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Abstract

Reliable tagging of Temporal Expressions
(TEs, e.g., Book a table at L’Osteria for
Sunday evening) is a central requirement for
Voice Assistants (VAs). However, there is a
dearth of resources and systems for the VA
domain, since publicly-available temporal tag-
gers are trained only on substantially different
domains, such as news and clinical text.

Since the cost of annotating large datasets is
prohibitive, we investigate the trade-off be-
tween in-domain data and performance in DA-
Time, a hybrid temporal tagger for the English
VA domain which combines a neural architec-
ture for robust TE recognition, with a parser-
based TE normalizer. We find that transfer
learning goes a long way even with as little as
25 in-domain sentences: DA-Time performs at
the state of the art on the news domain, and
substantially outperforms it on the VA domain.

1 Introduction

Many Natural Language Processing (NLP) appli-
cations rely on a temporal tagger to successfully
identify and normalize temporal expressions (TEs:
e.g. seven in the evening → T19:00). Examples
include question answering, summarization, and
information extraction (Strötgen and Gertz, 2016).
Temporal tagging serves to anchor events on the
temporal axis and contributes to event ordering
sequences (UzZaman and Allen, 2010). This is par-
ticularly useful for Voice Assistants (VAs), that is
software agents such as Apple’s Siri or Amazon’s
Alexa, which are able to interpret spoken human
queries (commands) and help their users perform
simple tasks, including scheduling tasks such as
setting reminders or creating and editing calendar
events. For example, given the query Delete my
Monday’s meeting, a VA might have to retrieve
information from a calendar corresponding to the

day the user is referring to as Monday. In order to
succeed in such tasks, VAs require a reliable tem-
poral tagger, which can identify TEs and classify
them into categories (TE recognition, for exam-
ple, DATE vs. TIME) and then convert them into
machine-readable canonical values (TE normaliza-
tion, e.g. seven in the evening→ T19:00).

The major shortcoming of current temporal tag-
gers is arguably their domain dependence, as it
is well known that NLP tools degrade on out-
of-domain data. The publicly available tempo-
ral taggers (Chang and Manning, 2012; Filan-
nino et al., 2013; Strötgen and Gertz, 2013; Lee
et al., 2014) have been developed and evaluated
on domain-specific datasets annotated according to
the TimeML standard (Pustejovsky et al., 2003a),
notably the news (Pustejovsky et al., 2003b), so-
cial media (Zhong et al., 2017), narrative (Mazur
and Dale, 2010), or clinical domain (Galescu and
Blaylock, 2012). In contrast, to our best knowl-
edge, there is no existing temporal tagger opti-
mized for the VA domain, which differs consid-
erably from other domains: it is dominated by con-
cise stand-alone commands, typically referring to
single future events (e.g., Add yoga to my calendar
tomorrow at 6), often outside disambiguating dis-
course. As a result, coreference and event ordering
play a smaller role than in other domains. Also,
VA queries, compared to the news domain, con-
tain more references to the time of an event (at 6)
and to regular event repetitions (Wake me up every
day at 7), as well as more underspecified or vague
time expressions (Remind me to call mom later this
evening) (Rong et al., 2017; Tissot et al., 2019).

A possible solution to overcome the problem
of the scarcity of tagged training data for the VA
domain is to adopt a transfer learning approach
(Bengio, 2011). However, this leaves open the
question of what the training curve looks like: how
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Add my appointment at Varin Salon on
<TIMEX3 tid="t1" type="DATE" value="

2020-04-27"> April 27th </TIMEX3>
from
<TIMEX3 tid="t2" type="TIME" value="

2020-04-27T10:30" anchorTimeID="t1">
10:30 am </TIMEX3>
to
<TIMEX3 tid="t3" type="TIME" value="

2020-04-27T11:30" anchorTimeID="t1">
11:30 am </TIMEX3>
<TIMEX3 tid="t4" type="DURATION" value=

"PT1H" beginPoint="t2" endPoint="t3"
/>

to the calendar.

