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RÉSUMÉ
Définition et détection des incohérences du système dans les dialogues orientés tâche.
Nous présentons des expériences sur la détection automatique des comportements incohérents des
systèmes de dialogues orientés tâche à partir du contexte. Nous enrichissons les données bAbI/DSTC2
(Bordes et al., 2017) avec une annotation automatique des incohérences de dialogue, et nous dé-
montrons que les incohérences sont en corrélation avec les dialogues ratés. Nous supposons que
l’utilisation d’un historique de dialogue limité et la prédiction du prochain tour de l’utilisateur peuvent
améliorer la classification des incohérences. Si les deux hypothèses sont confirmées pour un modèle
de dialogue basé sur les réseaux de mémoire, elles ne le sont pas pour un entraînement basé sur le
modèle de langage GPT-2, qui bénéficie le plus de l’utilisation de l’historique complet du dialogue et
obtient un score de précision de 0,99.
ABSTRACT
We present experiments on automatically detecting inconsistent behavior of task-oriented dialogue
systems from the context. We enrich the bAbI/DSTC2 data (Bordes et al., 2017) with automatic
annotation of dialogue inconsistencies, and we demonstrate that inconsistencies correlate with failed
dialogues. We hypothesize that using a limited dialogue history and predicting the next user turn can
improve inconsistency classification. While both hypotheses are confirmed for a memory-networks-
based dialogue model, it does not hold for a training based on the GPT-2 language model, which
benefits most from using full dialogue history and achieves a 0.99 accuracy score.

MOTS-CLÉS : système de dialogue orienté-tâche, incohérences, modèle utilisateur, apprentissage
automatique.

KEYWORDS: task-oriented dialogue systems, inconsistency, user model, machine learning.

1 Introduction

Compared to traditional pipeline architectures, the recent end-to-end neural-network-based dialogue
systems have a simpler design and less space for error accumulation, but suffer from less control
over the training, reduced explainability and a need for large amounts of training data and computing
power, not to mention the difficulty to incorporate external knowledge bases. To address these
problems, Madotto et al. (2018) developed Mem2Seq, an end-to-end architecture based on memory
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networks (Weston et al., 2015; Sukhbaatar et al., 2015) for learning from an external database with a
relatively small model. Chen et al. (2019) then built WMM2Seq, a Mem2Seq-based dialogue system
inspired by cognitive science research, whose architecture is composed of two memory networks,
one learning from the dialogue history and the other from a knowledge base. Other neural-based
works build on two-stage decoding within the same network (Hosseini-Asl et al., 2020; Ham et al.,
2020). However, neither architecture solves the problem of system inconsistencies inherent in any
dialogue generation task. Indeed, during a human-machine conversation, it is not uncommon to
observe the machine saying something unexpected or inconsistent (Litman et al., 2006; Engelbrecht
& Möller, 2010). A detection and correction of these inconsistencies is difficult, but would constitute
an important improvement since it would allow the system to correct itself (Zhang et al., 2019),
bringing us one step closer to a lifelong learning architecture (Veron, 2019; Hancock et al., 2019). In
this paper, we make the following contributions: (1) we enrich a task-oriented dialogue dataset with
inconsistencies annotation, (2) we show that dialogue inconsistencies correlate with failures of the
respective dialogues and (3) we perform a series of experiments to train and evaluate inconsistency
classification models based on history and user modeling.

2 Related Works

In machine translation, Ma et al. (2019) showed that an incremental/simultaneous translation model
can get faster by anticipating sequences, with results close to full sentence translation. In dialogue,
Shang et al. (2020) reached state-of-the-art results for dialogue act classification by labeling speaker
change in dialogue turns during learning, which shows the importance of speaker roles in the
conversation. Auguste et al. (2019) take this idea one step further by learning to classify the dialogue
act of the current and the next dialogue turn, with comparable results. Finally, Lin et al. (2020)
create a system called “Imagine then Arbitrate” (ITA) to learn when to answer and when to listen, by
imagining what the user will say to anticipate possible system errors.

