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Abstract

This paper describes Edinburgh’s submissions
to the IWSLT2021 multilingual speech trans-
lation (ST) task. We aim at improving multi-
lingual translation and zero-shot performance
in the constrained setting (without using any
extra training data) through methods that en-
courage transfer learning and larger capac-
ity modeling with advanced neural compo-
nents. We build our end-to-end multilingual
ST model based on Transformer, integrating
techniques including adaptive speech feature
selection, language-specific modeling, multi-
task learning, deep and big Transformer, spar-
sified linear attention and root mean square
layer normalization. We adopt data augmenta-
tion using machine translation models for ST
which converts the zero-shot problem into a
zero-resource one. Experimental results show
that these methods deliver substantial improve-
ments, surpassing the official baseline by> 15
average BLEU and outperforming our cascad-
ing system by > 2 average BLEU. Our final
submission achieves competitive performance
(runner up).1

1 Introduction

Although end-to-end (E2E) speech translation (ST)
has achieved great success in recent years, out-
performing its cascading counterpart and deliver-
ing state-of-the-art performance on several bench-
marks (Ansari et al., 2020; Zhang et al., 2020a;
Zhao et al., 2020), it still suffers from the relatively
low amounts of dedicated speech-to-translation par-
allel training data (Salesky et al., 2021). In text-
based machine translation (MT), one solution to
lack of training data is to jointly perform multi-
lingual translation with the benefit of transferring
knowledge across similar languages and to low-
resource directions, and even enabling zero-shot

1Source code and pretrained models are available at
https://github.com/bzhangGo/zero.

translation, i.e. direct translation between language
pairs unseen in training (Firat et al., 2016; Johnson
et al., 2017). However, whether and how to obtain
similar success in very low-resource (and practi-
cal) scenario for multilingual ST with E2E models
remains an open question.

To address this question, we participated in the
IWSLT2021 multilingual speech translation task,
which focuses on low-resource ST language pairs
in a multilingual setup. Apart from supervised
evaluation, the task also offers zero-shot condition
with a particular emphasis where only automatic
speech recognition (ASR) training data is provided
for some languages (without any direct ST parallel
data). The task is organized in two settings: con-
strained setting and unconstrained setting. The
former restricts participants to use the given multi-
lingual TEDx data (Salesky et al., 2021) alone for
experiment; while the latter allows for additional
ASR/ST/MT/others training data. In this paper, we
address the constrained one.

Our E2E multilingual ST model takes Trans-
former (Vaswani et al., 2017) as the backbone, and
follows the adaptive feature selection (AFS) frame-
work (Zhang et al., 2020a,b) as shown in Figure
1. AFS is capable of filtering out uninformative
speech features contributing little to ASR, effec-
tively reducing speech redundancy and improving
ST performance (Zhang et al., 2020a). We adapt
AFS to multilingual ST, and further incorporate
several techniques that encourage transfer learn-
ing and larger capacity modeling, ranging from
language-specific modeling, multi-task learning,
deep and big Transformer, sparsified linear atten-
tion (ReLA) (Zhang et al., 2021b) to root mean
square layer normalization (RMSNorm) (Zhang
and Sennrich, 2019b). Inspired by Zhang et al.
(2020c), we convert the zero-shot translation prob-
lem into a zero-resource one via data augmentation
with multilingual MT models.

https://github.com/bzhangGo/zero
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Figure 1: Overview of our multilingual ST model for an English-Spanish example. We first pretrain the ASR encoder
paired with adaptive feature selection (AFS) to induce informative speech features (a), which are then carried over to the ST
encoder-decoder model for translation (b). We adopt language embedding and language-specific (LS) linear mapping before and
after ASR/ST encoder, respectively, to strengthen source/target (Src/Tgt) language modeling. The ASR decoder is discarded and
the other ASR modules are frozen after the pretraining. Solid arrows illustrate the E2E translation procedure.

