
Proceedings of the 18th International Conference on Spoken Language Translation, pages 75–83
Bangkok, Thailand (Online), August 5–6, 2021. ©2021 Association for Computational Linguistics

75

The IWSLT 2021 BUT Speech Translation Systems

Hari Krishna Vydana, Martin Karafiát, Lukáš Burget, “Honza” Černocký
Brno University of Technology, Faculty of Information Technology, Speech@FIT, Czechia

harivydana@gmail.com

Abstract

The paper describes BUT’s English to Ger-
man offline speech translation (ST) systems
developed for IWSLT2021. They are based on
jointly trained Automatic Speech Recognition-
Machine Translation models. Their perfor-
mances is evaluated on MustC-Common test
set. In this work, we study their efficiency
from the perspective of having a large amount
of separate ASR training data and MT train-
ing data, and a smaller amount of speech-
translation training data. Large amounts of
ASR and MT training data are utilized for pre-
training the ASR and MT models. Speech-
translation data is used to jointly optimize
ASR-MT models by defining an end-to-end
differentiable path from speech to translations.
For this purpose, we use the internal continu-
ous representations from the ASR-decoder as
the input to MT module. We show that speech
translation can be further improved by training
the ASR-decoder jointly with the MT-module
using large amount of text-only MT training
data. We also show significant improvements
by training an ASR module capable of gener-
ating punctuated text, rather than leaving the
punctuation task to the MT module.

1 Introduction

Speech Translation (ST) systems are intended
to generate text in target language from the
audio in source language. The conventional
ST systems are cascade ones, including (in the
most popular form) three blocks i.e., an ASR,
punctuation/segmentation module and an MT
model (Ngoc-Quan Pham, 2019; Pham et al.,
2020b; Jan et al., 2019; Ansari et al., 2020). Both
Automatic Speech Recognition system (ASR) and
Machine Translation (MT) models are indepen-
dently trained, and the MT model processes the
ASR output text (ASR hypotheses) to generate
translations. In a cascade system, the advance-

ments in ASR and MT can be directly extended to
ST. These models can also leverage on the avail-
ability of large ASR and MT data-sets, and some
of the state-of-the art ST systems are still cascade
ones.

Recently, End-to-End ST systems have become
widely popular. An End-to-End ST can directly
generate text in target language from the audio
in source language. These models are simpler
in structure and they are more suitable for op-
erating in streaming fashion. Most End-to-End
speech translation systems are variants of encoder-
decoder architecture with attention models (Bah-
danau et al., 2015; Di Gangi et al., 2019; Zhao
et al., 2020). This category includes the popu-
lar Transformer models, which have been adapted
for training End-to-End ST in (Di Gangi et al.,
2019). In (Inaguma et al., 2020), a better perfor-
mance of ST was achieved by initializing the en-
coder and decoder modules from pre-trainied ASR
and MT systems, respectively. Very-deep trans-
former models have been trained with stochastic
depth for training End-to-End ST models in (Pham
et al., 2019). The use of relative positional embed-
dings has also improved the performance of trans-
former (Pham et al., 2020a).

One major drawback or end-to-end ST is the
data availability, i.e., paired speech-to-translation
data is scarce compared to ASR or MT data. Data
augmentations and use of synthetic data have been
explored in (Bahar et al., 2019, 2020) to mitigate
the issue. Unlike End-to-End ST systems, the data
for training cascade systems is easily available and
less costly.

A brief survey of existing approaches and their
principal limitations are discussed in (Sperber and
Paulik, 2020). Despite multiple advantages, the
cascade systems suffer from a major drawback:
propagating erroneous early decisions into MT
models, which then cause degradation in the trans-

76

lation performance. To mitigate this degradation,
rather than passing a single ASR output sequence
to MT model, other forms such as lattices, n-best
hypotheses and continuous representations have
been explored in (Anastasopoulos and Chiang,
2018; Zhang et al., 2019; Sperber et al., 2019; Vy-
dana et al., 2021; Dong et al., 2020).