Figure 1: TimeML example from Zarcone et al. (2020).

much data is necessary until performance “flattens
out”? We investigate the performance of a tempo-
ral tagger pre-trained on news and fine-tuned on
the VA domain and find that a surprisingly small
amount of data (less than 100 in-domain sentences)
is sufficient to achieve reasonable performance on
the low-resource target domain, substantially out-
performing existing systems on the VA domain.
Paper structure. We first contrast annotated data
in the news and VA domain (Sec. 2). After an
overview of related work (Sec. 3), we introduce
DA-Time, a hybrid temporal tagger for the VA do-
main, which uses a neural model for TE recognition
and a parsing-based model for TE normalization
(Sec. 4). After describing the experimental setup
(Sec. 5), we present a detailed evaluation for vary-
ing amount of target domain annotations (Sec. 6).

2 Annotation and Data

2.1 The TimeML Markup Standard
TimeML is a widely-adopted framework for anno-
tating time, events and event relations in text fol-
lowing the ISO 8601 standard1 (Pustejovsky et al.,
2003a). TimeML has also been used for the influen-
tial TempEval competitions (Verhagen et al., 2007,
2010; UzZaman et al., 2013) which form the basis
for most work on temporal tagging. TimeML spec-
ifies four major data structures: EVENT, TIMEX3,
SIGNAL, and LINK. Among these, TIMEX3 de-
scribes TEs; EVENT, SIGNAL, and LINK describe
relations among TEs. For the purposes of this study,
we focus on TIMEX3 and do not take relations
among events into account, as motivated by the
lower significance of such relations for VAs.

1ISO 8601 is an international standard covering the ex-
change of date- and time-related data

TE Value Pattern (type) Unit

Last summer YYYY-SS (DATE) Season
Last year YYYY (DATE) Year
This month YYYY-MM (DATE) Month
Next week YYYY-WXX (DATE) Week
Sunday the 5th YYYY-MM-DD (DATE) Day

7 pm tonight YYYY-MM-DDTHH Hour(TIME)

15 minutes later YYYY-MM-DDTHH:MM Minute(TIME)

At 3:07:15 YYYY-MM-DDTHH:MM:SS Second(TIME)

Table 1: Examples of temporal units, with correspond-
ing TE examples and their value patterns.

TEs in TIMEX3 are classified into four types:
DATE (e.g., May 2nd), TIME (e.g., tomorrow
morning), DURATION (e.g., an hour), SET (e.g.,
every Monday). An example is given in Figure
1. Each TE in TIMEX3 is identified by a unique
ID (tid attribute). TEs are assigned values in a
normalized machine-readable format following the
ISO 8601 standard. Reference date information is
also included on TIME type, which refers to the
date to which the TE is anchored. TEs of type
DURATION are also tagged with a beginPoint and
endPoint, corresponding to the tid of the two TEs
the DURATION type expression is anchored to. As
Figure 1 shows, sometimes the range of a dura-
tion remains underspecified. In this case, an empty
tag of type DURATION is added. Similarly, if
only the duration range and either the beginning or
end point are mentioned (e.g. Book the room from
10:30 am for two hours), then an empty TIME type
tag is added to indicate the missing TE. If the value
of a TE is derived from the value of another one,
the anchorTimeID attribute indicates which TE the
tagged TIMEX3 is anchored to.

On a more fine-grained level, TEs can be de-
scribed using temporal units at different levels of
granularity (Strötgen and Gertz, 2016), e.g. the
2nd week of February, the 2nd day of February),
next February (month). These units are not explic-
itly annotated in TIMEX3, but they can be used to
identify different value patterns (see Table 1).

2.2 Datasets

We now introduce the TimeML-annotated English
datasets in the source (news) and target domain
(VA). Descriptive statistics are reported in Table 2.

News domain The news domain is widely stud-
ied because of the vast availability of news text, and



146

Figure 2: Comparison between the news and VA corpora on Sentence length distribution across datasets (left) and
TIMEX3 type distribution (right). The Figure on the right includes empty tags for Snips and PÂTÉ.

Tokens Sent.s w/ # of
TIMEXes TIMEXes

TBAQ 99420 1469 1822
TE-3 Silver 713091 10020 12739

N
ew

s TE-3 812511 11489 14561(TBAQ+Silver)
TE-3 Simplified 289897 12897 14561
TE-3 Platinum 7009 106 138

VA

Snips 9677 697 947
PÂTÉ 5633 353 767

Table 2: Statistics on datasets for two domains (TE-3:
TempEval-32). TE-3 Simplified is described in 5.1.

the importance of TEs for relationships between
reported events. In TempEval-3 (UzZaman et al.,
2013), the manually annotated TBAQ corpus, con-
sisting of TimeBank and AQUAINT corpus, was
used as a training set (99K tokens) (Pustejovsky
et al., 2003b). Additionally, a 700K-token machine-
annotated corpus (TE-3 Silver) was created from
Gigaword (Parker et al., 2011). Furthermore, a plat-
inum set (TE-3 Platinum) was provided for evalua-
tion, which had a higher inter-annotator agreement
than existing TimeML corpora (hence the name).