We integrate all these methods into one model
for our submission. Our results reveal that:

• These methods are complementary in improv-
ing translation performance, where data aug-
mentation and larger-capacity modeling con-
tribute a lot.

• Low-resource E2E ST benefits greatly from
multilingual modeling; our E2E multilingual
ST performs very well in this task, outper-
forming its cascading counterpart by 2 aver-
age BLEU.

2 Methods

In this section, we elaborate crucial ingredients
in our E2E multilingual ST, which individually
have already been proven successful for ST or
(multilingual) MT. We put them together to im-
prove multilingual ST as shown in Figure 1. Note
all encoder/decoder modules are based on Trans-
former (Vaswani et al., 2017).

2.1 Adaptive Feature Selection
Speech is lengthy and noisy compared to its text
transcription. Also, information in an audio often
distributes unevenly. All these increase the dif-
ficulty of extracting informative speech features.
To solve this issue, researchers resort to methods
compressing and grouping speech features (Salesky
et al., 2019; Gaido et al., 2021). Particularly, Zhang
et al. (2020a) propose adaptive feature selection
(AFS) to sparsify speech encodings by pruning

out those uninformative ones contributing little to
ASR based on L0DROP (Zhang et al., 2020b). Us-
ing AFS, Zhang et al. (2020a) observe significant
performance improvements (> 1 BLEU) with the
removal of ∼84% speech features on bilingual ST.

Our model follows the AFS framework, which
includes three steps: 1) pretraining the ASR
encoder-decoder model; then 2) finetuning the ASR
model with AFS; and 3) training ST model with
the ASR encoder and the AFS module frozen.

2.2 Deep Transformer Modeling

Neural models often benefit from increased mod-
eling capacity, and one way to achieve this is
to deepen the models (He et al., 2015; Zhang
et al., 2020d). However, simply increasing model
depth for Transformer results in optimization fail-
ure, caused by gradient vanishing (Zhang et al.,
2019a). To enable deep Transformer, Zhang et al.
(2019a) propose depth-scaled initialization (DS-
Init) that only requires changing parameter initial-
ization without any architectural modification. DS-
Init successfully helps to train up to 30-layer Trans-
former, substantially improving bilingual and also
massively multilingual translation (Zhang et al.,
2019a, 2020c). We adopt this strategy for all deep
Transformer experiments.

Apart from DS-Init, researchers also find that
changing the post-norm structure to its pre-norm
alternative improves Transformer’s robustness to
deep modeling, albeit slightly reducing qual-
ity (Wang et al., 2019; Zhang et al., 2019a). We
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keep using post-norm Transformer for most mod-
ules but apply the pre-norm structure to the ASR
encoder to stabilize the encoding of speeches from
different languages.

2.3 Language-Specific Modeling
Analogous to multi-task learning, multilingual
translation benefits from inter-task transfer learn-
ing but suffers from task interference. How to
balance between shared modeling and language-
specific (LS) modeling so as to maximize the trans-
fer effect and avoid the interference remains chal-
lenging. A recent study suggests that scheduling
language-specific modeling to top and/or bottom
encoder/decoder sub-layers benefits translation the
most (Zhang et al., 2021a), resonating with the
findings of Zhang et al. (2020c). In particular,
Zhang et al. (2020c) propose language-aware lin-
ear transformation, a language-specific linear map-
ping inserted in-between the encoder and the de-
coder which greatly improves massively multilin-
gual translation.

We adopt such language-specific linear mapping
and apply it to both ASR and ST encoders. We
ground such modeling in the ASR and ST encoder
to the source and target language, respectively.
Following multilingual translation (Johnson et al.,
2017; Gangi et al., 2019; Inaguma et al., 2019), we
adopt language embedding (such as “[en], [es]”)
but add it to the inputs rather than appending an
extra token.