In this work, we use our jointly trained Au-
tomatic Speech Recognition-Machine Transla-
tion (Joint-ASR-MT) model previously described
in (Vydana et al., 2021). Joint-ASR-MT model
is a cascade system, but it has a differentiable
path between ASR and MT modules. To cre-
ate such differentible path, the continuous hidden
representations (corresponding to each output to-
ken) from the ASR decoder are passed to the MT-
Model. The hidden continuous tokens correspond-
ing to each output token are the attention-weighted
value vectors in the last layer of the transformer
decoder. We refer to these continuous representa-
tions as“context vectors” as proposed in (Sperber
et al., 2019).

Existing large separate ASR training data and
MT training data can be used to pre-train these
modules; then, the pre-trained modules are jointly
optimized using a small amount of speech trans-
lation data. The joint optimization mitigates the
degradation in performance due to erroneous early
decisions.

In this paper, we generate German translation
from English speech, and we focus on two main
contributions: (1) We train different MT mod-
els that can translate normalized text or punctu-
ated text. It is known that MT-models translat-
ing punctuated text provide superior performance,
therefore, we propose to train an ASR system that
can generate the punctuated text. We confirm that
such ASR system provides superior performance
in ASR-MT pipeline. (2) We use the internal con-
tinuous representations from the ASR-decoder as
the input to MT module. In section 6, we show
that speech translation can be further improved by
adapting ASR-decoder to the MT module. This is
achieved by training the ASR-decoder jointly with
the MT-module using a large amount of text-only
MT training data.

2 Datasets and Pre-processing

The Datasets used for training various models are
described in Table. 1. ASR-Train-set and MT-
Train-set are used for pre-training ASR and MT

models respectively. The pre-trained models are
fine-tuned using ASR-MT-Train-set. All models
are evaluated using MustC-Common test set.

Table 1: Data used for training various models.

Corpora #Sentences Audio
Source

text
Target
Text

MT
-Train-set

ParaCrawl v3 31M - X X

OpenSubtitles 2018 12M - X X

Rapid 2019 1.5M - X X

Europarl v9 1.81M - X X

News Commentary 365K - X X

Common Crawl 2.4M - X X

Wikititles 1.3M - X X

WIT3 196K - X X

TED Talks 220K - X X

ASR-MT
-Train-set

Europarl-ST 32K X X X

Must-C V2 230K X X X

IWSLT2018 171K X X X

ASR
-Train-set

Tedlium3 264K X X -

Librispeech 281K X X -

2.1 Pre-processing and Feature Extraction

From audio data, 80-Dimensional Mel-Filter bank
energies along with pitch features are extracted.
The Moses toolkit is used for text tokenization
and other standard text pre-processing. The um-
lauts from the German text are replaced by the
special tokens. All the non ASCII characters are
removed from the text data. The repetitions of
the same sentences are removed from the corpora.
We cleaned up the MT training data by identify-
ing and manually removing the sentences where
successive words were erroneously concatenated
in to very long erroneous words. Sentence-piece
models (Kudo and Richardson, 2018) are used for
training BPE-tokenizers. 40M lines of text are
used for training each BPE-tokenizer and all the
tokenizers have a vocabulary of 20K units. Three
separate tokenizers are trained using normalized
English text, punctuated English text and punctu-
ated German text. The output of MT module is al-
ways punctuated text, while input to MT (as well
as ASR output) can be either normalized or punc-
tuated text (see norm-MT and Punc-MT in sec-
tions 4).

2.2 Pruning Noisy ASR corpus

Some of the utterances in ASR-MT-Train-
set (MustC, IWSLT and Europarl) sets are erro-
neous due to the shift in alignments between audio
and text. Training an End-to-End ASR on this data

77

directly did not lead to convergence. To remove er-
roneous transcripts, a hybrid TDNN-LFMMI ASR
system based on KALDI (Povey et al., 2011, 2016)
was trained and this ASR system was used to de-
code the ASR-MT-train set. The Word Error Rate
(WER) for each sentence is computed and the sen-
tences with more than 50% WER are deleted from
the ASR-MT-Train-set (Potapczyk et al., 2019).
Even with this cleaning, training the ASR systems
only on ASR-MT-Train-set did not lead to con-
vergence. Pre-training the ASR models on ASR-
Train-set turned out to be crucial for convergence
as described in section 3.