Voice Assistant domain Two datasets have re-
cently become available for the VA domain: Snips
(Coucke et al., 2018) and PÂTÉ (Zarcone et al.,
2020). Snips is a widely-adopted dataset for bench-
marking intent and entity classification in the VA
domain. No details are provided on how Snips
was created. A subset of Snips was annotated with
TimeML/TIMEX3 tags by Zarcone et al. (2020).
PÂTÉ is a TE-rich crowdsourced dataset for the VA
domain, whose collection effort was specifically
focused on eliciting naturally-sounding commands
containing a wide variety of TEs. As such, we
focus on PÂTÉ for our final evaluation.

2.3 Cross-domain Comparison

A comparison between the news and VA domains
on the basis of the abovementioned corpora is
shown in Figure 2. News texts are typically gram-
matical and coherent reports of past events that
took place at a certain moment in time. The news
datasets contain longer sentences (Figure 2, left),
with longer-distance relationships between events
(e.g. After that year) that pose a challenge for nor-
malization. VA commands, on the other hand, are
comparatively shorter, and they do not provide a
large sentence context nor do they typically contain
references to previous event mentions. Typically,
TEs in VA domain are used to refer to future events.
In some cases, VA commands can contain multiple
TEs, posing a challenge to the normalizer in iden-
tifying the relations among them (e.g., Move yoga
from Monday at 8 pm to Sunday at 7).

Figure 2 (right) shows the distribution of
TIMEX3 types in the datasets. It is skewed towards
DATE throughout, but DATE is even more domi-
nant in TempEval. TIME type TEs are substantially
underrepresented in the news domain compared to
the VA domain: news are generally reported on
a daily level of granularity, whereas scheduling
tasks require more fine-grained temporal descrip-
tions. Granularity differences are also reflected
in the unit distribution: the news domain mostly
contains units of type DAY (48%), while in the VA
domain HOUR and DAY are equally represented as
the most frequent units (52% DAY, 40% HOUR).

Another difference between the datasets in Fig-
ure 2 is that the VA domain datasets contain a
substantial number of empty tags, which are typ-

2TempEval-3 Task: https://www.cs.york.ac.
uk/semeval-2013/task1/index.html

https://www.cs.york.ac.uk/semeval-2013/task1/index.html
https://www.cs.york.ac.uk/semeval-2013/task1/index.html
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ical of VA interactions where temporal informa-
tion can be inferred from context (e.g., Remind me
in two hours where the inferred absolute time in-
formation can be used to set a reminder). Snips and
PÂTÉ contain around 20% and 10% empty tags
respectively. In Snips, 18.6% of the DATE tags and
25.4% of the TIME (but none of the DURATION
tags) are empty tags. In PÂTÉ, 91% of the DU-
RATION tags are empty tags but only 1% of the
DATE tags and 1.8% of the TIME tags are empty
tags. Most of the empty tags in PÂTÉ (90%) are
DURATION tags, while in Snips, they are either
DATE (43%) or TIME (57%) tags. Meanwhile,
the news datasets do not use empty tags in their
annotation at all, so a comparison is not possible.

In sum, we can expect temporal taggers that are
optimized on news to perform worse on the VA do-
main given the differences in distribution of types,
units, and domain-specific features they rely on.

3 Related Work

The first TempEval challenge (Verhagen et al.,
2007) focused on the automatic extraction of tem-
poral relations given a TimeML-annotated dataset.
TempEval-2 (Verhagen et al., 2010) introduced the
task of temporal tagging of TEs for the English
news domain, consisting in their recognition and
normalization, and as a prerequisite for temporal
information extraction, which also includes the ex-
traction of events and of their temporal relations.
TempEval-3 (UzZaman et al., 2013) extended the
task to multilingual settings providing TIMEX3
annotation in English and Spanish. More recent
TempEval challenges (Bethard et al., 2015, 2016,
2017) also branched out to the clinical domain.
As to temporal tagging in different domains (e.g.,
news, narrative, colloquial, autonomic), Strötgen
and Gertz (2016) addressed potential challenges,
observing that existing temporal taggers work suf-
ficiently well only in the domain they were devel-
oped for. This is probably why, to the best of our
knowledge, work on temporal tagging has so far
only been considered in within-domain settings.

