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Abstract

We offer an approach to explain Decision Tree
(DT) predictions by addressing potential con-
flicts between aspects of these predictions and
plausible expectations licensed by background
information. We define four types of conflicts,
operationalize their identification, and specify
explanatory schemas that address them. Our
human evaluation focused on the effect of ex-
planations on users’ understanding of a DT’s
reasoning and their willingness to act on its
predictions. The results show that (1) explana-
tions that address potential conflicts are consid-
ered at least as good as baseline explanations
that just follow a DT path; and (2) the conflict-
based explanations are deemed especially valu-
able when users’ expectations disagree with
the DT’s predictions.

1 Introduction
Machine Learning (ML) models have become in-
creasingly accurate in recent times, leading to their
widespread adoption by decision makers in a vari-
ety of vital domains, including healthcare, defense
and energy. This underscores the need for explana-
tions of the outcomes of these models that support
decision making by practitioners.

ML models may be classified into transparent
and opaque models based on their interpretabil-
ity (Doshi-Velez and Kim, 2017). Transparent mod-
els are “interpretable by a Machine Learning ex-
pert or a statistician” (Biran and McKeown, 2017).
These models, e.g., Decision Trees (DTs), deci-
sion rules and linear models, are built on the basis
of interpretable features, which are typically ob-
tained through feature engineering. Transparent
models are often less accurate than opaque mod-
els, in particular neural networks, provided large
training datasets are available. Nonetheless, it is
necessary to explain transparent models because
(1) large datasets may not always be available, as is

the case in our evaluation datasets (§ 4.1); (2) it is
common practice to clarify the outcomes of opaque
models by approximating them with transparent
models (§ 2); and (3) even if these transparent mod-
els are understandable by ML experts, they may
still be unclear to practitioners.

In this paper, we generate textual explanations of
predictions made by a particular transparent model:
DT. Our explanations address potential conflicts
between aspects of these predictions and plausible
expectations licensed by background information
(i.e., expectations that “make sense” in light of this
information). Specifically, we identify four types
of conflicts whereby events that appeared unlikely
or likely on the basis of background information
happened or did not happen respectively; we then
specify schemas that address these conflicts (§ 3).

We generated explanations for two datasets: Tele-
com and Nursery. In Telecom, a DT predicts
whether a customer will churn (leave) or stay with
the company based on their profile (e.g., whether
they have a phone service and what are their
monthly charges); in Nursery, a DT predicts the
acceptance status of a child to a childcare center
on the basis of the circumstances of the child and
their family (e.g., how satisfactory are the current
childcare arrangements and how demanding is the
parents’ employment). The bottom part of Table 1
illustrates an explanation generated for an instance
in the Nursery dataset. The explanation addresses
a potential conflict between (a) a plausible expecta-
tion that a child with a good childcare situation is
likely to be Wait listed, and (b) the DT’s prediction
that the child will be Priority accepted.

Our human evaluation of the explanations gener-
ated for the two datasets (§ 4) considers users’ over-
all preferences for different explanation types, and
the effect of explanations on two explanatory goals:
users’ understanding of the DT’s reasoning, and
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Feature Value
Parents’ employment: Challenging
Current childcare: Good
Child’s health: Average
From the data, one might expect that children with good
current childcare will be a great deal more likely to get
Wait listed than to get a Priority acceptance (54% vs 11%).
However, the AI system has learned from the data that among
children with challenging parents’ employment and aver-
age health, those with good current childcare are almost
certain to get a Priority acceptance (close to 100%).

Table 1: Explanation for the prediction of an instance
in the Nursery dataset (bottom part); features used in
the prediction and their values (top part).

their willingness to act on its predictions.1 In addi-
tion, users rated the explanations on completeness,
and on the presence of extraneous information.

The main findings of our user study are: (1) ex-
planations that address potential conflicts are gener-
ally considered at least as good as baseline explana-
tions that just follow a DT path; and (2) the conflict-
based explanations are deemed especially valuable
when users’ expectations disagree with DT pre-
dictions. We stress that these findings pertain to
explanations that address conflicts due to plausible
expectations from background information. We do
not claim that these explanations address actual
user expectations.

2 Related Work
In 1990-2000, explanations derived from knowl-
edge bases were enhanced by addressing aspects of
users’ reasoning. Specifically, Zukerman and Mc-
Conachy (1993) and Horacek (1997) considered po-
tential inferences from explanations, omitting eas-
ily inferable information and addressing erroneous
inferences; Korb et al. (1997) took into account rea-
soning fallacies when explaining the reasoning of
Bayesian Networks; and Stone (2000) generated in-
structions from which users could draw appropriate
inferences about actions to take. Recently, Krause
and Vossen (2020) identified additional triggers
that should be addressed in explanations.

Current research on explanation generation fo-
cuses on explaining the predictions made by ML
models – a sub-field called Explainable AI (XAI).
In particular, neural networks have received a lot
of attention owing to their superior performance on
one hand, and their opaqueness on the other hand.
A common first step in explaining the predictions

1The participants in our study were told that they have an
AI, but they were not informed about the specifics of the ML
model. Other explanatory objectives include enhancing trust
in the system, and helping debug a system (Reiter, 2019).

of neural networks is to build a local surrogate
explainer model that uses a transparent model to
approximate the neighbourhood of an instance of
interest. Linear regression (Ribeiro et al., 2016;
Štrumbelj and Kononenko, 2014; Lundberg and
Lee, 2017), decision rules (Ribeiro et al., 2018)
and DTs (van der Waa et al., 2018; Guidotti et al.,
2019; Sokol and Flach, 2020a) have been employed
for this purpose.