3 Automatic Speech Recognition (ASR)

ASR systems trained in this work are built on
Transformer ASR models (Dong et al., 2018;
Karita et al., 2019; Vydana et al., 2021; Vaswani
et al., 2017). The ASR models have 12 encoder
and 6 decoder layers with 4096 feed-forward
units and 1024 attention dimension with 16 heads.
Models are initially trained with ASR-Train-set
and are later fine-tuned with ASR-MT-Train-set.
A thresholding mechanism is used for pruning
away the noisy end-of-sequence (EOS) tokens
from beam search (Kahn et al., 2019). Models are
trained with 30K warm-up updates and a check-
point is saved after every 8K updates. The train-
ing is stopped with an early stopping criterion. 8-
best check-points are averaged and the averaged
weights are used for decoding the hypothesis. Vec-
torized beam search (Seki et al., 2019) was used
for decoding the ASR hypotheses with a beam size
of 10. Further in this paper, ASR models described
in this section are referred to as Ext.ASR models
(Externally trained ASR models).

Two different ASR systems were trained for
generating normalized text (Norm-ASR) and
punctuated text (Punc-ASR), and their perfor-
mances are reported in Table 2. It can be observed
that the WER of Punc-ASR appears to be higher
than Norm-ASR. Punc-ASR is a obviously more
difficult task than Norm-ASR — the punctuation
tokens are considered as extra words and each er-
ror in those words contributes to the WER.

ASR-LM: A Transformer language model was
trained on English text (Irie et al., 2019). The
model has 6 layers, with 4096 feed-forward units
and 1024 attention dimension with 8 heads. The
model is initially pre-trained on Librispeech LM
corpus and it is later fine-tuned on English text

Table 2: Performance of trained ASR systems reported
on MustC-Common set. For Punc-ASR, the errors in
punctuation tokens are considered, which makes it a
more difficult task.

Model WER
Norm-ASR 18.20

+LM 17.35
Punc-ASR 21.20

from MT-train-set and ASR-MT-train-set. An im-
provement in the performance is observed by shal-
low fusion of the ASR and language model (ASR-
LM). Performances of these language models are
presented in column 2 of Table. 5.

4 Machine Translation Systems(MT)

Transformer models (Vaswani et al., 2017) are also
at the core of MT-systems. They have 6-encoder
and 6-decoder layers with 4096 feed-forward units
and 1024 attention dimensions and have 16 heads.
The models are optimized with 30K warm-up up-
dates and a check-point is saved every 8k updates.
Training is stopped using an early stopping cri-
terion. 8-best check-points are averaged and the
averaged weights are used for decoding the hy-
potheses. The noisy EOS tokens are pruned out
using (Kahn et al., 2019). Vectorized beam (Seki
et al., 2019) search has been used for decoding
the hypotheses with a beam size of 8. A large
variance in the performance is observed w.r.t the
decoding hyper-parameters such as maximum tar-
get sequence length and length-bonus. The maxi-
mum length of the target sequence is computed by
multiplying the input sequence length with length-
ratio: 1.2 was found as optimal on the develop-
ment set. To control the length of the output se-
quence, the log-likelihood scores of the hypothe-
ses are penalized by additive token insertion penal-
ties. The optimal value for this penalty is tuned as
a hyper-parameter on the development set. The
hypothesis text is de-tokenized and BLEU score
is evaluated using Moses Toolkit. All the BLEU
scores reported in this paper are computed us-
ing the de-tokenized, punctuated German text us-
ing multi-bleu-detok.perl. The perfor-
mances of the MT systems are reported in Table. 3.
All BLEU scores reported in this paper are com-
puted using punctuated text as reference.

In Table 3, Norm-MT, Punc-MT are MT models
trained to predict punctuated German text. Norm-

78

Table 3: Performances of the MT systems reported on
MustC-Common set.

Model BLEU
Norm-MT
+pretrain 27.18
+finetune 27.98
+MT-LM 28.12

Punc-MT
+pretrain 31.02
+finetune 35.00
+MT-LM 35.04

MT uses the normalized English text as input
while the Punc-MT uses the punctuated English
text. Punc-MT model has performed better than
Norm-MT. From Table 3, it can be observed that
the punctuation tokens in the text are adding ad-
ditional information for training the MT model.
Fine-tuning the Punc-MT on in-domain text has
improved the performance significantly. Further in
this paper, MT models described in this section are
referred to as Ext.MT models (Externally trained
MT models).