TempEval-3 can serve as a showcase of ap-
proaches to temporal tagging. The nine participants
tackled the task either with rule-based, data-driven,
or hybrid methods (UzZaman et al., 2013). Heidel-
Time (Strötgen et al., 2013), a rule-based system,
obtained the top rank. The system used regular
expression-based rules to identify and normalize
time expressions in multilingual settings (Strötgen

and Gertz, 2015). Later, they extended their rules to
cover different domains (e.g., narrative, colloquial)
(Strötgen and Gertz, 2016). When TEs were un-
derspecified (e.g. January 6th), domain-sensitive
strategies (such as searching for contextual cues
or identifying a reference time) were adopted to
normalize them (e.g. to normalize January 6th as
the previous January 6th or the forthcoming one).
As rule-based systems are typically crafted to work
for their reference domain, HeidelTime is not able
to identify and normalize expressions that are more
typical of concise commands to a VA, such as Book
a slot for the 5th, where the month is not mentioned.
UW-Time (Lee et al., 2014) is a hybrid seman-
tic parsing-based tagger using Combinatory Cate-
gorial Grammar (Steedman and Baldridge, 2011).
Compared to HeidelTime, UW-Time successfully
combines hand-engineered and trained rules, show-
ing the benefit of context-handling over rule-based
approach. UW-Time can use features such as the
tense of a verb to determine if the TEs refer to ei-
ther the past or the future, or can determine if a
four-digit number in a text refer to a year or not
depending on the context. UW-Time was evalu-
ated on the news and narrative domain and set the
current state-of-the-art of temporal tagging on the
TempEval-3 evaluation set, working exceptionally
well but with a high degree of domain specificity.

4 DA-Time

We now present a hybrid system for temporal tag-
ging, which we use to investigate domain adapta-
tion of temporal tagging: DA-Time (for Domain-
Adapted Time Tagger). DA-Time is a pipeline of a
neural TE recognizer and a rule-based normalizer3.

4.1 TE Recognizer

We frame TE recognition as a joint TE type and
unit classification tasks. As argued in Tissot et al.
(2019), temporal unit or granularity is a key fea-
ture of TEs, and can be expected to improve TE
recognition, in particular for imprecise TEs4, for
example those formed by a temporal unit of a spe-
cific degree of granularity and a fuzzy quantifier
(e.g., some days, several weeks, years after). We
adopt a sequence-labelling architecture influenced
by the neural NER model of Lample et al. (2016).

3The implementation of the TE recognizer is available at
this Github repository under an academic use license:
https://github.com/audiolabs/DA-Time/

4Since temporal unit is not an explicit part of TIMEX3, we
derive it from the normalized value (details in Section 5.1).

https://github.com/audiolabs/DA-Time/
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Figure 3: TE recognizer (bottom) and TE normalizer (top). Example input: Add an event on the 2nd of next month.
Recognizer output (bottom): the 2nd of next month as DATE type and DAY unit. Normalizer (top): Given the
recognizer output, reference date, and dependency analysis of TE, the rules are checked sequentially. The output
is a normalized value for the TE.

The model takes a sentence as an input sequence
and predicts type and unit in a BIO labeling scheme,
as shown in Figure 3 (bottom). We use a contextu-
alized embedding model, DistilBERT5 (Sanh et al.,
2019), as an embedding layer. DistilBERT is a
smaller and faster version of BERT (Devlin et al.,
2019) which is compressed during pre-training by
using knowledge distillation. This improves on the
inference speed compared to BERT. The embed-
ding layer is followed by two Bi-LSTM layers. An
add layer after the second Bi-LSTM which acts as
a residual add or skip connection layer to improve
learning (He et al., 2016). Finally, a dense layer fol-
lowed by two different Conditional Random Field
(CRF) layers on top is added.