Regarding system error analysis, Whitney et al. (2017) model with a POMDP (Sammut & Webb,
2010) the uncertainty of a dialogue agent when answering a user question to improve the answer
accuracy. Welleck et al. (2019) use a natural language inference model to improve a system’s
consistency in a dialogue, Li et al. (2020) then integrate consistency into the system training signal.
Dziri et al. (2019) apply a similar inference-based approach for dialogue system evaluation. During
the DSTC6 shared task (Hori et al., 2019), inconsistency detection for non-task-oriented dialogues
was one of the problems investigated; however, the inconsistencies found remain quite specific to
this type of dialogue. Gao et al. (2019) show that when a conversation exceeds a certain number of
dialogue turns, end-to-end systems see their performance decrease, which they attribute to the the
conversation history becoming noisy if it is too large. To our knowledge, there has not been a system
that predicts the next user’s turn and filters dialogue history to anticipate system inconsistencies.

3 Inconsistency Classification

We need to distinguish between understanding or decision errors in human-human dialogues, and
bot-specific inconsistencies in a human-machine dialogue. Indeed, during a task-oriented conversation
between two humans, errors or problems lead to almost systematic co-corrections between the two
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interactors. Self-initiated and self-repaired or hetero-initiated co-corrections are applied whenever an
error occurs (Chernyshova, 2018). However, these errors are corrected thanks to inference, i.e. the
explicit errors of a speaker cause the listener to interpret and infer what the first speaker really meant.
In the same way, the speaker who made the error infers what the listener could have understood and
inferred, in order to self-correct (Deppermann, 2018; Fernandez et al., 2006). In human-machine
interaction, this inference is impeded by human knowing that they are talking to a machine with
an a priori limited capacity for inference and correction. Therefore, when the user or the machine
commits human-like errors, this limitation inevitably lowers the confidence and patience on the
user part. The main focus in this paper is, however, on inconsistencies – system errors that are not
human-like but endemic to the system’s learning process. Inconsistencies may often cause the user to
end the dialogue unsuccessfully (cf. our experiment in Section 4.2). For the machine to acquire some
co-correction capability, i.e. to be able to detect inconsistencies in its own responses, it must have
some representation of the user interpreting them. The DSTC2 dialogues are between a real system
and users (Henderson et al., 2014a), and thus include many system inconsistencies, especially based
on speech recognition errors. A lot of these inconsistencies are recoverable , so the whole dialogue
is not jeopardized. Based on an empiric analysis of the corpus, we list the most frequent types of
inconsistencies found in human-computer interaction, with an example for each of them (see Table 1
for statistics):

1. Intent misunderstood (Ex: U -> in which zone is it located? S -> Eraina is a great
restaurant.) Here, the system did not predict the correct user intent (request) and slot (area).

2. Bad entity (Ex: U -> Mediterranean. S -> There is no Jamaican restaurant here.) We
distinguish this case from the previous one because in this case, the system actually predicted
the correct intent and slot, but it then generated an incorrect output.

3. Repetition (Ex: U -> gastropub. S -> What type of restaurant are you looking for? U ->
Gastropub. S -> Ok let me look.) The system forced the user to repeat the same utterance.

4. “Bye” misunderstood (Ex: U -> goodbye. S -> The restaurant Paris serves French cuisine.)
This is a particular type of 1. where the system does not understand that the user wants to end
the conversation.

5. User insults (Ex: U -> i dont give a fuck if hk_fusion serves chinese food im looking for thai
food. S -> am sorry but there is no fusion restaurant that matches your request.) In addition
to providing a clue on intent misunderstanding, this category also provides feedback about the
user feeling, which is useful when considering commercial deployment (Kumar, 2010).

6. Bad API call (Ex: U -> in the south. S -> api call = Kitchen, ANY_location, expensive). As
the API call is explicit, we can verify easily if it is consistent with the information given by
the user.

7. Incompleteness (Ex: U -> phone and address. S -> Phone is ***) The system only responds
to some of the slots requested by the user.

8. Negation error (Ex: U -> no french food. S ->There are restaurants serving french food .
What area do you want?) The system is unable to process a negation in the user’s request.