2.4 Sparsified Linear Attention
Attention, as the key component in Transformer,
takes the main responsibility to capture token-wise
dependencies. However, not all tokens are seman-
tically correlated, inspiring follow-up studies on
sparsified attention that could explicitly zero-out
some attention probabilities (Peters et al., 2019;
Zhang et al., 2021b). Recently, Zhang et al. (2021b)
propose rectified linear attention (ReLA) which
directly induces sparse structures by enforcing
ReLU activation on the attention logits. ReLA has
achieved comparable performance on several MT
tasks with the advantage of high computational ef-
ficiency against the sparsified softmax models (Pe-
ters et al., 2019).

Results on MT show that ReLA delivers bet-
ter performance when applied to Transformer de-
coder (Zhang et al., 2021b). We follow this prac-
tice and apply it to the ST decoder. Our study also
demonstrates that ReLA generalizes well to ST.

2.5 Root Mean Square Layer Normalization

Layer normalization (LayerNorm) stabilizes net-
work activations and improves model perfor-
mance (Ba et al., 2016), but raises non-negligible
computational overheads reducing net efficiency,
particularly to recurrent models (Zhang and Sen-
nrich, 2019a). To overcome such overhead, Zhang
and Sennrich (2019b) propose root mean square
layer normalization (RMSNorm) which relies on
root mean square statistic alone to regularize ac-
tivations and is a drop-in replacement to Layer-
Norm. RMSNorm yields comparable performance
to LayerNorm in a series of experiments (Zhang
and Sennrich, 2019b) and show great scalability in
large-scale pretraining (Narang et al., 2021).

We apply RMSNorm to the ST encoder and de-
coder, which benefits the training of deep and big
Transformers.

2.6 Data Augmentation

Data augmentation (DA) is an effective strategy for
low-resource tasks by increasing the training cor-
pus with pseudo-labelled samples (Sennrich et al.,
2016a; Zhang and Zong, 2016). Methods for gen-
erating such samples vary greatly, and we adopt
the one following knowledge distillation (Kim and
Rush, 2016). Note, prior to our study, knowledge
distillation has already been successfully applied to
ST tasks (Liu et al., 2019; Gaido et al., 2020). We
regard the multilingual MT as the teacher since text-
based translation is much easier than and almost
upper-bounds the speech-based counterpart (Zhang
et al., 2020a), and transfer its knowledge into our
multilingual ST (student).

Concretely, we first train a multilingual MT
model and then use it to translate each source
transcript into all possible ST directions, includ-
ing the zero-shot ones, based on beam search
algorithm. We directly concatenate the gener-
ated pseudo speech-translation pairs with the orig-
inal training corpus for multilingual ST training.
This will convert the zero-shot translation problem
into a zero-resource one for ST, which has been
demonstrated effective in massively multilingual
MT (Zhang et al., 2020c).

2.7 Multi-Task Learning

Multi-task learning aims at improving task perfor-
mance by jointly modeling different tasks within
one framework. Particularly, when tasks are of high
correlation, they tend to benefit each other and de-
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Speech
Target Languages

En Es Fr Pt It

Es 36K/102K 102K/- 3.6K/102K 21K/102K 5.6K/102K
Fr 30K/116K 21K/116K 116K/- 13K/116K -/116K
Pt 31K/90K -/90K -/90K 90K/- -/90K
It -/50K -/50K -/50K -/50K 50K/-

Table 1: Statistics for ST training data used for the
IWSLT2021 multilingual ST task. “-”: denotes no data avail-
able. “a/b”: “a” denotes genuine data while “b” is for aug-
mented data.

liver positive knowledge transfer. With datasets of
different tasks combined, this also partially allevi-
ates data scarcity.

We adopt multi-task learning by augmenting
translation tasks with transcription tasks. We in-
corporate the ASR tasks for multilingual ST, and
auto-encoding tasks (transcript-to-transcript in the
same language) for multilingual MT.

3 Experimental Settings

In this section, we explain the used datasets, model
architectures, optimization details and evaluation
metrics in our experiments. All implementations
are based on the zero2 toolkit (Zhang et al., 2018).

