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Abstract

Data-to-text (D2T) generation in the biomed-
ical domain is a promising - yet mostly unex-
plored - field of research. Here, we apply neu-
ral models for D2T generation to a real-world
dataset consisting of package leaflets of Euro-
pean medicines. We show that fine-tuned trans-
formers are able to generate realistic, multi-
sentence text from data in the biomedical do-
main, yet have important limitations. We also
release a new dataset (BioLeaflets) for bench-
marking D2T generation models in the biomed-
ical domain.

1 Introduction

Data-to-text (D2T) systems are attracting consid-
erable interest due to their ability to automate
the time-consuming writing of data-driven reports.
There is a hitherto largely untapped potential for
text generation in the biomedical domain. Poten-
tial applications of natural language generation of
patient-friendly biomedical text include prepara-
tion of the first draft of package leaflets, patient
education materials, or direct-to-consumer promo-
tional materials in countries where this is permitted.
Here we focus on a D2T task aiming to generate
fluent and fact-based descriptions from biomedical
data.

2 Related Work

Recently, neural D2T models have significantly im-
proved the quality of short text generation (usu-
ally one sentence long) from input data com-
pared to multi-stage pipelined or template-based
approaches. Examples include biographies from
Wikipedia fact tables (Lebret et al., 2016), restau-
rant descriptions from meaning representations
(Novikova et al., 2017b), and basketball game sum-
maries from statistical tables (Wiseman et al.,
2017). Still, neural D2T approaches have major
challenges, as outlined by Wiseman et al. (2017)

and Parikh et al. (2020) which hinder their applica-
tion to many real-world applications. These include
hallucination effects (generated phrases not sup-
ported or contradictory to the source data), missing
facts (generated text does not include input informa-
tion), intersentence incoherence, and repetitiveness
in the generated text. Following the success of
leveraging pre-trained large-scale language models
for a large variety of tasks, Kale and Rastogi (2020)
fine-tuned T5 models (Raffel et al., 2020) for D2T
generation. This strategy achieved state-of-the-art
performance on task-oriented dialogue (MultiWoz)
(Budzianowski et al., 2018), tables-to-text (ToTTo)
(Parikh et al., 2020) and graph-to-text (WebNLG)
(Gardent et al., 2017).

To the best of our knowledge, recent neural
approaches and transfer learning strategies have
not been applied to multi-sentence generation
from input data, nor have they been applied in the
biomedical domain. Our contribution is two-fold:
we introduce a real-world biomedical dataset
BioLeaflets, and demonstrate that transformers
can generate high-quality multi-sentence text from
data in the biomedical domain. The BioLeaflets
dataset, fine-tuned models, code, and gener-
ated samples are available at https://github.

com/bayer-science-for-a-better-life/

data2text-bioleaflets.

3 The BioLeaflets Dataset

We introduce a new biomedical dataset for D2T
generation - BioLeaflets, a corpus of 1336 package
leaflets of medicines authorised in Europe, which
we obtain by scraping the European Medicines
Agency (EMA) website. This dataset comprises
the large majority (∼ 90%) of medicinal products
authorised through the centralised procedure in Eu-
rope as of January 2021.

Package leaflets are published for medicinal
products approved in the European Union (EU).
They are included in the packaging of medicinal

https://github.com/bayer-science-for-a-better-life/data2text-bioleaflets
https://github.com/bayer-science-for-a-better-life/data2text-bioleaflets
https://github.com/bayer-science-for-a-better-life/data2text-bioleaflets
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(a)
Original
section
content

novonorm is an oral antidiabetic medicine containing repaglinide which helps your pancreas produce more
insulin and thereby lower your blood sugar (glucose). type 2 diabetes is a disease in which your pancreas
does not make enough insulin to control the sugar in your blood or where your body does not respond normally
to the insulin it produces. novonorm is used to control type 2 diabetes in adults as an add-on to diet and
exercise: treatment is usually started if diet, exercise and weight reduction alone have not been able to control
(or lower) your blood sugar. novonorm can also be given with metformin, another medicine for diabetes.
novonorm has been shown to lower the blood sugar, which helps to prevent complications from your diabetes.