MT-LM: A transformer language model has
been trained on German text from MT-Train-set,
ASR-MT-train-set. This LM is also used while
decoding with the MT model (Irie et al., 2019).
The architecture of the model is same as ASR-LM
mentioned in section 3. A shallow fusion between
the MT-model and the MT-LM Language model is
performed. As shown in Table 3 and column 2 of
Table 5, the additional language model (MT-LM)
did not improve the performance significantly.

5 Jointly Trained ASR-MT Systems

The model has two modules: ASR and MT; their
architecture is same as described in sections 3 and
4 respectively – see block diagram in Figure 1 and
full description of the model in (Vydana et al.,
2021). The context vectors from the final layer
of the ASR-decoder are used as inputs to the MT
module. Passing context vectors from ASR to
MT models while training has also been explored
in (Sperber et al., 2019). Both the models are
jointly optimized using a multi-task cross-entropy
(ASR cross-entropy and MT cross-entropy) – both
losses are also shown in Figure 1. During the in-
ference, beam search has been used to obtain the
ASR hypotheses, and the corresponding context
vectors obtained from the ASR model are used by

Figure 1: Joint-training of ASR-MT system using
multi-task loss.

the MT model for generating translations. The MT
model also uses a beam search, and the final ST
hypotheses is obtained by a coupled search (Vy-
dana et al., 2021) using the joint-likelihood from
ASR and MT:

y∗ = argmax
y

∑
z∈Ẑ(x)

P (y|z)P (z|x)

≡ argmax
y

arg max
z∈Ẑ(x)

(log(P (y|z))

+ log(P (z|x))), (1)

where x is the speech abnd z,y are the source
and target sequences respectively. Ẑ is the n-best
source sequence and y∗ is most likely decoded hy-
pothesis. In this equation, y∗ is always a discrete
sequence, while z is a discrete sequence when
we are using Ext.MT and a continuous one when
using Joint-MT. Note that similar coupled search
was used in (Tu et al., 2017), where the back trans-
lation likelihoods are used for re-scoring the hy-
pothesis of the MT-system.

6 Adapting ASR decoder to the MT
module

Joint-ASR-MT models are jointly optimized by
having an end-to-end differentiable path from
speech to translations. The internal continuous
representations from the ASR-decoder are used

79

as the input to MT module. Speech transla-
tion can be further improved by adapting ASR-
decoder to the MT module. This is achieved by
training the ASR-decoder jointly with the MT-
module using large amount of text-only MT train-
ing data. The weights for the model are initialized
from trained Joint-ASR-MT model. Speech trans-
lation data (ASR-MT-Train-set) is used to fine-
tune Joint-ASR-MT model using a multi-task loss.
Apart from that, the data from the MT-Train-set is
used to jointly train the ASR-decoder and the MT-
module of Joint-ASR-MT model. We alternately
update the model using multi-task loss described
in section 4 and the adaptation loss as described in
this section.

A block diagram describing this training is pre-
sented in Figure 2. The input text sequence is
given to the ASR-decoder and a sequence of zeros
is considered as the encoder output sequence of
the ASR model (i.e.,HASR in Figure 2). The con-
text vectors computed from these two sequences
are used for training the MT-module. Note that
similar method has been adopted in (Potapczyk
et al., 2019) for improving the performance of
ASR system using only text data. This training
further improves the performance as will be shown
in section 7.

Figure 2: Adaptation of ASR-decoder to the MT-
module in the Joint-ASR-MT model.

7 Speech Translation Results

Results for the various configurations of speech
translation systems are given in Table 4. First,
we focus on column A, where the Joint-ASR-MT
models are trained using ASR-MT-Train-set (only
speech translation data) with a multi-task loss
as described in section 5. Note, however, that
Ext.ASR and Ext.MT systems are trained on large
amounts of data and finetuned to ASR-MT-Train-
set as described in sections 3 and 4 respectively.
For systems in column-A, normalized (unpunc-
tuated) text is passed from ASR to MT model.