Baseline model No other neural model is avail-
able as a baseline for the task of full temporal tag-
ging of the PÂTÉ dataset, and due to its size the
dataset would not be suitable for training a neural

5DistilBERT uncased: https://huggingface.co/
distilbert-base-uncased

model on it. However a reasonable alternative is to
adopt a pre-trained language model (Peters et al.,
2018; Howard and Ruder, 2018). We propose a Dis-
tilBERT + CRF based model as a baseline, where
DistilBERT is used as a pre-trained model and CRF
is used to extract the labels (type and unit).

Transfer learning We apply the two approaches
proposed by Felbo et al. (2017). The first method,
chain, fine-tunes each layer sequentially (except
the embedding layer in our experiment), freezing
all the other layers. The second method, full, fine-
tunes the whole network together. They found the
chain method to perform well for sentiment analy-
sis, as individual layers are learned with a reduced
risk of overfitting. Since we observed the same
pattern in preliminary experiments, we only report
results from fine-tuning with the chain method.

For our target domain, we further apply a rule-
based post-processing step to predict empty tags.
Our approach consists in (1) identifying patterns of
one DATE or TIME type begin-point (identifiable

https://huggingface.co/distilbert-base-uncased
https://huggingface.co/distilbert-base-uncased
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by tokens such as from, between, etc.) and one end-
point (to, and, etc..), where no DURATION tag is
present, and (2) adding an empty DURATION tag
anchored to the begin-point and end-point TEs. For
example, in a command, Set a meeting FROM 5 TO

6 pm, the neural model predicts 5 and 6 pm as two
TIME type and further post-processing identifies
an additional DURATION type.

4.2 TE Normalizer

For the normalization task, we propose a rule-based
model using a dependency parser sketched in Fig-
ure 3 (top). TEs are fed into the parser6. Based
on the extracted type and temporal unit, the nor-
malizer identifies a valid normalization pattern (out
of 11 expected patterns, cf. Section 5.1) for that
type and unit. For example, given a DATE type
and a WEEK unit, the normalizer expects to find
an output pattern of YYYY-WXX. If the pattern
predictions from the type and unit are incompatible
(e.g., a DATE type with an HOUR unit), the nor-
malizer uses the next most probable unit from the
recognizer model to find as pattern that is compati-
ble with the unit (e.g. a TIME type). This permits a
more robust choice of normalization pattern and re-
duces the need for iterating over non-relevant rules.
After identifying the pattern, each sub-unit in the
pattern is normalized sequentially using parsing-
based rules. In the case of YYYY-WXX, first the
value of YEAR and then WEEK is normalized. For
every pattern, we define a set of at least four rules:
rules for explicit TEs (12th Jan 2020), relative TEs
(tomorrow morning), relative with modifier (three
hours ago), for underspecified TEs (the 5th), as
well as some pattern-specific rules (e.g. for weekly).
For each TE, the normalizer iterates over rules for
each sub-unit of the pattern. Additionally, we de-
fine a gazetteer, containing the values for weekdays,
times of the day, etc.

In our domain-specific settings, our normalizer
assumes that underspecified expressions (e.g., June
5, underspecified year) refer to the past (the previ-
ous year’s June 5) in the news domain and to the
future (next year’s June 5) in the VA domain. This
hierarchically-structured rule-based model (which
first identifies a pattern and then pattern-specific
rules) can easily be adapted to other domains by
defining different pattern-specific rules for every
type of expression (relative, underspecified, etc.).

6We use the SpaCy dependency parser (v.2.3.0): https:
//spacy.io/api/dependencyparser

5 Experimental Setup

5.1 Data Preprocessing

We perform two data preprocessing steps: sentence
simplification and inference of temporal units.

Sentence simplification As mentioned in Sec-
tion 2.2, the news and VA domains greatly dif-
fer with regard to the distribution of sentence
length. To reduce this discrepancy, we experiment
with a parsing-based7 text simplification method
to preprocess news sentences. For each TE, it
extracts the minimal complete sentence contain-
ing it (phrase type S). For example, in “Wash-
ington said he will argue to save his client’s
life when the sentencing phase of the trial begins
next Wednesday”, the underlined sub-sentence was
extracted. This reduces the average length of news
domain sentences from 24 to 16.