Data We participate in the constrained setting,
where only the provided data, i.e. Multilingual
TEDx (Salesky et al., 2021), is permitted. Mul-
tilingual TEDx collects audios from TEDx talks
in 8 source languages (Spanish/Es, French/Fr, Por-
tuguese/Pt, Italian/It, Russian/Ru, Greek/El, Ara-
bic/Ar, German/De) paired with their manual tran-
scriptions, covering translations into 5 target lan-
guages (English/En, Es, Fr, Pt, It). It contains
supervised training data for 13 ST directions, three
of which (Pt-Es, It-En, It-Es) are masked-out for
zero-shot evaluation. ASR training data is given
for all 8 source languages. Overall, Multilingual
TEDx is a small-scale dataset, whose ST training
data size ranges from 5K utterances (It-Es) to at
most 39K utterances (Es-En). Thus, studying and
improving transfer across different languages is of
great significance. The IWSLT2021 task requires
participants to model translations from 4 source
languages (Es, Fr, Pt, It), where the final evaluation
only targets translations into En and Es. The statis-
tics of ST (genuine and augmented) training data
are shown in Table 1.

Regarding audio preprocessing, we use the given
audio segmentation (train/dev/test) for experiments.
We extract 40-dimensional log-Mel filterbanks with

2https://github.com/bzhangGo/zero

a step size of 10ms and window size of 25ms as the
acoustic features, followed by feature expansion
via second-order derivatives and mean-variance
normalization. The final acoustic input is 360-
dimensional, a concatenation of the features corre-
sponding to three consecutive and non-overlapping
frames. We tokenize and truecase all text data us-
ing Moses scripts (Koehn et al., 2007). We adopt
subword processing (Sennrich et al., 2016b) with
8K merging operations (Sennrich and Zhang, 2019)
on these texts to handle rare words. Note we use
different subword models (but with the same vo-
cabulary size) for ST, ASR and MT.

Architecture The architecture for ASR and ST
is illustrated in Figure 1, while our MT model fol-
lows Zhang et al. (2020c). We apply AFS to ASR
encoder outputs (after language-specific mapping)
along both temporal and feature dimensions. By de-
fault, we adopt Transformer-base setting (Vaswani
et al., 2017): we use 6 encoder/decoder layers
and 8 attention heads with a model dimension of
512/2048. For deep Transformer, we equally in-
crease the encoder and decoder depth, and adopt
DS-Init for training. We also use Transformer-big
for ST, where the number of attention heads and
model dimension are doubled, increased to 16 and
1024/4096, respectively.

Optimization We train MT models with the max-
imum likelihood objective (LMLE). Apart from
LMLE, we also incorporate the CTC loss (Graves
et al., 2006) for ASR pretraining with a weight
value of 0.3 following Zhang et al. (2020a). During
AFS finetuning, the CTC loss is discarded and re-
placed with the L0DROP sparsification loss (Zhang
et al., 2020b) weighted by 0.5. We employ label
smoothing of value 0.1 for LMLE.

We adopt Adam (β1=0.9, β2=0.98) for parameter
tuning with a warmup step of 4K. We train all
models (ASR, ST and MT) for 100K steps, and
finetune AFS for 10K steps. We group instances of
around 25K target subwords into one mini-batch.
We apply dropout to attention weights and residual
connections with a rate of 0.1 and 0.2, respectively.
Dropout rate on residual connections is increased
to 0.3 for ST big models to avoid overfitting, and
to 0.5 for MT models inspired by low-resource
MT (Sennrich and Zhang, 2019). Except dropout,
we use no other regularization techniques. We use
beam search for decoding, and set the beam size
and length penalty to 4 and 0.6, separately. The

https://github.com/bzhangGo/zero
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Model Es-En Es-Pt Es-Fr Fr-En Fr-Es Fr-Pt Pt-En Pt-Es It-En It-Es Avg

Bilingual Models? 25.5 39.3 2.0 28.3 30.5 19.0 27.9 29.9 18.9 1.0 22.23
Multilingual Models? 24.6 37.3 18.1 28.2 32.1 30.6 28.8 38.4 20.9 25.1 28.41

