each term, we sampled a term in the
same category and a term in the different category
and compared their similarity with the original
term. We then calculated the probability that the
cosine similarity between the same category terms
was higher than that of a different category. We
performed the sampling process 100 times for each
terms and averaged the scores as our final scores.

Rank For each target term, we find the top 5
nearest (besides itself) terms by cosine similarity.
Each term accounts for 0.2 score if it is in the same
category as the target term. The highest score for
a target term is therefore 1. We then added up the
scores for all target terms as the rank score. There
are 73 terms in total. However, the highest rank
score is not 73, but 71.4: in the category Mind,
there are only two terms, which means for each
term in Mind, the highest score is 0.2 rather than 1.

Dunn index is used to measure how well embed-
dings of terms in the same category cluster (fol-
lowing e.g. Huang et al., 2016). A higher number
suggests better clustering, which means a small
variance between members of a cluster, and large
differences between means of each cluster.

Gap is similar to cluster similarity, except that
we consider pairs of all terms in this case. We
calculated the cosine similarity between each two
terms. We then averaged the overall similarity of
the terms from the same sets and from the different
sets and got their gaps.

4 Results

The main results are shown in Table 1. Our results
show that, except for the pretrained ELMo model,
ELMo models generally provide better embeddings
than the W2V model. This might be attributed to
the sequential structure of ELMo, which encodes
neighbouring information based on contexts. To
better understand the performance scores, we di-
vided the results of rank score and cluster similarity
into two conditions, namely the single-token terms
and multi-token terms. Table 2 shows the results.
The rank score and cluster similarity of the W2V

Model Sim Rank Dunn gap
E s 0.69 49.2 0.44 0.08
E m 0.69 46.6 0.37 0.07
E pre 0.65 39.4 0.41 0.05
E ft 0.74 48.0 0.40 0.10
W2V ft 0.65 45.6 0.39 0.07
N2V 0.67 43.2 0.52 0.14
E preW ft+ 0.66 44.8 0.43 0.06
E preW ftc 0.67 44 0.42 0.05

Table 1: Evaluation results. E = ELMo, s = small, m
= medium, pre = pretrained, ft = finetuned. The last
two models provide combined embeddings, where + =
addition, c = concatenation. All models have dim=256
except for E m and E preW ftc with dim=512.

Term single-token multi-token
Model Rank Sim Rank Sim
E s 23.2 0.69 26 0.79
W2V ft 20.4 0.56 25.2 0.75
∆ 2.8 0.13 0.8 0.04

Table 2: Results of single and multi-token terms on
rank and cluster similarity. For Sim, only the original
terms were considered, instead of resampled ones.

model are lower than those of the ELMo small
model in both single and multi-token terms’ cases.
However, we found that in the single-token terms
case, there is a bigger difference of the rank (2.8
versus 0.8) and cluster similarity (0.13 versus 0.04)
between the two models. This might be because
the meaning of multi-token terms are less context
dependent. Since we averaged the embeddings for
each subtoken within the multi-tokens, the final
representation of the multi-tokens already encodes
some neighbouring information. By contrast, for
single-token terms, ELMo is better in incorporating
neighbouring information than the W2V model.

As for the combined models, we found that the
rank score performance increased greatly from 39.4
(only ELMo) to around 44 (combined). However,
there is nearly no difference between the combined
models and the finetuned W2V. This suggests our
finetuned W2V model already provides a reason-
able semantic space for the Quine data, and adding
additional information does not improve it. We
also experimented with merging the embeddings
from both models. The results for the rank score
and cluster similarity are shown in Figure 2. Con-
trary to our expectation that increasing the portion
of pretrained ELMo decreases both scores, there is



a peak for both scores when the portion of W2V
embeddings is around 0.3-0.4. It seems that com-
bining pretrained language model embeddings with
W2V needs to be examined carefully to find the
sweetest point. Non-linear combination could also
be explored in future work.

Figure 1: Rank score and cluster similarity of the
merged embeddings as the portion of ELMo embed-
ding is increased from 0 to 1.

From Table 1 and consistent with Oortwijn et al.
(2021), we observed that the N2V model provides
the highest Dunn index (0.52). When we scale the
distance numbers to the same level for all models,
we observe that the maximal intra-cluster distance
in N2V is smaller than in other models. One reason
could be that due to limited contexts and increased
learning rate, the N2V model aggressively learns
new meanings so the new meanings encode less
noisy information, such as old meanings or contex-
tual meanings. This enables outliers to be closer to
their cluster centroids, resulting in a lower maximal
intra-cluster distance used in Dunn index calcula-
tion. A higher intra-cluster similarity could also
explain why the N2V model has a higher gap score.