A lot of the above inconsistencies can be detected using simple rules (e.g., detecting that the system
utterance repeats twice in a row). More elaborate rules may concern entity type mismatch between
the user and system utterances, etc. The main source of information for all the rules is the dialogue
history. However, a conversation history that is too large can become a source of noise for the system
(Madotto et al., 2018). According to several studies (Wolters et al., 2009; Lai et al., 2020), the
longer a dialogue history is, the more difficult it becomes for the system to retrieve the most relevant
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inconsistency type total correct total
1 2 3 4 5 6 7 8 inconsistent turns turns

783 245 1,360 275 11 242 780 64 3,760 26,179 29,939

Table 1 – Number of inconsistencies of various types (see Section 3 for explanation of the individual
types) in the bAbI corpus.

information, especially if the slots change during the dialogue. Therefore, our goal is to mimic the
cognitive forget function (Bodner & Lindsay, 2003) during a dialogue (i.e., reproduce the same
information filtering) and to define the optimal dialogue history size to remember. We note that the
inconsistency annotation is not turn-independent. For example, in order to detect that the system says
the same sentence twice and the user is bothered, we need to know turns t and t+ 1 . 1 A legitimate
question then is: To what extent can a reduction of the dialogue history size, possibly combined with
the knowledge of the user’s next turn, allow the system to better detect its own inconsistent behavior?

4 Data and Experiments

4.1 The bAbI Corpus and Our Additional Annotation

To answer the question asked in Section 3, we use the bAbI dialogue corpus (Bordes et al., 2017),
which is a postprocessed version of the DSTC2 corpus (Henderson et al., 2014a), consisting of 3,232
English dialogues between a human and a POMDP-based restaurant reservation system (Young et al.,
2013). Dummy API calls were added to simulate access to an external database. A dialogue turn
contains either an exchange between the user and the system, or an API call and its result. Detailed
statistics are provided in Henderson et al. (2014b). Based on the inconsistency types identified in
Section 3, we automatically added inconsistency annotation to each dialogue turn by employing
simple pattern-matching rules. 2 We conduct annotation evaluation on a sample of 150 dialogue turns
by two linguists (with inter-annotator agreement in terms of Cohen’s kappa of 0.76). We consider
the annotated dataset as a silver-standard (computer annotation with human evaluation). For the
evaluation, we choose labelling accuracy as the metric to reflect the annotation performance and
obtain a 0.79 accuracy score. The accuracy metric is sufficient because the number of dialogues with
and without inconsistencies is not overly imbalanced. Coming from the original DSTC2 corpus, each
dialogue is also annotated according to the DSTC2 handbook guidelines 3 with a success mark on a
satisfaction scale from 0 (unsatisfied) to 5 (satisfied) (Walker et al., 1997). In total, 502 dialogues are
failed (16%).

dialogue count success failure
with inconsistencies 1,715 420

without inconsistencies 1,020 82

Table 2 – Number of successful and failed dialogues with and without inconsistencies in bAbI data.

1. We assume that the system initiates the dialogue. Therefore, we take the next user utterance from the same turn. This is
the case for DSTC2 (see Section 4).

2. The full code for the rules is available at https://github.com/DiaSER21/consistency.
3. https://github.com/matthen/dstc/blob/master/handbook.pdf
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4.2 Correlation Between Failure and Inconsistencies

Unsurprisingly, almost all failed dialogues contain inconsistent system responses. The Fisher exact
test (Fisher, 1936) shows that there is a very likely dependence between failed dialogues and the
presence of inconsistency – dialogues with inconsistencies are ca. 3x more likely to fail (odds ratio
0.328, p < 1e-20). 4 Most failed dialogue contain inconsistencies, but a much lower proportion of
successful dialogues has them. Moreover, the number of inconsistencies in a dialogue is higher on
average for the failed dialogues. There are many dialogues (around 15%) which can be considered
as failed on closer inspection even though they are marked as successful. 5 This can explain why so
many dialogues annotated in the original data as successful contain inconsistencies. The dialogue
success is impacted not just by the presence of an inconsistency, but also by its relative position with
respect to the key events in the transaction (e.g., API system call for fetching an answer, query for a
confirmation etc.). This is why we felt justified in trying to gauge this impact.