Row 1 corresponds to the conventional cascade
system, where the Ext.ASR systems generates the
n-best hypotheses of discrete token sequences and
an Ext.MT uses these token sequences for gener-
ating the translations as described in Eq. 1. We
consider this system achieving BLEU 23.20 as a
baseline.

Usually, transformer-ASR decoder uses the par-
tial output hypothesis and extends it by a new
token with every autoregressive decoding step.
For the system in row 2, Ext.ASR generates the
complete hypothesis and ASR module from Joint-
ASR-MT is “asked” to extend it by one more to-
ken. As a byproduct “context vectors” (the contin-
uous representations) are generated for the whole
sequence — these are then passed to the MT-
module in joint-ASR-MT model to generate trans-
lation. Compared to row 1 of column A, we see a
degradation in performance (BLEU-20.19). This
can be attributed to having only small amount of
speech translation training data, which is not suffi-
cient for robustly training the Joint-ASR-MT sys-
tems.

For the systems in row 3, Ext.ASR generates the
ASR hypotheses which are used by Ext.MT simi-
lar to the system described in row 1; the hypothe-
ses from Ext.ASR are used by Joint-MT similarly
to the system described in row 2. To generate the
translation, the hypotheses form both models are
ensembled as follows: For each output token, a
weighted average of Log-softmax outputs from the
two MT models is computed. This weighted av-
erage is used in the beam-search to compute the
n-best partial hypotheses. These partial hypothe-
ses are further extended by both the models to
generate the Log-softmax outputs for next tokens.
We can see that this ensembling system achieves
a BLEU score of 24.02 and outperforms the cas-
caded baseline.

The systems in rows 4-6 are essentially the same
as the ones in rows 1-3, respectively, except that
now, the ASR module from joint-ASR-MT sys-
tem is directly used to produce the n-best ASR
hypotheses and the corresponding context vec-
tors. Rows 4-6 show the same trend as rows 1-
3 with slightly improved performance; these im-
provements are mainly due to better performing
ASR system: As described in Section 2.2, train-
ing ASR systems only on ASR-MT-Train-set (data
from Mustc, IWSLT and Europarl with erroneous
transcriptions) did not lead to convergence. How-

80

Table 4: Performances of Joint-ASR-MT systems under various ensemble combinations, the results are reported
on MustC-Common test set.

A B C D

no-pretraining
+Norm-ASR/MT

pre-training
+Norm-ASR/MT

pre-training
+Punc-ASR/MT

pretraining
+Punc-ASR/MT+

tightly-coupled

[ASR]⇒[MT] BLEU WER BLEU WER BLEU WER BLEU WER

1. [Ext-ASR]⇒[Ext-MT] 23.20 18.20 23.20 18.20 26.15 21.54 26.15 21.54

2. [Ext-ASR]⇒[Joint-MT] 20.19 - 22.59 - 28.56 - 29.00 -

3. [Ext-ASR]⇒[Joint-MT + Ext-MT] 24.02 - 24.13 - 29.07 - 29.44 -

4. [Joint-ASR]⇒[Ext-MT] 23.86 16.14 23.86 13.01 29.70 15.71 30.24 15.63

5. [Joint-ASR]⇒[Joint-MT] 20.75 - 23.97 - 31.23 - 32.68 -

6. [Joint-ASR]⇒[Joint-MT + Ext-MT] 24.65 - 25.95 - 32.51 - 33.68 -

7. [Ext-ASR + Joint-ASR]⇒[Ext-MT] 24.60 14.84 25.00 13.54 29.00 16.46 29.35 16.19

8. [Ext-ASR + Joint-ASR]⇒[Joint-MT] 20.89 - 23.59 - 30.52 - 31.58 -

9. [Ext-ASR + Joint-ASR]⇒[Joint-MT + Ext-MT] 25.11 - 25.65 - 31.86 - 32.67 -

10.
[Ext-ASR + Joint-ASR]⇒[Joint-MT + Ext-MT]

+ens* 25.35 14.61 26.14 13.05 32.67 15.71 33.78 15.63

Table 5: Comparing the performance of Joint-ASR-MT systems while processing n-best hypotheses from the ASR.