(b)
Input:
entities as a
flat string

<PRODUCT_NAME> novonorm </PRODUCT_NAME> <TREATMENT>
an_oral_antidiabetic_medicine </TREATMENT> <GENERIC_NAME> repaglinide
</GENERIC_NAME> <SYSTEM_ORGAN_SITE> pancreas </SYSTEM_ORGAN_SITE>
<GENERIC_NAME> insulin </GENERIC_NAME> <TEST> your_blood_sugar </TEST>
. . .<TEST> the_blood_sugar </TEST> <DX_NAME> complications </DX_NAME>
<PROBLEM> your_diabetes </PROBLEM>

(c)
T5 gener-
ated section

novonorm is an oral antidiabetic medicine containing repaglinide which helps your pancreas produce more
insulin and thereby lower your blood sugar (glucose). type 2 diabetes is a disease in which your panccreases
does not make enough insulin to control the sugar in your blood or where your body does not respond normally
to the insulin it produces. novonourm is used to control type 2 diabetic patients who still have their diabetes
and who are still unable to respond normally despite treatment, exercise and weight reduction, which have
not helped to control your blood glucose. there is also a test that novonorgm can be given in combination
with metformin, another medicine for diabetes. it is important that you continue to follow the advice on diet,
exercising and diet that your nurse or doctor has given you.

(d)
BART gen-
erated sec-
tion

novondorm is an oral antidiabetic medicine containing repaglinide which helps your pancreas produce more
insulin and thereby lower your blood sugar (glucose). type 2 diabetes is a disease in which your pancrea does
not make enough insulin to control the sugar in your blood or where your body does not respond normally to
the insulin it produces. novonorm is used to treat type 2 diabetic in adults. treatment is usually started with
diet and exercise and weight reduction. your blood glucose may be increased when you start to take novonor
on its own or in combination with metformin. if you have diabetes, no

(e)
Content
planner
generated
section

novonorm contains the active substance repaglinide which helps to lower your blood sugar (glucose). type
2 diabetes is a disease where your body does not make enough insulin to control the sugar in your blood
or where your body does not respond normally to the insulin it produces. repaglinide krka is used to control
type 2 diabetes in adults as type 2 diabetes. type 2 diabetes is also called non - insulin - dependent diabetes
mellitus. type 2 diabetes is also a condition in which your body does not make enough insulin or the insulin
that your body produces does not work as well as it should. your body can also make too much sugar. when this
happens, sugar (glucose) builds up in the blood. this can lead to serious medical problems like heart disease,
kidney disease, 2 and 2.

Table 1: Example of text generations. Entities are highlighted in bold, typos are underlined, and hallucinations are
shown in red.

products and contain information to help patients
use the product safely and appropriately, under the
guidance of their healthcare professional. Package
leaflets are required to be written in a way that is
clear and understandable (EU, 2001). Each docu-
ment contains six sections (see Table 2).The main
challenges of this dataset for D2T generation are
multi-sentence and multi-section target text, small
sample size, specialized medical vocabulary and
syntax.

3.1 Dataset Construction

The content of each section is not standardized,
yet it is still well-structured. Thus, we identify
sections via heuristics such as regular expressions
and word overlap. The content of each section is
lower-cased and tokenized by treating all special
characters as separate tokens. Duplicates are also
removed. We randomly split the dataset into train-
ing (80%), development (10%), and test (10%) set.
Table 2 summarizes dataset statistics.