Temporal unit inference As described above,
we need to access the granularity of temporal units
as supervision for our model. However, temporal
units are not explicitly annotated in TIMEX3: for
example, February and 2nd week both have type
DATE but not MONTH or WEEK, respectively.
However, the unit is reflected in the value pattern
(XXXX-02 and XXXX-W06). Thus, we infer the
TE’s unit from their TimeML value fields using the
patterns in Table 1. To cover TimeML values out-
side those mentioned in the ISO 8601, we introduce
three additional units: QUARTER, a sub-unit of
YEAR (first quarter of 2020); REF, which is used
for reference time points (currently); and OTHER,
which includes a number of infrequent value pat-
terns, values for entities of type SET, and units less
relevant for VAs such as century or decade.

5.2 Experiments

First, we train our DA-Time models on the news
domain: DA-Time1 (trained with TE-3), DA-Time2
(trained with TE-3 Simplified), DA-TimeBL (base-
line model trained with TE-3). We split the dataset
for our target VA domain, PÂTÉ, into a train/test
set with an 80:20 ratio, keeping the class distribu-
tion constant between partitions. We perform two
experiments8: (1) in-domain evaluation of news-
trained models on the TE-3 platinum test set (all
3 DA-Time models); (2) out-of-domain evaluation

7Stanford CoreNLP parser: https://stanfordnlp.
github.io/CoreNLP/

8(Hyper-)parameters are described in the Appendix.

https://spacy.io/api/dependencyparser
https://spacy.io/api/dependencyparser
https://stanfordnlp.github.io/CoreNLP/
https://stanfordnlp.github.io/CoreNLP/
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Model Training data Extentstrict Extentrelax Unitrelax Typerelax Valuerelax

HeidelTime (rule-based) 81.8 90.7 - 83.3 78.1
UW-Time TBAQ 83.1 91.4 - 85.4 82.4
DA-TimeBL TE-3 (TBAQ+Silver) 81.3±1.3 87.5±1.0 74.0±0.5 74.9±2.3 59.6±1.9
DA-Time1 TE-3 (TBAQ+Silver) 86.6±0.4 91.4±0.8 78.2±1.5 80.7±2.3 71.7±2.2
DA-Time2 TE-3 Simplified 85.1±0.8 90.0±1.3 77.4±2.7 81.1±2.1 71.3±3.0

Table 3: Experiment 1: F1 Evaluation scores on the news domain (TempEval-3 platinum). DA-Time scores are
averages of 5 runs with standard deviations.

of news-trained models on the PÂTÉ test set (DA-
Time2, for better comparison with the VA domain,
where sentences are shorter). For our second exper-
iment, we compare three settings: (a) direct evalu-
ation of the news model to obtain a lower bound;
(b) fine-tuning the news model on PÂTÉ-train and
Snips (using Felbo et al. (2017)) and evaluating on
PÂTÉ-test to obtain an upper bound; (c), repeating
(b) with smaller amounts of VA data (10-100% of
PÂTÉ-train with a step size of 10%, i.e., about 50
sentences) to quantify the importance of target do-
main data. For comparison, we report results for
two existing systems, UW-Time and HeidelTime.
For news, we report results from the literature, and
for PÂTÉ, we evaluate the publicly available UW-
Time9 and HeidelTime10 systems.

5.3 Evaluation Metrics

We report the F-score metrics from TempEval-3.
These include (a) two measures of the overlap be-
tween the predicted and gold TE spans (extent),
computed both in a strict (TEs are exactly matched)
and a relaxed condition (TEs are partially matched);
and (b) scores for attribute values (type and value)
as well as unit. For our own system, scores are re-
ported averages of 5 runs with standard deviations.

6 Results and Analysis

6.1 Experiment 1: In-Domain Evaluation

Table 3 shows results on the TE-3 platinum test
set. For extent recognition, DA-Time1 outperforms
the other models, as its neural architecture bene-
fits from the large training set. However, we also
see that using the noisy silver corpus affects the
type, and consequently the value scores adversely.
The best-performing models for value scores are

9UW-Time: https://bitbucket.org/kentonl/
uwtime/src/master/

10HeidelTime (news domain): https://heideltime.
ifi.uni-heidelberg.de/

the rule-based HeidelTime and UW-Time, which
rely on comprehensive domain-specific knowledge.
The scores from the DA-TimeBL baseline are rel-
atively poor, which is expected here. The exten-
sion of the Bi-LSTM and residual layers in the
DA-Time1 allows the model to learn task-specific
features. The performance of DA-Time2, which
uses simplified sentences, is slightly reduced - un-
surprisingly, given that the test set is not simplified.