A DT’s prediction is generally explained by
tracing the path from the root to a predicted out-
come (Guidotti et al., 2019; Stepin et al., 2020). Re-
cently, researchers have generated class-contrastive
counterfactual explanations to enhance the expla-
nations of DT predictions. Stepin et al. (2020)
generated explanations that have a factual and a
counterfactual component; the former is the DT
trace, while the latter was found by ranking all the
paths leading to alternative outcomes according to
their distance from the factual explanation. Sokol
and Flach (2020b) studied counterfactual explana-
tions for DTs in an interactive system where users
could change or remove features, or request an ex-
planation for a hypothetical instance. Counterfac-
tual explanations were generated by representing
the tree structure as binary meta-features, and min-
imizing an L1-like metric to retrieve the shortest
statement. However, these works do not determine
when a counterfactual enhancement is required.

The need for an enhancement was studied in (Bi-
ran and McKeown, 2017) — they identified and
addressed unexpected effects of individual features
on predictions made by logistic regression. How-
ever, they did not consider unexpected predictions.

Reiter (2019) argued that good explanations
must be written for a specific purpose and audience,
have a narrative structure, and use vague language
to communicate uncertainty. The explanations gen-
erated in (Sokol and Flach, 2020b) and (Biran and
McKeown, 2017) have a narrative structure, and
only those in (Biran and McKeown, 2017) use
vague language to convey strength of evidence.

The approach described in this paper comple-
ments explanations by addressing both unexpected
predictions and unexpected effects of features,
thereby enhancing their narrative structure. In ad-
dition, we leverage the work of Elsaesser and Hen-
rion (1989) to address Reiter’s desideratum of using
vague language to convey probabilities.

Finally, and more broadly, expectation-theory
posits that the surprisingness of an event may stem
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from a discrepancy between the state of the world
and propositions that are deducible from presented
information (Ortony and Partridge, 1987). Itti and
Baldi (2009) offer a Bayesian formulation of the in-
fluence of surprisingness on visual attention shifts
in terms of the difference between prior and pos-
terior probabilities. In our research, we employ a
probabilistic formulation to identify potential con-
flicts between plausible expectations and aspects
of DT predictions.

3 Justifying DT predictions
In this work, we explain the outcome predicted
by a DT for sample instances, where an instance
comprises a set of features, each associated with
a value, and an outcome is a discrete class. For
example, the top of Table 1 shows the features
and values of a Nursery instance;2 the DT then
classifies this instance into one of three classes:
Reject, Wait list and Priority accept.

Like Biran and McKeown’s (2017) approach,
ours hinges on identifying discrepancies, but it dif-
fers from their approach in that (1) we propose
addressing potential conflicts as a guiding princi-
ple for selecting content that complements explana-
tions of DT predictions; (2) these conflicts pertain
to predicted outcomes and to the impact of vari-
ables; and (3) we identify these conflicts by com-
paring aspects of a DT prediction with plausible
expectations derived from probabilistic relations.

3.1 Potential Conflicts
First, we define potential conflicts, and their build-
ing blocks: plausible expectations and aspects of
a DT prediction. We then specify language-based
probabilistic relations that are the basis for plausi-
ble expectations, and describe the identification of
potential conflicts.

Plausible expectations pertain to the outcome and
to the impact of a value j of feature xi, denoted
xi,j . They are derived from prior and posterior
probabilities of outcomes by means of relations
R1-R3 and associated constraints (Table 2).
R1. Posterior(C|xi,j) vs Prior(C)
R2. Posterior(C ′|xi,j) vs Prior(C ′)
R3. Posterior(C ′|xi,j) vs Posterior(C|xi,j)
where Prior(c) is the prior probability of class c,
Posterior(c|xi,j) is the probability of class c given

2Sample features for the evaluation datasets and their val-
ues appear in Table 4; the DT feature values for the Nursery
dataset are described in Table 10, Appendix A.

feature value xi,j , C is the class predicted by a
DT, and C ′ is an alternative class with the highest
Posterior probability. The posterior probability of
a class c is calculated from training data for each
feature value xi,j . If it is high, it licenses an expec-
tation for xi,j to yield class c; and if it is low, the
expectation is for xi,j not to yield class c. For exam-
ple, if according to the data, children with ordinary
parents’ employment have a lower probability of
getting a Priority acceptance to the childcare cen-
ter than children in the general population (R1),
it is plausible to expect a child with such parents’
employment not to be Priority accepted.3

Aspects of a DT Prediction pertain to the class C
Predicted by the DT, and the Impact of feature
value xi,j on this class, denoted Impact(xi,j , C).
Impact is TRUE if xi,j influences the Predicted
class C — for a DT, this happens when xi,j is in
the path to C; Impact is FALSE otherwise.
A potential conflict takes place when an expected
outcome differs from the class predicted by a DT
(R4), or when a feature value that was expected to
have an impact does not (R5).4

R4. Plausible outcome 6= Predicted class C
R5. Plausible impact of xi,j 6= Impact(xi,j , C)

In our example, a potential conflict ensues be-
cause, contrary to the expectation, the class Pre-
dicted for the child is Priority accept (R4).

It is worth noting that relations R1-R3 and R4
are model agnostic: R1-R3 depend on probabilities
obtained from the data, and R4 depends on R1-R3
and the Predicted class. However, the determina-
tion of the Impact of a variable in R5 depends on
the model, e.g., as seen above, variable impact for
DTs is determined by path membership.

The values of relations R1-R3 are obtained from
discretized probabilistic relations (§ 3.1.1).