Our Multilingual MT
+ 6 layers 28.7 42.1 29.3 33.6 38.3 36.7 33.2 42.9 20.3 32.7 33.78
+ 12 layers 31.8 44.7 31.7 36.4 40.9 39.9 35.6 44.0 23.0 34.9 36.29
+ 24 layers 32.8 44.9 32.4 37.3 41.8 40.7 36.8 43.2 23.2 35.3 36.84

Ablation Study
+ 6 layers w/o LS layer 28.6 41.8 29.0 33.7 38.2 36.3 33.2 42.5 20.7 32.6 33.66
+ 6 layer + RoBT 28.1 40.3 28.6 34.1 38.3 33.6 33.6 42.7 21.1 32.9 33.33

Table 2: SacreBLEU↑ for MT on Multilingual TEDx testsets. ?: results reported by Salesky et al. (2021). Note the results for
Pt-Es, It-En and It-Es translation in our model are based on zero-shot evaluation. In spite of this unfairness, our model still
substantially outperforms the supervised baseline (Salesky et al., 2021) by a large margin, +8.43 BLEU. RoBT: random online
back-translation (Zhang et al., 2020c). Best average BLEU is highlighted in bold. Columns in red denote zero-shot evaluation.

Model Es Fr Pt It Ru El Ar De Avg

Hybrid LF-MMI? 16.2 19.4 20.2 16.4 28.4 25.0 80.8 42.3 31.09
Transformer? 46.4 45.6 54.8 48.0 74.7 109.5 104.4 111.1 74.31

Our Multilingual ASR
+ 6 layers 17.6 19.5 23.1 20.8 39.8 33.0 104.3 57.8 39.49

Ablation Study
+ 6 layers w/o LS layer 18.0 19.5 23.2 21.6 40.8 35.2 97.8 62.6 39.84

Table 3: WER↓ for ASR on Multilingual TEDx testsets. ?: results reported by Salesky et al. (2021). Best results are highlighted
in bold.

model used for evaluation is averaged over the last
5 checkpoints.

Note, while the training data size varies across
languages, we follow the original data distribution
and adopt no specific sampling strategies for all
multilingual experiments.

Evaluation We evaluate translation quality us-
ing tokenized case-sensitive (Sacre)BLEU (Pap-
ineni et al., 2002; Post, 2018), and report WER for
ASR performance without punctuation on lower-
cased text. In ST experiments, we observe some
repeated translations decreasing BLEU. We auto-
matically post-process translations by removing
repeated chunks of up to 10 words.

4 Results

4.1 Multilingual MT

Table 2 shows the results for text-based translation.
Our best model, achieved with 24 layers, largely
surpasses the official baseline (Salesky et al., 2021)
by > 8 average BLEU. With 6 layers, our model
still largely surpasses this baseline by 5.37 average
BLEU, suggesting the superiority of our model.

Increasing model depth greatly benefits multilin-
gual MT (+2.51 average BLEU, 6 layers→ 12 lay-

ers), even though the dataset is small. Note the ben-
efit from increased depth diminishes as the depth
goes larger (+0.55 average BLEU, 12 layers→ 24
layers). We find that language-specific modeling
slightly improves translation performance (+0.12
average BLEU). Such improvement seems unin-
teresting particularly compared to the significant
gains on massively multilingual MT (Zhang et al.,
2020c), but we ascribe this to the high language
similarity in Multilingual TEDx and the relative
small number of languages. We also confirm the
effectiveness of random online back-translation
(RoBT), which improves zero-shot translation via
pseudo sentence pair augmentation (Zhang et al.,
2020c). Table 2 shows that RoBT indeed benefits
zero-shot translation, but sacrifices overall quality
(-0.45 average BLEU).