Error analysis. We observe that most errors
arise from missing DURATION type TEs and from
wrong predictions of DATE instead of DURATION.
In some cases, mismatches are due to incorrect an-
notations in the evaluation set (e.g. a TE 2008 is
annotated as DURATION but with a value of 2008).
In a few cases, DA-Time falsely predicts modifiers
(e.g., the day before) as being part of a TE. Such
modifiers are handled in the TimeML annotation by
tagging them as SIGNAL - however, SIGNAL tags
are out of the scope of our current work. Normaliza-
tion can be further improved by leveraging on the
tense of the verbs. Currently, DA-Time is built on
the assumption that news texts refer to past events.
In several cases the TE is underspecified, but the
tense reveals it refers to a future point in time (e.g.,
The event will take place on March 15). Besides,
the normalizer of DA-Time is designed to handle
TEs in the VA domain. Thus, units like decades
and centuries cannot be normalized by DA-Time.

6.2 Experiment 2: Cross-Domain Evaluation

Figure 4 shows the results for evaluating DA-Time2
on the PÂTÉ test set without and with fine-tuning
on various amounts of PÂTÉ and Snips data. The
horizontal lines are for DA-Time2 and literature
models without domain adaptation.

As expected, results on PÂTÉ for models with-
out domain adaptation are substantially worse than
on the news domain. As the Extent and Type eval-
uations show, the strongly data-driven DA-Time2

https://bitbucket.org/kentonl/uwtime/src/master/
https://bitbucket.org/kentonl/uwtime/src/master/
https://heideltime.ifi.uni-heidelberg.de/
https://heideltime.ifi.uni-heidelberg.de/
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Figure 4: Experiment 2: Evaluation on PÂTÉ-test. X axis indicates the percentage of fine-tuning data used. Scores
are an average of 3 runs. Horizontal lines are for models without domain adaptation. The arrows in the legend
indicate which datasets were used for training and for fine-tuning, e.g. DA-Time2 (TE3→ Snips) was trained with
the TE3 corpus and fine-tuned with the Snips corpus. If only one dataset is indicated, the model was not fine-tuned.

TE recognizer (without fine-tuning - DA-Time2
(TE3) in the figure) performs rather badly com-
pared to HeidelTime and UWTime, presumably
due to the changed properties of the input. Never-
theless, it manages to outperform both competitors
in the Value evaluation, due to the domain-specific
TE normalization component. This underlines the
importance of domain specific knowledge.

Fine-tuning on Snips (DA-Time2 (TE3 →
Snips)) brings about notable improvement for Ex-
tent, Type and Unit, which also translate into an
improvement for Value. However, the improve-
ments flatten out after using ≈ 30% of Snips. We
believe that this is due to the differences between
Snips and PÂTÉ, even if the two datasets contain
data from the same domain.

In comparison, fine-tuning on PÂTÉ (DA-Time2
(TE3→ PÂTÉ)) yields the best results. Strikingly,
the biggest jump occurs for just adding 10% of the
data or about 25 sentences (strict extent: +30%,
relaxed metrics (extent, type and unit): +≈ 20%,
value: +10%). The figures keep improving to some
extent with more data, with a final value F1 score of

68% compared to 49% without domain adaptation,
and 38% for UW-Time and HeidelTime.

Error analysis. Domain adaptation improves
performance in particular on minority classes. Ta-
ble 4 shows a detailed class breakdown for type
classification for one run of the model from Sec-
tion 6.2. Fine-tuning with 10% of the data increases
the F-score for the TIME type from 0 to 75%, as
precision and recall increase by 70% and 79% re-
spectively. The F-score for TIME further increases
by 12 extra points after fine-tuning with the full
amount of data (75% to 87%): The major differ-
ence between news and VA is the difference in class
distribution which we have already seen in Figure
2. DURATION type expressions, which often con-
tain empty tags and are thus dependent on TIME
or DATE type TEs, also improve substantially.