3.1.1 Discretizing probabilistic relations
To generate explanations that use language to com-
municate relative probabilities, we harness the re-
search in (Elsaesser and Henrion, 1989), which

3Our formalism assumes that users are aware of the prior
and posterior probabilities of outcomes (they were given this
information in our evaluation, § 4.2), and employs these prob-
abilities as the basis for explaining DT predictions. Hence, it
differs from probabilistic models, such as Bayesian Networks
or Naı̈ve Bayes, which use probabilities to infer outcomes.

4Biran and McKeown (2017) consider situations where a
variable may be expected to have a high or a low impact. But
in a probabilistic formulation, expecting an event with low
probability is tantamount to expecting this event not to happen
with high probability.
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R4 R5

Conflict name Relations licensing plausible expectations Plausible Predicted Plausible Impact(xi,j , C)outcome class impact of xi,j

Plausible¬C / R1: Post(C|xi,j) < , ' Prior(C) ¬C C TRUE TRUE
PredictC Post(C|xi,j) < Post(¬C|xi,j)

— R1: Post(C|xi,j) > Prior(C)
C C TRUE

TRUE
PlausibleC / ∀Ck 6= C Post(C|xi,j) > Post(Ck|xi,j) FALSEPredictC-xi,jNoImpact ∃xm,n Post(C|xi,j) > Post(C|xm,n)

PlausibleC′ / R1: Post(C|xi,j) < , ' Prior(C)
C′ C TRUE

TRUE
PredictC “vanilla” R2: Post(C′|xi,j) > Prior(C′)
PlausibleC′ / R3: Post(C′|xi,j) > Post(C|xi,j) FALSEPredictC-xi,jNoImpact ∀Ck 6= C′ Post(C′|xi,j) > Post(Ck|xi,j)

Table 2: Definition of potential conflicts (explanations appear in Tables 1 and 3): C denotes the Predicted class,
and C ′ denotes an alternative class that has the highest Posterior probability (Post is shorthand for Posterior); the
colours of (in)equalities match those in Figure 1; text in Column 4 indicates surprise about the plausible outcome
in Column 3, and text in Column 6 expresses surprise about the plausible impact of xi,j in Column 5.

Figure 1: Verbal mapping of relative probabilities.

maps probability differences into verbal expres-
sions. Figure 1 depicts their empirically derived
phrase-selection function, which achieved a 72%
accuracy compared to people’s actual usage. For
example, if the probability of event E1 is p1 = 0.4,
and that of event E2 is p2 = 0.8 (dashed red lines
in Figure 1), the phrase “E2 is a great deal more
likely than E1” is selected.

Following a small pilot study to validate these
expressions for our explanations, we merged the in-
termediate expressions “somewhat more/less” and
“quite a bit more/less” in Figure 1 into simply
“more/less”. The resultant six-phrase mapping is
used to define the wording for relations R1-R3.

3.1.2 Identifying Potential Conflicts

Table 2 displays the potential conflicts addressed
by our explanations. Each segment represents a
potential conflict, with the surprises boxed in red.
Column 1 shows the name of the conflict, Column 2
displays the relations that license plausible expecta-
tions for an outcome and for the impact of feature
value xi,j (the colour-coded relations are computed

as specified in Figure 1, while the constraints are
calculated using point probabilities); Column 3
presents the plausible expected outcome derived
from the relations defining the conflict (Column 2);
Column 4 shows the actual Predicted class C; Col-
umn 5 displays the plausible expected impact of
xi,j — a feature value that satisfies the relations
defining a conflict (Column 2) is always expected
to have an impact; and Column 6 shows the actual
Impact(xi,j , C). Relation R4 is calculated by com-
paring the values of Columns 3 and 4, and Relation
R5 is obtained from Columns 5 and 6.

We now describe each conflict illustrated with
examples from the Nursery dataset.

Plausible¬C/PredictC (top segment in Table 2).
This conflict arises when it is plausible to expect
that in light of xi,j , class C will not happen (Col-
umn 3), but surprisingly, C is Predicted (Column 4).
The expectation is plausible because the posterior
probability of class C given xi,j is less than or
equal to its prior probability (R1), and also lower
than the posterior probability of ¬C (Column 2).
For this conflict, we only examined the case where
Impact(xi,j , C)=TRUE, i.e., xi,j is in the DT path.
The FALSE case was disregarded, as the ensuing
potential conflict seemed weak. However, for com-
pleteness, this case should be revisited in the future.
Example (full text in Table 3): In the Nursery
dataset, children with critical current childcare are
less likely to be Wait listed than applicants overall
(R1: Posterior < Prior). However, in the context
of other information about a particular child, hav-
ing critical current childcare gets them Wait listed
(R4: Plausible outcome ¬C 6= Predicted class C).5

5As seen in Table 10, Appendix A, the term “critical child-
care” indicates high insecurity in obtaining this service.
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Schema Sample Generated Explanations for the Nursery dataset
Conflict-based (outcome only): Plausible¬C/PredictC
Preamble: x∗i,j + R1 + C From the data, one might expect that children with critical current childcare will be less likely

than applicants overall to get Wait listed (19% vs 34%).

Resolution: Path + x∗i,j + C
However, the AI system has learned from the data that among children with ordinary parents’
employment, somewhat problematic social situation and good health, those with critical
current childcare are almost certain to get Wait listed (close to 100%).

Conflict-based (impact of feature value only): PlausibleC/PredictC-xi,jNoImpact

Preamble: x∗i,j + R1 + C From the data, one might expect that children with challenging parents’ employment will be
more likely than applicants overall to get a Priority acceptance (46% vs 32%).

Resolution: x∗i + R5 + Path + C
However, the AI system has learned from the data that the parents’ employment has no effect
on the outcome in this situation, and that children with very critical current childcare and
good health are almost certain to get a Priority acceptance (close to 100%).