Overall, our results reveal very positive transfer
between these languages, and also great zero-shot
translation performance. This is an encouraging
finding for multilingual ST. We use our 24-layer
model for data augmentation distillation in the fol-
lowing ST experiments.
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Model Es-En Es-Pt Es-Fr Fr-En Fr-Es Fr-Pt Pt-En Pt-Es It-En It-Es Avg

Multilingual Models? 12.3 17.4 6.1 12.0 13.6 13.2 12.0 13.7 10.7 13.1 12.41
Cascades with Multilingual MT? 21.5 26.5 23.4 25.3 26.9 23.3 22.3 26.3 21.9 28.4 24.58

Our Multilingual MT, w/ AFS, LS layer, DA, ReLA (decoder self-attention) and RMSNorm
+ 6 layers 24.9 34.8 26.6 30.0 33.8 33.2 27.4 33.9 20.7 30.8 29.61
+ 12 layers 24.6 35.6 26.7 29.9 33.7 33.5 28.5 34.4 21.1 30.6 29.86
+ 6 layers + big model 26.1 36.2 27.5 31.0 34.9 34.3 28.7 35.1 21.6 31.5 30.69

Ablation Study
+ 6 layers w/o AFS 25.2 35.1 26.4 29.9 33.2 32.7 28.4 33.7 20.3 29.6 29.45
+ 6 layers w/o AFS & DA 20.8 30.9 18.5 24.7 27.6 27.0 23.8 27.2 13.8 20.0 23.43
+ 6 layers w/o ReLA & RMSNorm 24.2 34.8 26.4 29.5 34.1 33.4 27.5 33.7 20.7 30.3 29.46
+ 6 layers + ReLA on cross-att. 24.8 35.3 27.1 30.2 34.3 33.8 27.6 34.1 20.5 30.5 29.82

Our Cascade Model w/ Multilingual ASR + 24-layer Multilingual MT
24.8 33.7 25.3 29.2 32.7 32.2 26.9 31.7 18.5 27.1 28.21

Final Submission: Ensemble of 4 base model, 1 12-layer model and 1 big model w/ length penalty of 0.9
26.6 36.6 27.9 31.8 35.6 35.4 29.7 35.8 22.0 32.0 31.34

Table 4: SacreBLEU↑ for ST on Multilingual TEDx testsets. ?: results reported by Salesky et al. (2021). Note the results for
Pt-Es, It-En and It-Es translation in our model are based on zero-shot evaluation. Our model substantially outperforms the official
baseline (Salesky et al., 2021) by > 10 average BLEU. DA: data augmentation. Best average BLEU is highlighted in bold.

4.2 Multilingual ASR

Table 3 shows the ASR performance. Following
previous studies (Salesky et al., 2021; Zhang et al.,
2020a), we experiment with the Transformer base
setting. Our multilingual ASR model yields an
average WER of 39.49, substantially outperform-
ing the official baseline (Salesky et al., 2021) by
34.82 and narrowing the performance gap against
the hybrid model to∼ 8 WER. Note lower WER in-
dicates better quality. We ascribe this large quality
gain to the dedicated multilingual ASR model ar-
chitecture, the better optimization, and particularly
the incorporation of the CTC objective.

Removing the language-specific layer slightly
hurts recognition performance (+0.35 average
WER). It largely benefits ASR for Ar (-6.5 WER),
but hurts that for De (+4.8 WER), showing the diffi-
culty of multilingual modeling: it’s hard to balance
between different tasks (translation directions). We
adopt the model with language-specific projection
for AFS and ST.

Notice that we still include Ru, El, Ar and De for
the ASR training, although they are not a part of
the evaluation campaign. We regard this inclusion
as some sort of model regularization: the extra
training data could reduce overfitting and might
enable potential cross-lingual transfer.

4.3 Multilingual ST

Table 4 summarizes the ST results. Our base
model using 6 layers delivers an average BLEU
of 29.61, largely outperforming the official base-

line (Salesky et al., 2021) by ∼ 17 BLEU and also
beating their cascading baseline. In a fair compar-
ison where knowledge data augmentation is not
used, our model still obtain an average BLEU of
23.43.