We investigated which were the determining features in deciding whether a dialogue was a failure or
not. We used Gaussian naïve Bayes (Chen et al., 2009) from Scikit-Learn (Pedregosa et al., 2011) to
predict dialogue success. 6 Table 3 summarizes some of the different features used to improve the
detection of failed dialogues. 7 If the dialogue contains inconsistencies already, they are more likely
to occur again. We noticed that the types of inconsistencies are not that important to detect failed
dialogues. We calculate unsuccessful dialogues’ detection F1-score (unsuccessful counts as positive).
The best results are achieved with simple TF-IDF-based textual features of user, system and API
call inputs, coupled with the number of total inconsistencies and with the number of inconsistencies
appearing before the first system’s API call in the dialogue. The results confirm that inconsistencies
have an influence on dialogue success.

features precision recall F1-score
textual 0.56 0.52 0.53

textual + total inconsistencies 0.57 0.62 0.60
textual + total inconsistencies + inconsistencies before API call 0.65 0.57 0.61

Table 3 – Failed dialogue prediction with and without inconsistency annotation.

4.3 Models, Metrics and Experiments

Our rule-based automatic annotation (see Section 4.1) uses the whole annotated dialogue. However,
we are not able to see future context in real use cases. Therefore, we raise a question about the
possibility to match the performance by training a classification model based solely on the past
context. We trained four different classifiers on our annotation to predict inconsistencies:

4. We note that although the dialogue inconsistencies are correlated with a higher chance of a dialogue failure, the
correlation does not imply a strict cause-effect relationship, as users may be sufficiently motivated to put up with punctual
inconsistencies if they feel that they can obtain what they want from the system.

5. For instance, the user never speaks during the dialogue, user requests are not satisfied, the system was unable to finish
the dialogue, or there are numerous speech recognition errors.

6. Gaussian naïve Bayes worked better than other machine learning algorithms such as SVM, logistic regression, random
forest and multilayer perceptron in our preliminary experiments.

7. Features used: the user and system utterances transformed into word-based TF-IDF weights, system database API call
with the same TF-IDF, total number of inconsistencies in the dialogue, number of inconsistencies happening before and after
the API call, types of inconsistencies present.
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Bi-LSTM DIET WMM2Seq GPT-2
binary multi binary multi binary multi binary multi

input acc F1 acc F1 acc F1 acc F1 acc F1 acc F1 acc F1 acc F1
c 59.0 52.3 83.9 9.53 85.7 66.6 83.4 52.6 86.0 50.1 83.7 35.7 64.2 77.2 62.1 8.1
c+h1 80.5 65.0 84.0 10.2 85.2 58.4 83.1 43.0 86.9 48.1 82.6 41.8 84.3 90.5 84.2 38.8
c+h2 77.0 59.8 84.8 9.18 83.2 55.2 82.6 50.0 87.0 46.2 82.6 39.6 85.2 91.0 85.1 40.7
c+hf 71.0 48.9 85.4 6.57 79.3 53.7 83.6 50.7 85.9 44.4 82.6 44.6 99.9 99.9 98.4 93.7
c+n 79.2 71.1 80.2 9.57 89.7 64.1 88.9 54.1 90.2 57.3 85.1 26.1 25.2 8.2 10.2 22.9
c+n+h1 88.0 82.1 84.2 8.48 87.9 76.6 87.6 52.0 89.1 53.4 81.3 39.3 80.6 87.7 79.2 40.8
c+n+h2 87.4 81.4 81.8 8.41 89.0 77.6 85.6 40.2 89.1 55.1 81.4 39.6 85.2 90.9 85.1 40.6
c+n+hf 79.0 65.9 85.7 5.72 87.0 70.2 86.2 48.6 86.4 46.9 82.6 40.8 99.9 99.9 98.5 93.5

Table 4 – Inconsistency classification accuracy and weighted-averaged F1 scores (binary and
multiclass mode) of our models. The most frequent baseline achieves accuracy 87%. We present
results with various combinations of the input data. Possible inputs are: current turn (c), next user
utterance (n), last 1 or 2 turns of dialogue history (h1,h2) or full history (hf ).