3.2 Dataset Annotations

We do not have annotations available for the pack-
age leaflet text. To create the required input for
D2T generation, we augment each document by
leveraging named entity recognition (NER). Parikh
et al. (2020) indicated it is important that target
summaries contain information that can be inferred
from the input data to avoid dataset-induced hallu-
cinations. To this end, we combine two NER frame-
works: Amazon Comprehend Medical (ACM)
(Bhatia et al., 2019) and Stanford Stanza (Qi
et al., 2020; Zhang et al., 2021). ACM and Stanza
achieved entity micro-averaged test F1 of 85.5%
and 88.13% respectively on the 2010 i2b2/VA clin-
ical dataset (Uzuner et al., 2011). We further lever-
age ACM to detect medical conditions from ICD-
10 (WHO, 2004) and medications from RxNorm.
Additionally, we treat all digits as entities, and add
the medicine name as first entity. In case of overlap-
ping entities from different sources, we favor longer
entities over shorter ones. As a result of the NER
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Section type
No.

samples

Average
length

(characters)

Average
length

(tokens)

Average no.
entities per

section

No. unique
entities

1. What the product is and
what it is used for

1 314 963 174 29.3 9 641

2. What you need to know
before you take the product

1 309 4 560 849 127.7 23 278

3. How to take the product 1 313 2 300 458 50.5 11 640
4. Possible side effects 1 295 3 453 651 135.2 27 945

5. How to store the product 1 172 631 123 6.3 2 041
6. Content of the pack and

other information
1 311 982 196 38.4 9 932

Table 2: BioLeaflets dataset statistics grouped by section type.

process, we obtain 26 unique entity types. Exam-
ples are: problem: (’active chronic hepatitis’, ’mi-
graine pain’), system-organ-site: (’blood vessel’,
’kidneys’, ’surrounding tissue’), treatment: (’rou-
tine dental care’, ’a vaccination’, ’a chemotherapy
medicinal product’), or procedure: (’injections’,
’spinal or epidural anaesthesia’, ’surgical interven-
tion’, ’bone marrow or stem cell transplant’).

BioLeaflets proposes a conditional generation
task: given an ordered set of entities as source, the
goal is to produce a multi-sentence section. Since
only the entities are provided as input, the struc-
tured data is underspecified. A human without
specialized knowledge would likely be unable to
produce satisfactory text. However, we expect that
a labeling expert with profound knowledge of pack-
age leaflets would be able to generate (with some
difficulty) satisfactory text in the large majority
of cases. Successful generation thus requires the
model to learn specific syntax, terminology, and
writing style from the corpus (e.g., via fine-tuning).

4 Experiments

Following Kale and Rastogi (2020), we represent
the structured data (i.e., detected entities) as a flat
string (linearization). The entities are kept in their
order of appearance (Table1b). The models are
then trained to predict - starting from these entities
- the corresponding published leaflet text.

We present baseline results on BioLeaflets
dataset by employing the following state-of-the-
art approaches:

• Content Planner: two stages neural architec-
ture (content selection and planning) based
on LSTM (Puduppully et al., 2019). Since

only relevant entities are provided as input to
the model, we solely use the content planning
stage (encoder-decoder architecture with an
attention mechanism). We train one model for
each section, and use the same hyperparame-
ters reported by Puduppully et al. (2019).

• T5: a text-to-text transfer transformer model
(Raffel et al., 2020). Kale and Rastogi (2020):
showed that T5 outperforms alternatives like
BERT (Devlin et al., 2019) and GPT-2 (Rad-
ford et al., 2019). After hyperparameter
search on the development dataset, the fol-
lowing parameters (yielding the best ROUGE-
L score (Lin, 2004)) are selected: constant
learning rate of 0.001, batch size of 32, 20
epochs, greedy search as a decoding method.

• BART: denoising autoencoder for pretraining
sequence-to-sequence models with transform-
ers (Lewis et al., 2020). For computational
reasons, we use the same hyperparameters as
per T5 fine-tuning.

• BART and T5 with conditioning: we add the
prefix “section n” (n = 1, . . . 6) to the (lin-
earized) input data. This explicitly gives the
model information on the section number and
thus enforces a conditioning on the section
type for text generation.