Conflict-based (outcome and impact of feature value): PlausibleC′/PredictC-xi,jNoImpact

Preamble: x∗i,j + R3 + C′ + C From the data, one might expect that children with ordinary parents’ employment will be
more likely to get Wait listed than to get a Priority acceptance (47% vs 19%).

Resolution: x∗i + R5 + Path + C
However, the AI system has learned from the data that the parents’ employment has no effect
on the outcome in this situation, and that children with very critical current childcare and
average health are almost certain to get a Priority acceptance (close to 100%).

Basic (no conflict): counterpart of PlausibleC′/PredictC-xi,jNoImpact

Path + C The AI system has learned from the data that children with very critical current childcare
and average health are almost certain to get a Priority acceptance (close to 100%).

Table 3: Schemas that address three of the potential conflicts defined in Table 2 and Basic schema (our baseline),
with sample explanations; relative probabilities are described in Figure 1; the selection of a pivot feature value is
described in § 3.2; font denotes feature values and features in the DT path, and Classes.

PlausibleC/PredictC-xi,jNoImpact (bottom of
second segment in Table 2). This conflict occurs
when a feature value xi,j is expected to have an
impact (Column 5), but it has no effect on the
Predicted class, i.e., it is not in the DT path (Col-
umn 6). The expectation for xi,j to have an impact
arises when the posterior probability of class C
in light of xi,j is higher than its prior probabil-
ity (R1) and the posterior probabilities of all the
other classes, and it is also higher than the posterior
probability of class C in light of at least one other
feature value in the current DT path — xi,j cannot
be the “weakest” among the mentioned features
(Column 2). Here, the plausible expectation for
class C matches the DT’s prediction, i.e., there is
no conflict about the expected outcome.
Example (full text in Table 3): In the Nursery
dataset, children with challenging parents’ employ-
ment are more likely to get Priority accepted than
the general population (R1: Posterior > Prior),
but parents’ employment is not in the DT path (R5:
Plausible impact 6= actual Impact).
PlausibleC ′/PredictC (third segment in Table 2).
Here, an alternative outcome C ′ is a plausible ex-
pectation from xi,j (Column 3), but surprisingly,
class C is Predicted (Column 4). This conflict re-
sembles Plausible¬C/PredictC in that the poste-
rior probability of class C in light of xi,j is rel-
atively low, i.e., ¬C is plausible (R1). However,
PlausibleC ′/PredictC goes further, nominating a
potential alternative class C ′. The expectation for

C ′ is plausible because its posterior probability is
higher than its prior (R2) and the posterior of C
(R3), and C ′ has the highest posterior probability
among all the classes (Column 2). This conflict
has two variants: “vanilla” – only the Predicted
class is unexpected (top of the third segment); and
xi,jNoImpact – both the Predicted class and the
lack of impact of xi,j (Column 6) are unexpected
(bottom of the third segment).
Example of the first variant (full text in Table 1;
the second variant appears in Table 3): In the Nurs-
ery dataset, children with good current childcare
are more likely to get Wait listed than Priority ac-
cepted (R3: Posterior(C ′) > Posterior(C)). How-
ever, a particular child with certain feature values
and good current childcare gets Priority accepted
(R4: Plausible outcome C ′ 6= Predicted class C).

3.2 Generating Conflict-based Explanations

The inputs to the explanation generator are: an
instance, a Predicted class and a set of conflicts.
At present, our explanations address a potential
conflict with respect to one feature value only.6

Thus, for each conflict type, we first select a pivot
feature value (denoted x∗i,j), and then realize our
explanation. We do not select a particular conflict
type for an instance, as making this determination
is one of the aims of our evaluation (§ 4.3.3).

6In the future, we will consider higher-dimensional spaces,
which may require addressing several features with conflicts
or adopting a different strategy, e.g., an interactive approach.



119

3.2.1 Selecting a pivot feature value
If several feature values qualify for a poten-
tial conflict type, we choose the strongest in
terms of word mapping, e.g., “a great deal
more” is stronger than “more”. Ties are bro-
ken as follows: for Plausible¬C/PredictC and
PlausibleC/PredictC-xi,jNoImpact, we choose the
x∗i,j with the maximum absolute difference between
Posterior(C|x∗i,j) and Prior(C) for the Predicted
class C. For the PlausibleC ′/PredictC variants, we
select the x∗i,j with the maximum difference be-
tween Posterior(C ′|x∗i,j) and Posterior(C|x∗i,j).
3.2.2 Realizing explanations
A Conflict-based explanation has two main parts:
Preamble, which presents a plausible expectation
from the pivot feature value x∗i,j ; and Resolution,
which describes how this expectation is thwarted.
Table 3 displays schemas that address three poten-
tial conflicts, and one Basic schema (which is our
baseline), together with sample explanations; an
explanation that illustrates PlausibleC ′/PredictC
“vanilla” appears in Table 1 (the schema for this
potential conflict is [Preamble: x∗i,j + R3 + C ′ + C;
Resolution: Path + x∗i,j + C]). Since the focus of
our research is on content selection, the explana-
tions are realized by means of domain-independent
programmable templates.
The Preamble presents probabilistic relations that
license plausible expectations. The preambles of
Plausible¬C/PredictC and PlausibleC/PredictC-
xi,jNoImpact describe relation R1; and those of
the PlausibleC ′/PredictC variants convey R3.
The Resolution has two components: (1) the fea-
ture values in the DT path that lead to the Predicted
class C, which also constitutes the Basic baseline
explanation (Guidotti et al., 2019; Stepin et al.,
2020); and (2) the impact of x∗i,j , or lack thereof,
in the context of the other feature values in the DT
path. The features in the DT path are presented in
a pre-established order (Table 4), except for x∗i,j ,
whose placement is determined by the schemas:
when x∗i,j is in the DT path, it appears right before
the Predicted class; otherwise, the lack of impact
of x∗i is announced at the start of the Resolution.