— Bi-LSTM with attention (Jang et al., 2020) is a simple model for sequence/text classification
but highly effective when it has to deal with long-term information such as dialogue history.

— DIET classifier, the dialogue intents entities transformer, is a transformer-based (Devlin et al.,
2019) dialogue intents classifier (Wu et al., 2020) that outperforms most of recent classifiers
in the user intention detection task.

— WMM2Seq (Chen et al., 2019) is a memory network-based model that uses two different
memory modules: context (dialogue history as episodic memory) and knowledge base (API
calls as semantic memory) for generating system responses, one word at a time.

— GPT-2 (Radford et al., 2019) is a transformer-based architecture made of several transformer
decoder blocks (Vaswani et al., 2017), stacked one on top of the other. The architecture is
pre-trained for language modeling on a huge corpus and is capable of effective finetuning for
many downstream tasks. We finetune the model in a multitask setting, i.e. we optimize both
inconsistency classification loss and response generation loss.

We use classification accuracy and weighted macro average of F1 scores as the evaluation metrics,
and we train the models both for binary (inconsistency or not) and multiclass classification (predicting
specific inconsistency type, or no inconsistency). We use the most frequent label prediction as a
strong baseline (no inconsistency, present in 87% of the examples, i.e. accuracy 87%). The results
are shown in Table 4 and discussed next. We use 2,117 dialogues for training and 1,115 for testing.

The results show that, even if the baseline is strong (87%), it is outperformed by all the models. The
best results (99%) are obtained by the GPT-2 based model when using the whole dialogue history (h)
and the next user utterance (nu). When h is not used, the performance decreases; nu has a smaller
effect. We believe that GPT-2 is capable of extracting input information that is most relevant for
inconsistency classification, therefore it benefits from the long history. Indeed, when we examined
the results, we observed that almost all GPT classification errors are related to the “incompleteness”
inconsistency. These cases depend only on the immediate context (previous utterance). On the
contrary, DIET and WMM2Seq obtained the best results (0.90) with the next user utterance and
no history at all, even if the performance difference without the next user utterance is smaller than
GPT-2’s. Also, a simple Bi-LSTM outperforms the baseline when using both h1 and h2 with nu in
binary mode but fails to pick up the necessary features in the multiclass mode.We observe that with
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model bi-LSTM DIET WMM2Seq GPT-2
κ 0.74 0.76 0.67 0.97

Table 5 – Cohen’s Kappa values for comparing the best models’ predictions to the ground truth labels.

less information, WMM2Seq gets the highest accuracy after GPT-2. However, as GPT-2 training is
both costly and needs the whole dialogue to get the best performance, the results confirm the need
of predicting next user’s utterance to have a more accurate model, in case where a smaller model
is required or when the whole dialogue history is not available. We also compare the best model
variants’ predictions to ground-truth labels in binary mode and measure Cohen’s Kappa (Ben-David,
2008) to asses that the models’ performance is better than chance. The results are shown in Table 5.

5 Conclusion and perspectives

This work presents a new dataset based on the DSTC2/bAbI corpus that allows research on the
task of detecting dialogue inconsistency, which has not been explored much so far. We conducted
experiments that revealed a correlation between system turn inconsistencies and dialogue failures.
This fact can be exploited in further research of dialogue modeling to prevent failures. Furthermore,
we applied four different classifier architectures to automatically detect inconsistencies in the newly
formed dataset. Among the explored architectures, the best performing were a GPT-2-based classifier
and the WMM2Seq model. Interestingly, while GPT-2 strongly benefits from the provided history
context, the WMM2Seq performed best when no history was used and next user utterance was
available to the model, which makes it more suitable for the real world usecases. Access to the next
utterance improved results across the board. With this set of experiments, we provide a first proof
of the benefit we might gain by having dialogue systems to incorporate an oracle for predicting the
next user turn, a step toward a future dialogue architecture with a dual system and user model. In
future works, we will evaluate on more complex datasets in order to confirm the usefulness of this
new feature when detecting system inconsistencies.
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