A B C D

no-pretraining
+Norm-ASR/MT

pre-training
+Norm-ASR/MT

pre-training
+Punc-ASR/MT

pretraining
+Punc-ASR/MT+

tightly-coupled

[ASR]⇒[MT] BLEU WER BLEU WER BLEU WER BLEU WER
[Ext-ASR + Joint-ASR]⇒[Joint-MT + Ext-MT]

+ens* 25.35 14.61 26.14 13.05 32.67 15.71 33.78 15.63

+ASR-LM 26.90 12.80

+MT-LM 27.16

+2-best-input - - 27.24 - 32.69 - 33.82 -

+4-best-input - - 27.35 - 32.80 - 33.87 -

+6-best-input - - 27.35 - 32.85 - 33.86 -

+8-best-input - - 27.46 - 32.94 - 33.77 -

+10-best-input - - 27.51 - 32.87 - 33.79 -

ever, when the same data is used to train Joint-
ASR-MT model for speech translation task, we
observe that the ASR module in this model trained
well. The reason for that is that the ASR-module
is not directly trained on erroneous transcriptions,
instead, it is trained to produce transcriptions that
lead to good translations. This training can be
seen as a form of light supervision which can miti-
gate the problem with the erroneous transcriptions.

At the end, this system trained only on ASR-MT-
Train-set achieves better ASR performance (WER
16.14%) compared to Ext.ASR (WER 18.20%),
Which is pre-trained on ASR-Train-set (Approx
2000hrs) and fine-tuned on erroneous ASR-MT-
Train-set. Similar trend will be observed with the
systems in columns B, C and D.

The systems described in rows 7-9 are similar
to those from rows 1-3, except that the ASR hy-

81

potheses are obtained by ensembling the Ext.ASR
and ASR-module in Joint-ASR-MT model. The
ensembling is performed in a similar way as de-
scribed for the MT-system (row 2). All the ensem-
ble systems in rows 3, 6, and 7-9 are ensembled
giving equal weight to both the systems, except
for row 10, where the ensemble weights are tuned
on the development set. For all these systems, we
can see that the ensembling consistently improves
the performances.

The systems in column B are similar to the ones
in Column A, but for the Joint-ASR-MT model,
the weights of ASR and MT module are initial-
ized from the Ext.ASR and Ext.MT. Only then, the
Joint-ASR-MT model is fine-tuned using ASR-
MT-Train-set. Comparing column-A and column-
B, we can see that such pre-training has signifi-
cantly improved the performance.

We also see that the MT system using contin-
uous representations (Joint-MT) (row 5; BLEU
23.97) outperforms the system with the Ext.MT
(row 4; BLEU-23.86) and similar trend can be
seen in columns C and D. This is in contrast to the
system in column A where we did not use enough
data for training the Joint-ASR-MT model; now,
with the pre-training, the joint-ASR-MT model is
effectively trained on the same amount of data as
the Ext.MT systems.

The systems in column C are similar to the
ones in Column B, but the ASR and MT modules
used here are Punc-ASR (ASR systems which can
generate punctuated text) and Punc-MT (MT sys-
tems which can process punctuated text as input),
respectively. We can see that the systems from
column-C perform significantly and consistently
better than the corresponding ones in column-B.
This shows that it is more effective to train an
ASR module to generate punctuated text rather
than leaving the punctuation task to the MT mod-
ule. Note that the ASR performances reported in
columns C and D is computed including the punc-
tuation symbols, which results in higher WERs.

Finally, the systems in column D are the same
as the ones in column C except that we addition-
ally use the ASR decoder adaptation scheme de-
scribed in section 6. The consistent improvements
observed in column D as compared to column C
show the effectiveness of this adaptation scheme.
They are able to make use of the large amount of
text-only MT training data to train also the ASR
decoder in order to tighten the coupling between

ASR-decoder and MT-module. Apart from im-
proving MT-module, this adaptation has also im-
proved the performance of ASR-decoder on its
own. This can be observed by comparing WER’s
of row 4 in columns C and D.

The results of passing the n-best hypotheses
from ASR to MT models are presented in Table 5.
Passing the n-best hypothesis from ASR to MT
module has better performance, but not signifi-
cantly. This result is not in line with out previous
studies (Vydana et al., 2021), where we have seen
significant gains from switching from 1-best to n-
best.