4 Empirical Evaluation
Our evaluation considers two main questions:
(Q1) How do Conflict-based explanations com-
pare to Basic baseline explanations? (Q2) Which
types of Conflict-based explanations are preferred
to Basic explanations, if any?

Nursery
Classes: Priority accept, Wait list, Reject
parents’ employment: challenging, somewhat difficult, ordinary
current childcare: very critical, critical, insufficient, sufficient, good
housing condition: inadequate, somewhat inadequate, adequate
social situation: problematic, somewhat problematic, unproblematic
child’s health: poor, average, good

Telecom
Classes: Stay, Churn (leave the company)
senior citizen: yes, no phone service: yes, no
internet service: Fiber optic, DSL, no
online security: yes, NA (no internet service), no
tenure (months with company): 1 month, 72 months
monthly charges: $19, $117

Table 4: Classes, sample features (in the presentation
order used in our explanations) and values in the evalu-
ation datasets; the feature values in the Nursery DT are
described in Table 10, Appendix A.

Next, we describe our datasets and classifier,
followed by our experimental design and results.7

4.1 Datasets
We used two datasets, which were pre-processed
as described in Appendix A: Nursery (Olave et al.,
1989), which has 12630 instances and three classes;
and Telecom, which has 3302 instances and two
classes. These datasets were chosen due to their
diverse character, and the differences in number
and types of features and predicted classes. Both
datasets were split into 80% training and 20% test
sets using proportional sampling (we did not cross-
validate, as average classifier accuracy is tangential
to this research).

We employed the J48 classifier (Quinlan, 1993)
in WEKA (Frank et al., 2016) to learn DTs. It pro-
duced a DT with 47 nodes for the Nursery dataset
(93% accuracy on the test set) and a DT with 41
nodes for Telecom (80% accuracy on the test set).8

78% of the Nursery test samples and all the Tele-
com test samples had at least one potential conflict.

4.2 Experiment Design
Our experiment starts with a demographic ques-
tionnaire followed by the body of the survey.

The body of the survey begins with a narrative
immersion, where participants are told that they are
the director of a childcare center (Nursery) or the
sales representative of a telecommunications com-
pany (Telecom), and that they have purchased an
AI system to help them predict the acceptance sta-
tus of prospective pupils (Nursery) or whether cus-

7We have addressed the recommendations for human eval-
uation in (Howcroft et al., 2020). The experiment and data are
available at https://doi.org/10.26180/15147462.

8Users are informed of a DT’s overall accuracy, but not
about its accuracy for individual predictions — in the future we
will study the inclusion of this information in an explanation.

https://archive.ics.uci.edu/ml/datasets/nursery
https://www.kaggle.com/blastchar/telco-customer-churn
https://doi.org/10.26180/15147462
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tomers will churn (leave) or stay (Telecom). The
participants are then given a brief account of how
an AI makes predictions, and shown the features
and values that are input to the AI (illustrated in
Table 4) — a screenshot of the introductory nar-
rative for the Nursery dataset appears in Figure 2,
Appendix D. Next, a sequence of scenarios is pre-
sented in random order, each pertaining to a differ-
ent family/customer — a screenshot of a Nursery
scenario appears in Figure 3, Appendix D. Between
scenarios, a short version of the Matching Familiar
Figures Test (MFFT) (Cairns and Cammock, 1978)
is shown as a filler.

Scenario description. We chose scenarios with
the strongest available potential conflict (using a
procedure similar to that in § 3.2.1), and diverse
pivot and explanatory variables. Scenarios with-
out conflicts were excluded from our evaluation, as
they warrant only a Basic explanation. To ensure
that all the potential conflicts in Table 2 are rep-
resented, we chose eight Nursery scenarios (four
each for Wait list and Priority accept)9 and ten
Telecom scenarios (five each for Stay and Churn).

Each scenario begins by showing a set of fea-
tures such as those in Table 4, together with their
values for a particular family/customer and the
Prior and Posterior probabilities of the possible
classes. Users are then asked to make an educated
guess about the predicted class, after which they
are shown the prediction made by the DT.

Next, users are given two side-by-side expla-
nations for this prediction: Conflict-based versus
Basic. The selection of a side (left or right) for an
explanation type is randomized between scenarios,
but all the participants see the same side-by-side
configuration for a given scenario.

Users’ views about explanations. Users are
then asked to enter their level of agree-
ment on a 5-point Likert scale (‘Strongly dis-
agree’:1 to ‘Strongly agree’:5) with statements
about four explanatory attributes: complete-
ness of an explanation and presence of mislead-
ing/contradictory/irrelevant information, as well
as the understandability of the AI’s reasoning and
their willingness to act on the prediction on the
basis of an explanation (exact statements appear in
the screenshot in Figure 3, Appendix D). The first
three attributes come from Hoffman et al.’s (2018)
Explanation Satisfaction Scale, and the third and

9Examples for Reject were not presented, as there was only
one reason to reject applicants, viz poor health.

Question Option Nursery Telecom
Gender Male / Female 12 / 28 25 / 17
Age 18-34 years old 33 37
Ethnicity Asian / Caucasian 17 / 17 28 / 4
English proficiency Medium / High 5 / 36 5 / 37
Education Bachelor / Master 13 / 13 14 / 22
ML expertise Low / Med-High 27 / 14 18 / 24
Domain familiarity Yes / No 9 / 32 31 / 11

Table 5: Descriptive statistics: for gender, age, ethnic-
ity and education, we present the options that had most
participants; domain familiarity was self-rated.

fourth attributes are our explanatory goals (§ 1).
Participants are also asked which explanation(s)
they prefer, if any.