Table 4 also shows a corresponding breakdown
for unit classification. Among the two major units
(DAY and HOUR), F-score of HOUR unit shows
an increment of 71 and 80 points when fine-tuning
with 10% and 100% of the data respectively. This is
expected, as the class distribution difference influ-
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F-score ∆ after fine-tuning F-score ∆ after fine-tuning
w/o fine- w/ 10% w/ 100% w/o fine- w/ 10% w/ 100%

Type (freq.) tuning data data Unit (freq.) tuning data data

DATE (68) 64.0 +20 +30 DAY (61) 66.0 +9 +26
TIME (48) 0.0 +75 +87 HOUR (44) 7.0 +71 +80

DURATION (21) 32.0 +36 +40 WEEK (5) 44.0 +0 -4
SET (3) 50.0 +30 +30 MONTH (3) 55.0 -5 +12

Table 4: Per-typerelaxed and per-unitrelaxed evaluation of DA-Time2 on PÂTÉ test: F-scores without fine-tuning
(TE3) and ∆ after fine-tuning with 10% and 100% of the data (TE3→ PÂTÉ).

enced the unit distribution too. Other minor classes
are again too infrequent for a reliable analysis.

The rule-based empty tag recognition in DA-
Time2 identifies some false positive TEs. This hap-
pens when two different TEs are present, which do
not denote the beginning and end of an event but
rather a change in schedule (BOOK a schedule from
3 to 5 pm Vs. MOVE a schedule from 3 to 5 pm).
Domain adaptation however makes a difference
compared to out-of-domain scenarios by correctly
recognizing a singular numerical token as a TE
(Book a hotel reservation from May 3 to 5 or, Set
a reminder on May 3 at 5) as they are quite com-
mon in the VA domain commands. But this is still
a challenge when normalizing multiple TEs with-
out identifying the relations among the TEs (e.g.,
Change Star wars 9 from the 25th to the same time
on the 24th). We also find that our parsing-based
normalizer provides a particular benefit for han-
dling long TEs (e.g., the 15th of next month or
the day before last Tuesday, etc.).

7 Conclusion

Identifying time expressions (TEs) is a crucial part
of the interaction between a voice assistant (VA)
and a user, but only small annotated TE corpora
exist in the TE domain. In this paper, we have pre-
sented DA-Time, a hybrid model combining a neu-
ral TE recognizer with a rule-based TE normalizer,
and assessed how much data is necessary to fine-
tune DA-Time on the VA domain after pre-training
on the much better resourced news domain.

We find that our DA-Time model, which per-
forms competitively with the state of the art on
news, can be fine-tuned very effectively on the
VA domain. While, unsurprisingly, the best per-
formance is achieved with the full target domain
training set, already 10% of that dataset – some 25
sentences – is sufficient to achieve major improve-

ments over the news-trained model. Particularly
relevant is the improvement on the Value F1 metric,
i.e., the quality of the normalized TEs.

To our best knowledge, this is also the first ap-
proach to consider the granularity of temporal unit
following the TimeML annotation and ISO 8601
standard, and to leverage it to recognize TEs in
parallel with TIMEX3 types in a parallel setting.
TIMEX3 type and unit are both crucial inputs for
our hybrid normalizer. Our normalizer encodes
some domain-specific assumptions (e.g., about un-
derspecified TEs). These are particularly important
in handling long TEs. While our normalizer is
domain-specific, leveraging on temporal units can
ease domain adaptation to new domains.

We believe that the small amount of necessary
data for fine-tuning is promising for the generaliza-
tion of temporal taggers for other specific domains.
In the future, further improvement may be brought
by leveraging anchored time information to iden-
tify relations among TEs. Taking into consider-
ation of other TimeML tags (EVENT, SIGNAL)
can improve some of the current limitations of the
model (for example by identifying event-time rela-
tionships or prepositional modifiers). More gener-
ally speaking, training temporal taggers in a more
end-to-end fashion is a promising direction that
appears particularly feasible in the Voice Assistant
domain. Considering DA-Time as a baseline model
could lead to further neural-based research in the
VA domain or for other application domains where
identification of temporal information is important.
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A TE Recognizer

Parameter Value
DA-Time1 input maximum
length

50

DA-Time2 input maximum
length

30

Batch size 32
Training epochs 30
Fine-tuning epochs 20
Initial learning rate 0.001
Fine-tuning learning rate 0.0001
Bi-LSTM dropout rate 0.5
Bi-LSTM recurrent dropout rate 0.5
DistilBERT dimensions 3072
Recurrent unit 256
Dense layer unit 50
Dense layer activation ReLu
Optimizer Adam
Early stopping patience 5
Validation split 0.1

Table 5: Training hyper-parameters for TE Recognizer
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