BART and T5 fine-tuning are performed via Hug-
gingFace (Wolf et al., 2020).

5 Evaluation

Table 1 shows the generated text for one test sam-
ple as illustrative example. All generated text is
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Model
Word-overlap metrics Semantic equivalence metrics

SacreBLEU ROUGE-L BERTScore BLEURT MoverScore-2l
Content Planner 27.78 39.32 0.214 -0.072 0.591
BART-base 8.76 ± 0.02 42.73 ± 0.11 0.370 ± 0.001 0.268 ± 0.002 0.609 ± 0.0004
BART-base + cond 8.73 ± 0.02 42.60 ± 0.12 0.369 ± 0.001 0.268 ± 0.003 0.608 ± 0.0004
T5-base 18.68 ± 0.07 47.22 ± 0.17 0.363 ± 0.001 0.255 ± 0.008 0.620 ± 0.0005
T5-base + cond 18.63 ± 0.14 47.31 ± 0.22 0.364 ± 0.002 0.256 ± 0.006 0.621 ± 0.0008

Table 3: Results on the BioLeaflets test set (averaged over all sections). T5 and BART models are fine-tuned with
seven different random seeds: average and standard deviation are reported. BLEURT-large-128 is used.

Model Adequacy
Hallucination

presence
Entity

inclusion
Fluency

Content Planner
annotator 1 4.1 ± 3.0 6.8 ± 3.2 4.8 ± 3.2 5.1 ± 3.3
annotator 2 3.7 ± 2.6 6.4 ± 2.5 5.1 ± 2.5 5.4 ± 2.3

BART-base
annotator 1 7.5 ± 2.1 3.1 ± 2.6 7.4 ± 2.3 8.6 ± 1.8
annotator 2 6.6 ± 2.2 3.3 ± 2.1 8.1 ± 1.8 8.0 ± 1.3

T5-base
annotator 1 7.8 ± 1.8 3.0 ± 2.4 7.6 ± 2.1 9.0 ± 1.4
annotator 2 6.5 ± 2.2 3.5 ± 1.9 7.8 ± 1.7 8.2 ± 1.2

Table 4: Human evaluation of test samples. Values on a scale from one to ten; average and standard deviation
are reported. The higher the better for all quantities, expect for “Hallucination presence”. Adequacy estimates the
overall generation quality, taking into consideration fluency, amount of hallucination, and entities included in the
generated text.

made available1. After a thorough inspection of
the samples, we conclude that generated text is
generally fluent and coherent. Text produced by
T5 and BART is more fluent, factually and gram-
matically correct than those by Content Planner.
Table 3 illustrates the performance of state-of-the-
art models quantified by automatic metrics. Word-
overlap metrics such as (Sacre)BLUE (Post, 2018)
and ROUGE (Lin, 2004) have been shown to per-
form poorly in evaluation of natural language gen-
eration (Novikova et al., 2017a), and thus we re-
port them here only for completeness. Conversely,
contextual embedding based metrics BERTScore
(Zhang* et al., 2020), BLEURT (Sellam et al.,
2020), and MoverScore-2 (Zhao et al., 2019) cor-
relate with human judgment on sentence-level and
system-level evaluation. They adequately capture
semantic equivalence between generated and target
text as well as fluency and overall quality. T5 and
BART outperform Content Planner, as measured by
BERTscore, BLEURT, and MoverScore-2. T5 and
BART show similar performance. These results
show that transformer-based models and transfer
learning strategies achieve state-of-the-art perfor-

1https://github.com/
bayer-science-for-a-better-life/
data2text-bioleaflets

mance on data-to-text tasks, generalizing the find-
ings in Kale and Rastogi (2020) to multi-sentence
and multi-section generation, biomedical text, and
low-data setting.