To detect unreliable responses, we inserted an
attention question, where we asked users to indicate
whether a neutral statement about the background
information in the scenario was true or false.
Participant cohorts. To avoid participant fa-
tigue, we conducted a separate experiment for each
dataset — details appear in Appendix B. The sur-
veys were implemented in the Qualtrics survey soft-
ware, and conducted on SONA.

We obtained a total of 83 valid responses out
of 109 — 41 for Nursery and 42 for Telecom (re-
sponses were validated based on the answers to the
attention questions and the total time spent on the
experiment). Table 5 shows the statistics for the
Nursery and the Telecom cohorts.

4.3 Results

To answer Q1, we compared Conflict-based expla-
nations with Basic ones for each dataset in terms
of the four explanatory attributes mentioned above,
and user preferences (§ 4.3.1). We also analyzed
the influence of various independent variables on
users’ ratings of Conflict-based explanations com-
pared to Basic ones (§ 4.3.2). To answer Q2, we
analyzed how individual Conflict-based explana-
tions compare to their Basic counterparts (§ 4.3.3).

Statistical significance for the ratings of the four
attributes for Conflict-based versus Basic explana-
tions was obtained using Wilcoxon signed-rank
test; a one- and two-proportion Z-test was respec-
tively used for the proportion of preference counts
within one population and between two popula-
tions. Statistical significances were adjusted with
Holm-Bonferroni correction for multiple compar-
isons (Holm, 1979).

4.3.1 Conflict-based vs Basic explanations
Our results show that for the Nursery dataset (top of
Table 6), Conflict-based explanations are deemed

https://www.sona-systems.com
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Attribute Conflict-based Basic Stat.
Mean (SD) Mean (SD) Sig.

Nursery
Complete 3.43 (0.97) 3.00 (0.98) < 0.001
Misleading... 2.72 (1.00) 2.55 (0.89) < 0.05
Understandable 3.61 (1.04) 3.02 (1.03) < 0.001
Willingness to act 3.56 (1.01) 3.23 (1.01) < 0.001

Telecom
Complete 3.22 (0.99) 2.93 (0.97) < 0.001
Misleading... 3.00 (1.14) 2.81 (1.05) –
Understandable 3.49 (0.92) 3.33 (0.87) –
Willingness to act 3.16 (0.99) 3.09 (0.94) –

Table 6: Comparison between explanation types:
scores and statistical significances (Wilcoxon signed-
rank test); a lower score is better for Misleading... , and
a higher score is better for the other attributes.

Count
χ2 Stat.Conflict- Basic Both None Total Sig.based

Nursery 112 45 13 35 205 28.59 < 0.001
Telecom 117 78 11 46 252 7.80 < 0.01

Table 7: Preference for an explanation type: χ2 statis-
tic and statistical significances (one-proportion Z-test)
calculated from clear preferences for Conflict-based/
Basic explanations.

significantly more complete, understandable and
enticing to act on a DT’s prediction than Basic
explanations. However, Conflict-based explana-
tions are also deemed more misleading/contradic-
tory/irrelevant than Basic explanations. For Tele-
com (bottom of Table 6), Conflict-based explana-
tions are considered significantly more complete
than Basic explanations, but equivalent for the
other three attributes.

In terms of preferences, for both datasets, the ma-
jority of users prefer Conflict-based explanations
to Basic ones (Table 7). However, the two datasets
differ significantly in the proportions of preferences
for Conflict-based explanations (two-proportion Z-
test, p-value < 0.05; proportions calculated from
the data in Table 7), with a higher percentage of
users preferring the Conflict-based explanations for
the Nursery dataset.

4.3.2 Influence of independent variables
Our experiment has several independent variables,
including predicted outcome, pivot feature, expla-
nation length and (dis)agreement between an ex-
pected and a predicted class. The first two variables
are scenario-specific, and hence offer no opportuni-
ties to draw generalizable conclusions.

Regarding explanation length, Lombrozo (2016)
reported that users generally prefer longer explana-
tions, in particular when they include jargon. How-

Attribute Predict vs Conflict-based Basic Stat.
Expect Mean (SD) Mean (SD) Sig.

Nursery

Complete Pred=Exp 3.41 (0.96) 3.04 (0.97)<0.01
Pred 6=Exp 3.48 (0.99) 2.90 (0.99)<0.01

Misleading... Pred=Exp 2.80 (1.03) 2.54 (0.90)<0.05
Pred 6=Exp 2.57 (0.92) 2.57 (0.86) –

Understand- Pred=Exp 3.61 (1.07) 3.20 (0.99)<0.01
able Pred 6=Exp 3.61 (0.97) 2.66 (1.01)<0.001
Willingness Pred=Exp 3.64 (0.95) 3.41 (0.98)<0.05
to act Pred 6=Exp 3.40 (1.12) 2.87 (0.98)<0.01

Telecom

Complete Pred=Exp 3.18 (0.97) 2.99 (0.95) –
Pred 6=Exp 3.35 (1.04) 2.72 (1.01)<0.01

Misleading... Pred=Exp 3.08 (1.14) 2.83 (1.05) –
Pred 6=Exp 2.75 (1.10) 2.75 (1.08) –

Understand- Pred=Exp 3.45 (0.90) 3.35 (0.86) –
able Pred 6=Exp 3.62 (0.98) 3.25 (0.93) –
Willingness Pred=Exp 3.14 (0.97) 3.17 (0.90) –
to act Pred 6=Exp 3.25 (1.07) 2.83 (1.04)<0.05

Table 8: Effect of (dis)agreement between users’ expec-
tations and DT predictions: scores and statistical signif-
icances (Wilcoxon signed-rank test).

ever, in our case, length is highly correlated with ex-
planation type — Conflict-based explanations have
60 words on average in both Nursery and Telecom,
and Basic explanations have 29 words. Hence, we
cannot analyze length separately from explanation
type. Nonetheless, our results suggest that length
cannot be the only factor influencing users’ views,
as some types of Conflict-based explanations have
similar preferences to Basic explanations (Table 9).