8 Conclusion

In this work, we have explored joint-training of
ASR-MT models for speech translation. Initializ-
ing these models from pre-trained ASR and MT
models has helped in better optimization. The
joint training has improved the performance of the
ASR module significantly as the additional MT
module has provided better (light) supervision in
the context of erroneous ASR transcripts. Adding
the punctuation information into the input text im-
proves the performance of the MT-model greatly.
In line with this observation, use of ASR system
generating punctuated text also improves the MT
performance significantly in a cascade pipeline.
Use of the MT text only data to adapt the ASR
decoder to the MT module in the joint-ASR-MT
model further improves the performances of these
systems. The systems trained in this work are of-
fline models and their performances needs to be
studied from the perspective of online or stream-
ing models.

9 Acknowledgements

The work was supported by Czech National Sci-
ence Foundation(GACR) project “NEUREM3”
No. 19-26934X. Part of high-performance com-
putation run on IT4I supercomputer and was sup-
ported by the Ministry of Education, Youth and
Sports of the Czech Republic through e-INFRA
CZ (ID:90140).

References

Antonios Anastasopoulos and David Chiang. 2018.
Tied multitask learning for neural speech translation.
arXiv preprint arXiv:1802.06655.

82

Ebrahim Ansari, Nguyen Bach, Ondřej Bojar, Roldano
Cattoni, Fahim Dalvi, Nadir Durrani, Marcello Fed-
erico, Christian Federmann, Jiatao Gu, Fei Huang,
et al. 2020. Findings of the iwslt 2020 evaluation
campaign. In Proceedings of the 17th International
Conference on Spoken Language Translation, pages
1–34.

Parnia Bahar, Patrick Wilken, Tamer Alkhouli, An-
dreas Guta, Pavel Golik, Evgeny Matusov, and
Christian Herold. 2020. Start-before-end and end-
to-end: Neural speech translation by AppTek and
RWTH Aachen University. In Proceedings of the
17th International Conference on Spoken Language
Translation, pages 44–54, Online. Association for
Computational Linguistics.

Parnia Bahar, Albert Zeyer, Ralf Schlüter, and Her-
mann Ney. 2019. On using specaugment for
end-to-end speech translation. arXiv preprint
arXiv:1911.08876.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Mattia A Di Gangi, Matteo Negri, and Marco Turchi.
2019. Adapting transformer to end-to-end spoken
language translation. Proc. INTERSPEECH, pages
1133–1137.

Linhao Dong, Shuang Xu, and Bo Xu. 2018. Speech-
transformer: a no-recurrence sequence-to-sequence
model for speech recognition. In Proc. IEEE Int.
Conf. Acoust., Speech, Signal Processing, pages
5884–5888. IEEE.

Qianqian Dong, Rong Ye, Mingxuan Wang, Hao Zhou,
Shuang Xu, Bo Xu, and Lei Li. 2020. " listen, un-
derstand and translate": Triple supervision decou-
ples end-to-end speech-to-text translation. arXiv
preprint arXiv:2009.09704.

Hirofumi Inaguma, Shun Kiyono, Kevin Duh, Shigeki
Karita, Nelson Enrique Yalta Soplin, Tomoki
Hayashi, and Shinji Watanabe. 2020. Espnet-st: All-
in-one speech translation toolkit.

Kazuki Irie, Albert Zeyer, Ralf Schlüter, and Hermann
Ney. 2019. Language modeling with deep trans-
formers. arXiv preprint arXiv:1905.04226.

Niehues Jan, Roldano Cattoni, Stuker Sebastian,
Matteo Negri, Marco Turchi, Salesky Elizabeth,
Sanabria Ramon, Barrault Loic, Specia Lucia, and
Marcello Federico. 2019. The iwslt 2019 evaluation
campaign. In 16th International Workshop on Spo-
ken Language Translation 2019.

Jacob Kahn, Ann Lee, and Awni Hannun. 2019. Self-
training for end-to-end speech recognition. arXiv
preprint arXiv:1909.09116.

Shigeki Karita, Nanxin Chen, Tomoki Hayashi,
Takaaki Hori, Hirofumi Inaguma, Ziyan Jiang,
Masao Someki, Nelson Enrique Yalta Soplin,
Ryuichi Yamamoto, Xiaofei Wang, et al. 2019. A
comparative study on transformer vs rnn in speech
applications. arXiv preprint arXiv:1909.06317.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
arXiv preprint arXiv:1808.06226.