To confirm these findings, human evaluation is
performed for Section 1 of the test set by two anno-
tators. Results are shown in Table 4. Similarly to
Manning et al. (2020), we design a survey which in-
cludes adequacy (estimate of overall quality), pres-
ence of hallucinations, entity inclusion, and fluency.
T5 and BART have similar performance, and they
produce more adequate text than Content Planner.
T5 and BART performance is more stable across
samples (lower standard deviation). These conclu-
sions coincide with the ones drawn from Table 3,
thus confirming the usefulness of semantic equiva-
lence metrics for automatic evaluation of text gen-
eration.

Interestingly, specifying the section type in the
input records (i.e., explicit conditioning) did not
improve model performances (Table 3). To ratio-
nalize this result, we analyze T5 internal repre-
sentations. Specifically, for each test sample, we
extract the (average) last encoder hidden-state for
both pre-trained (not fine-tuned) and fine-tuned
T5 (fine-tuned on BioLeaflets but without explicit

https://github.com/bayer-science-for-a-better-life/data2text-bioleaflets
https://github.com/bayer-science-for-a-better-life/data2text-bioleaflets
https://github.com/bayer-science-for-a-better-life/data2text-bioleaflets
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Figure 1: Two-dimensional projections of T5 internal representations (average of the last encoder hidden-states) for
pre-trained (not fine-tuned) (left) and fine-tuned T5 model on BioLeaflets dataset (right). T5 implicitly learns to
condition on section type during fine-tuning.

conditioning). We then project these vectors into
two-dimensions using the non-linear dimension-
ality reduction method UMAP (McInnes et al.,
2020). The results are depicted in Fig. 1. In Fig. 1
(right), we can identify six well-separated clusters,
which correspond to (the internal representations of
samples belonging to) the six document sections in
the BioLeaflets dataset. Thus, after fine-tuning, T5
maps input data belonging to different sections to
different parts of the internal representation space.
The cluster separation is much less pronounced for
the pre-trained (not-fine-tuned) T5 model (Fig. 1,
left). This shows that during the fine-tuning pro-
cess, T5 implicitly learns to condition on section
type, thus learning to generate different sections,
even despite the small dataset. Since condition-
ing is learned automatically, explicitly passing the
section type as input does not increase model per-
formance.

6 Error Analysis and Limitations

After thorough qualitative evaluation of numerous
generated samples, the following general issues
appear:

• Typos: Even though models largely utilize
the input entities correctly, typos appear in
generated text by T5 and BART for out-of-
vocabulary words, e.g. Table 1 (c, d). Content
Planner does not seem to have this problem.

• Hallucinations are present for all models.
Loss functions like maximum likelihood do
not directly minimize hallucinations, thus hin-
dering consistent fact-based text generation.

• Repetitiveness: Content Planner produce rep-
etitions (e.g. Table 1 (e)), whereas T5 and
BART language models do not.

• Difficulties in producing coherent long text:
In the BioLeaflets dataset, models perform
well in generating section 1, which is 962 char-
acters long on average. However, the quality
of section 4 ”Possible side effects” (3 453 char-
acters long on average) generation is poor.

Possible improvements to our work are: analysis
of the impact of shuffling of entities for the input
data generation, introduction of loss functions that
explicitly favor factual correctness, usage of spe-
cialized biomedical embeddings, inclusion of more
source input data (e.g. part-of-speech, dependency
tag), generation of longer text (beyond the 512 to-
kens generated here).

7 Conclusion

In this study, we introduce a new biomedical
dataset (BioLeaflets), which could serve as a bench-
mark for biomedical text generation models. We
demonstrate the feasibility of generating coher-
ent multi-sentence biomedical text using patient-
friendly language, based on input consisting of
biomedical entities. These results show the poten-
tial of text generation for real-world biomedical
applications. Nevertheless, human evaluation is
still a required step to validate the generated sam-
ples. Application of the methodology and models
used here to different sets of biomedical text (e.g.,
generation of selected sections of clinical study
reports) could be an area for further research.
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