Interestingly, our analysis shows that (dis)agree-
ment between users’ expectations according to
their survey answers and the class Predicted by
the DT has a significant influence on the ratings
of Conflict-based explanations compared to Basic
ones (users’ answers disagreed with a Predicted
class when they selected a different class or Can’t
Decide – see options in Figure 3, Appendix D).

For the Nursery dataset, the general results ob-
tained for Conflict-based versus Basic explana-
tions hold for completeness, understandability and
willingness to act on predictions for both agree-
ment and disagreement between users’ expecta-
tions and DT predictions (top of Table 8). However,
Conflict-based explanations were deemed to con-
tain more misleading/contradictory/irrelevant infor-
mation than Basic ones only when users’ expecta-
tions matched DT predictions. This suggests that
the additional information provided by Conflict-
based explanations is welcome when a prediction
is not as expected.

For the Telecom dataset, Conflict-based explana-
tions were considered more complete and enticing
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Nursery Telecom

Basic vs Conflict-based Count
χ2 Stat. Count

χ2 Stat.
ConflictBasicBothNoneTotal Sig. ConflictBasicBothNoneTotal Sig.

Basic vs Plausible¬C/PredictC 33 12 3 14 62 9.80< 0.01 46 21 2 15 84 9.33< 0.01
Basic vs PlausibleC/PredictC-xi,jNoImp 8 6 1 6 21 0.29 – 14 20 2 6 42 1.06 –
Basic vs PlausibleC′/PredictC “vanilla” 33 13 6 9 61 8.70< 0.01 23 6 3 10 42 8.53< 0.05
Basic vs PlausibleC′/PredictC-xi,jNoImp 38 14 3 6 61 11.08< 0.01 34 31 4 15 84 0.14 –

Table 9: Preference for individual explanation types: χ2 statistic and statistical significances (one-proportion Z-
test) calculated from clear preferences for Conflict-based/Basic explanations (NoImp is shorthand for No Impact).

to act only when users’ expectations differed from
DT predictions (bottom of Table 8).

In terms of preferences, most users preferred
Conflict-based explanations to Basic ones for the
Nursery dataset, regardless of the agreement be-
tween users’ expectations and DT predictions
(p-value<0.001, Table 12 in Appendix C). How-
ever, for Telecom, Conflict-based explanations
were preferred only when users’ expectations dis-
agreed with DT predictions (p-value<0.001).

4.3.3 Individual Conflict-based explanations
Our comparison between individual Conflict-based
explanations and their Basic counterparts shows
that a statistically significantly higher propor-
tion of users preferred Plausible¬C/PredictC and
PlausibleC ′/PredictC “vanilla” to Basic explana-
tions for both Nursery and Telecom (Table 9).
But PlausibleC ′/PredictC-xi,jNoImpact was pre-
ferred to its Basic counterpart only for the Nurs-
ery dataset, where it had the largest margin. Fi-
nally, PlausibleC/PredictC-xi,jNoImpact, which
addresses a conflict with respect to variable impact
only, was deemed equivalent to its Basic counter-
part for both datasets. However, according to (Bi-
ran and McKeown, 2017), users were more satis-
fied with explanations about unexpected variable
impacts than no explanation. This suggests that
further studies are required to determine the condi-
tions for explaining unexpected variable impacts.

The results in Table 9 indicate that if a DT
prediction has several qualifying conflicts, they
should be prioritized in the following order:
Plausible¬C/PredictC � PlausibleC ′/PredictC
“vanilla” � PlausibleC ′/PredictC-xi,jNoImpact.

5 Conclusion
Our approach for explaining DT predictions ad-
dresses potential conflicts between aspects of these
predictions and plausible expectations licensed by
background information. To this effect it opera-
tionalizes the identification of four types of con-
flicts, and specifies schemas for generating expla-
nations that address these conflicts. Our approach

is model agnostic, except for the determination of
the actual impact of a variable, which is readily
available in most ML models.

Our evaluation on the Nursery and Telecom
datasets shows that (1) explanations addressing po-
tential conflicts between DT predictions and plau-
sible expectations from background information
are considered at least as good as baseline explana-
tions; and (2) the Conflict-based explanations are
deemed especially valuable when users’ expecta-
tions disagree with DT predictions.

These insights are of practical import, since
users’ expectations are often not available to ex-
planation systems, and Conflict-based explanations
provide clear benefits, or at worst are neutral, re-
gardless of the particulars of these expectations.

Our approach has the following limitations,
which we propose to address in the future: (1) it
does not perform feature selection to reduce long
paths in a DT; (2) Conflict-based explanations ad-
dress only one pivot feature; and (3) the expla-
nations omit information about DT accuracy for
particular instances.

Our evaluation has the following limitations:
(1) we cannot divorce length from explanation type,
as Conflict-based explanations are about twice as
long as Basic ones; (2) the cohorts for the two
datasets had different demographics, so, given the
size of our population, it is not possible to attribute
differences in our results for each dataset to domain
or demographic differences; and (3) we could not
recruit participants with relevant experience, but
in light of our narrative immersion and the general
accessibility of the concepts in the explanations,
we believe that our results are informative.
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A Datasets
Feature value Description

Parents’ employment
challenging frequent relocations, transfers, long leaves of absence; parents are not employed in the school district

and need to travel more than one hour for work.
somewhat difficult hard working conditions that allow for an early retirement (e.g., miners, policemen, soldiers), night

work, additional work engagements.
ordinary normal condition.