Increasing the ST model depth slightly improves
quality (+0.25 average BLEU), while enlarging ST
model yields a larger improvement, reaching 1.08.
Although it’s widely known that large neural model
often suffers from overfitting in low-resource tasks,
our results suggest that such model still gains qual-
ity with proper regularization (AFS, larger dropout,
etc).

Our ablation study demonstrates the effective-
ness of AFS, ReLA and RMSNorm, although the
corresponding quality gains are marginal. In par-
ticular, we observe that applying ReLA to both
self-attention and cross-attention in the ST decoder
helps (Zhang et al., 2021b). AFS improves training
efficiency, allowing larger batch size thus fewer
gradient accumulation steps (Zhang et al., 2020a).
Besides, data augmentation benefits multilingual
ST very much, resulting in ∼ 6 average BLEU im-
provement, and the gain on zero-shot directions is
even higher, + 7.54 BLEU. Thus, we mainly as-
cribe our success on zero-shot translation to the
inclusion of pseudo parallel corpora – data mat-
ter! – which converts the zero-shot problem into a
zero-resource one.

Our E2E model also largely outperforms the
cascading system (+ 2.48 average BLEU). Notice
that our cascading system is sub-optimal, since we
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Model Es-En Es-Fr Es-It Es-Pt Fr-En Fr-Es Fr-Pt Pt-En Pt-Es It-En It-Es Avg

Ensemble of 6 E2E models: 4 base model, 1 12-layer model and 1 big model w/ length penalty of 0.9
36.2 30.3 32.9 44.5 26.4 29.5 30.1 27.0 34.5 23.0 31.1 31.41

Cascading model: base ASR model + 24-layer MT model
33.3 26.8 28.6 39.9 23.7 26.9 26.8 23.6 30.0 19.7 26.7 27.82

Single E2E Model: multilingual ST model + 6 layers, big Transformer
35.0 29.9 31.9 44.1 25.5 28.8 29.0 26.2 33.3 22.4 30.1 30.56

Table 5: SacreBLEU↑ for our submissions to the IWSLT2021 multilingual ST task.

didn’t bias our MT model towards ASR outputs,
and the mismatch between gold transcripts and
ASR outputs often hurts cascading performance.
Recent advances on avoiding such error propaga-
tion might deliver better cascading results (Cheng
et al., 2018; Zhang et al., 2019b; Cheng et al., 2019;
Sperber et al., 2019).

Our final submission is an ensemble of 6 E2E
multilingual ST models, which reaches an average
BLEU of 31.34. Apart from the ensemble, we also
increase the decoding length penalty from 0.6 to
0.9, which performs slightly better.

5 Submission Results

The IWSLT2021 task prepares a held-out test set
for the final evaluation. We submitted three sys-
tems: one cascading system, one E2E single model
(w/ big ST Transformer) and one ensemble model.
Results are shown in Table 5: our E2E multilingual
ST model outperforms its cascading counterpart,
and the ensemble model reaches the best perfor-
mance. Our submission achieves runner-up results
among all participants.

6 Conclusion and Future Work

We describe Edinburgh’s end-to-end multilingual
speech translation system for the IWSLT2021 mul-
tilingual speech translation task. We observe sub-
stantial performance improvement using larger-
capacity modeling (deep or big modeling) and data
augmentation. In spite of the scarcity of the train-
ing data, we show that E2E models benefit greatly
from multilingual modeling and deliver promis-
ing results on zero-shot translation directions (even
without data augmentation). Our E2E multilingual
ST greatly surpasses its cascading counterpart.

Regarding future study, we argue that exploring
the multilingual transfer behavior should be very
practical and promising to ST. This work mainly
studies transfer across similar languages. How the

current model generalizes to distant languages is
still an open question. Besides, a general trend for
deep learning is to increase the model capacity via
deep and/or big modeling. However, deep models
for ST seem to be ineffective. Identifying the rea-
son for this and proposing simple solutions would
be of high interest.
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