Figure 2: Distributions of eight types of errors from
ELMo small model. Mul = multi-token, sin =single-
token. The order of the token type corresponds to: orig-
inal terms, same-cluster terms, different-cluster terms.

Semantic error analysis of terms in this dataset
can only be performed by Quine domain experts.
However, we can examine some superficial fea-
tures. From Table 2, we observed different perfor-
mance from single-token and multi-token terms.
To examine the influence of single/multi-token
terms on evaluation scores, we took both the cor-
rect and incorrect cases from cluster similarity and
categorized them into 8 types (2*2*2) based on
the token type (single or multi) of original terms,
sampled-same-group term and sampled-different-
group term. Figure 2 shows the results for the error
case. The all-single-term case which accounts for
the largest portion, nearly one fourth of all errors.
The next two biggest error sources are confusion
between the single and multi-token terms: in the
sin mul sin case, instead of predicting the original
term (sin) and same-cluster term (mul) to be more
similar, the model predicted the original term and
different-cluster terms (sin) as more similar. The
same observation can be found in the mul sin mul
case. When we look at the mul mul sin and the
sin sin mul types from the correct case, we found
they together account for nearly a half of all cor-
rect cases. This indicates that terms of the same
type (single/multi) have the tendency to be closer,
which could be the result of averaging subtoken
embeddings in ELMo, comparable to the sum ef-
fect observed by Kabbach et al. (2019). We present
the term distribution from the ELMo small model
in Appendix C. We conclude that full multi-token
term processing would be preferable but small
datasets may not provide enough instances of each.
N2V should be less affected by this due to its train-
ing on contexts of the full multi-token term even if
it is low-frequent.

5 Conclusions

In this study, we pretrained/finetuned ELMo and
W2V models with a small corpus of philosophical
texts and compared them using intrinsic evalua-
tion methods. We also explored combining the two
kinds of embeddings. Our main conclusions are: 1)
ELMo models provide better embeddings than the
finetuned W2V model despite the small data size,
except a pretrained model without tuning, which
performs worse. 2) Concatenating and adding em-
beddings does not bring extra value in this study;
however, when merging embeddings from different
models, performance can be gained by tuning the
contribution of each model.
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A ELMo hyper-parameters

LSTM Char cnn Data
Model Output dim Hidden dim N char Embed dim Type Token
ELMo s 256 1024 261 16 philosophy 1.6M
ELMo m 512 2048 261 16 philosophy 1.6M
Pretrained 256 1024 261 16 miscellaneous 800M
Finetuned 256 1024 261 16 combined combined

B Seed words
inference deductive argument
analytical antecedent necessary
effect cause epistemology
extension intension extensional
formal freedom identity
argument hypothetical induction
categorical infinity intension
extension justice logical
moral truth ontology
perceptual relativity identity
premise reason theoretical
property reasoning extension
proposition practical relation
nature analysis disposition
subjective analytic critical
substance appearance experience
synthetic belief empirical
analytic concept formal
knowledge practical reason
logical pure standpoint
maxim reality subject
objective rational subjective
perspective real system
existence perspective spirit
fallacy paradox verification
meaning science symbol
analogy paradox intuition
inference predicate judgment
essential sense synthetic
extension simplicity theoretical
illusion state understanding
deductive hypothetical will
intensional ideology being
fact imagination use
mention valid

C Term distribution from ELMo small
model

Term distribution after t-SNE dimension reduction for
the ELMo small embeddings. Note that the Dunn in-
dex for the clusters after dimension reduction is 0.05
(down from 0.44), so there is a large information loss
and this visualization does not fully represent the 256-
dimensional model.



D Target terms

Language Ontology Reality Mind Metalinguistic
Pronominal singular
term

Ordinary enduring
middle sized phys-
ical thing

Operant
behavior

Prelinguistic qual-
ity space

Canonical nota-
tion

Abstract term Class Modulus Conceptual scheme Paraphrase
Adjective Concrete object Stimulation Variables
Article Physical object Phoneme Concatenation
Definite article Ideal object Stimulus Concretion
Indefinite article Geometrical object Context Conditional
Mass term Material Conjunction
Demonstrative Object Connective
Description Abstract object Construction
General term Particle Contradiction
Singular term Particular Copula
Definite singular term Physical thing Form
Indefinite singular term Function
Eternal sentence Quantification
Indicator word Quantifier
Name Quotational
Noun Predication
Relative term Plural
Substantive Regimentation
Observation sentence Elimination
Occasion sentence Explication
Open sentence Linguistic form
Pronoun Logic
Abstract singular term Syntax
Relative clause
Relative pronoun
One word sentence
Word
Verb