Thanh-Le Ha Juan Hussain Felix Schneider Jan
Niehues Sebastian Stüker Alexander Waibel Ngoc-
Quan Pham, Thai-Son Nguyen. 2019. The iwslt
2019 kit speech translation system. In Interna-
tional Workshop on Spoken Language Translation
(IWSLT). Hongkong.

Ngoc-Quan Pham, Thanh-Le Ha, Tuan-Nam Nguyen,
Thai-Son Nguyen, Elizabeth Salesky, Sebastian
Stueker, Jan Niehues, and Alexander Waibel.
2020a. Relative positional encoding for speech
recognition and direct translation. arXiv preprint
arXiv:2005.09940.

Ngoc-Quan Pham, Thai-Son Nguyen, Jan Niehues,
Markus Muller, and Alex Waibel. 2019. Very deep
self-attention networks for end-to-end speech recog-
nition. arXiv preprint arXiv:1904.13377.

Ngoc-Quan Pham, Felix Schneider, Tuan-Nam
Nguyen, Thanh-Le Ha, Thai Son Nguyen, Maxim-
ilian Awiszus, Sebastian Stüker, and Alex Waibel.
2020b. Kit’s iwslt 2020 slt translation system. In
Proceedings of the 17th International Conference
on Spoken Language Translation, pages 55–61.

Tomasz Potapczyk, Pawel Przybysz, Marcin Cho-
chowski, and Artur Szumaczuk. 2019. Samsung’s
system for the iwslt 2019 end-to-end speech transla-
tion task. In Proc. of 16th International Workshop
on Spoken Language Translation (IWSLT), Hong
Kong.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko
Hannemann, Petr Motlicek, Yanmin Qian, Petr
Schwarz, et al. 2011. The kaldi speech recognition
toolkit. CONF. IEEE Signal Processing Society.

Daniel Povey, Vijayaditya Peddinti, Daniel Galvez, Pe-
gah Ghahremani, Vimal Manohar, Xingyu Na, Yim-
ing Wang, and Sanjeev Khudanpur. 2016. Purely
sequence-trained neural networks for asr based on
lattice-free mmi. In Proc. INTERSPEECH, pages
2751–2755.

Hiroshi Seki, Takaaki Hori, Shinji Watanabe, Niko
Moritz, and Jonathan Le Roux. 2019. Vectorized
beam search for ctc-attention-based speech recogni-
tion. In Proc. INTERSPEECH, pages 3825–3829.

Matthias Sperber, Graham Neubig, Jan Niehues, and
Alex Waibel. 2019. Attention-passing models for

https://doi.org/10.18653/v1/2020.iwslt-1.3
https://doi.org/10.18653/v1/2020.iwslt-1.3
https://doi.org/10.18653/v1/2020.iwslt-1.3
http://arxiv.org/abs/2004.10234
http://arxiv.org/abs/2004.10234

83

robust and data-efficient end-to-end speech transla-
tion. Transactions of the Association for Computa-
tional Linguistics, 7:313–325.

Matthias Sperber and Matthias Paulik. 2020. Speech
translation and the end-to-end promise: Tak-
ing stock of where we are. arXiv preprint
arXiv:2004.06358.

Zhaopeng Tu, Yang Liu, Lifeng Shang, Xiaohua Liu,
and Hang Li. 2017. Neural machine translation with
reconstruction. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 31.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proc. Advances in Neural Information
Processing Systems, pages 5998–6008.

Hari Krishna Vydana, Martin Karafi’at, Katerina Zmo-
likova, Luk’as Burget, and Honza Cernocky. 2021.
Jointly trained transformers models for spoken lan-
guage translation. In Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Processing.

Pei Zhang, Boxing Chen, Niyu Ge, and Kai Fan. 2019.
Lattice transformer for speech translation. arXiv
preprint arXiv:1906.05551.

Chengqi Zhao, Mingxuan Wang, and Lei Li. 2020.
Neurst: Neural speech translation toolkit. arXiv
preprint arXiv:2012.10018.