Current childcare
very critical there is no possibility of childcare with family, and previous level of childcare was inadequate (child

does not live with parents, problematic private care).
critical there is no possibility of childcare with family, and previous level of care was less than adequate

(frequent change of care, termination of care, alternate care by parents, occasional care).
insufficient no possibility of childcare with family (both parents or single parent work full-time or are full-time

students, no alternative care with relatives), but previous level of care was adequate (with own family,
adequate private care, educational care organizations).

sufficient childcare is possible with some relatives (healthy and unemployed grandparents living in the school
district, other able-bodied and unemployed members of the household).

good normal condition (childcare is possible in the family – father or mother unemployed and able to care).
Housing condition

inadequate subleased or emergency housing; cramped; has lack of sanitation facilities or water.
somewhat inadequate subleased or cramped apartment.
adequate normal condition.

Social situation
problematic inadequate educational ability of parents (gross neglect of education and care, violence); inadequate

family relationships (serious conflicts between parents, between grandparents, between parents and
grandparents, more severe forms of disturbance of parents or other family members); social and
antisocial forms of restraining behavior by parents and other family members (alcoholism and other
addictions, delinquency, quitting, etc).

somewhat problematic less than adequate educational ability of parents (uneven, inconsistent education, excessive difficulty
or indulgence, neurotic reaction of parents); less than adequate family relationships (milder forms of
parental personality disorders, privileged or neglected children, family conflicts).

unproblematic normal condition.
Child’s health

poor admission is not recommended due to the health conditions of the child.
average the child has a mental or physical disorder that influences their admission status; the child’s development

is affected by health conditions of family members.
good normal condition (healthy).

Table 10: Description of feature values in the Nursery DT; all the feature values for current childcare, housing
condition, social situation and child’s health, except the value defined as normal, require the opinion of relevant
professional services.

The Nursery dataset originally had five classes,
three of which account for about 97% of the
instances; we therefore removed the other two
classes, which resulted in a balanced dataset with
12630 instances. The classes, features and feature
values in the dataset were originally in Slovenian,
and their English translation in (Olave et al., 1989)
was somewhat peculiar. With the help of one of
the authors of the original paper, we recoded the
features and feature values in the Nursery domain
to those in Table 4, and the names of the retained
classes to Reject, Wait list and Priority accept. The
recoded feature values are described in Table 10.

The Telecom dataset had only two classes, Stay
and Churn, but it was imbalanced towards Stay
(73%). The DT had an accuracy of 79% when
trained with a cost-sensitive setting for imbalanced
datasets. This accuracy is comparable to those
reported in Kaggle for several predictive models.

However, in order to avoid biasing participants’
class expectations, we decided to even out the
class distribution. To this effect, we retained only
customers with a month-to-month contract, which
had both outcomes, and randomly removed half
of the incorrectly predicted cases. This yielded a
more balanced dataset (60% Stay) and a slightly
improved DT accuracy of 80% (trained without the
cost-sensitive setting).

Table 11 shows final classes in the two datasets
and the breakdown of the training/test sets.

Partition Nursery Telecom

Reject Wait Priority Total Stay Churn Totallist accept
Training 3485 3414 3205 10104 1596 1057 2653
Testing 835 852 839 2526 390 259 649
Total 4320 4266 4044 12630 1986 1316 3302

Table 11: Breakdown of classes for the training set and
the test set for the Nursery and Telecom datasets.

www.kaggle.com
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B Experiment Design

The scenarios studied in this paper compare
Conflict-based explanations with Basic explana-
tions for two datasets. However, our experiment
contains additional scenarios, which compare two
Conflict-based explanations. To limit the duration
of an experiment to less than 1 hour, the experiment
for each dataset was split into two parts — each
part was shown to a different group of participants.
• Each Nursery group was shown five scenar-

ios that compare Conflict-based explanations
with Basic explanations, and two scenarios that
compare two Conflict-based explanations; two
of the former scenarios were common to both
Nursery groups.

• Each Telecom group was shown six scenarios
that compare Conflict-based explanations with
Basic explanations, and one scenario that com-
pares two Conflict-based explanations; as for
Nursery, two of the former scenarios were com-
mon to both groups.

The common scenarios were used to determine
whether the two participant groups for a particular
dataset behave similarly. To this effect, we per-
formed a two-proportion Z-test on preference for
Conflict-based explanations in the common scenar-
ios; we found no statistically significant differences
between the preferences of the two Nursery groups
(p-value = 0.714) or the preferences of the two
Telecom groups (p-value = 0.388).

C Results

Predict Count
χ2 Stat.vs Conflict-BasicBothNoneTotal Sig.Expect based

NurseryPred=Exp 74 35 9 20 138 13.95< 0.001
Pred 6=Exp 38 10 4 15 67 16.33< 0.001

TelecomPred=Exp 78 72 8 34 192 0.24 –
Pred 6=Exp 39 6 3 12 60 24.20< 0.001

Table 12: Preferences broken up by (dis)agreement
between users’ expectations and DT predictions: χ2

statistic and statistical significances (one-proportion Z-
test) calculated from clear preferences for Conflict-
based/Basic explanations.
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D Screenshots from the Nursery survey

Figure 2: Narrative immersion for the Nursery survey.



127

Figure 3: Background information about the Nicholson family scenario; question about the expected outcome;
model prediction (displayed after an outcome has been selected); PlausibleC ′/PredictC explanation “vanilla” (A)
and Basic explanation (B) for this scenario; attention question; preferences for explanations; features that determine
expectations; request for suggestions.


