
Proceedings of the 18th International Conference on Natural Language Processing, pages 341–346
Silchar, India. December 16 - 19, 2021. ©2021 NLP Association of India (NLPAI)

341

Multi-Source Cross-Lingual Constituency Parsing

Hour Kaing†‡, Chenchen Ding†, Katsuhito Sudoh‡, Masao Utiyama†,
Eiichiro Sumita†, Satoshi Nakamura‡

†National Institute of Information and Communications Technology,
3-5 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0289, Japan

‡Nara Institute of Science and Technology,
8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan

Abstract
Pretrained multilingual language models have
become a key part of cross-lingual trans-
fer for many natural language processing
tasks, even those without bilingual informa-
tion. This work further investigates the cross-
lingual transfer ability of these models for con-
stituency parsing and focuses on multi-source
transfer. Addressing structure and label set di-
versity problems, we propose the integration
of typological features into the parsing model
and treebank normalization. We trained the
model on eight languages with diverse struc-
tures and use transfer parsing for an additional
six low-resource languages. The experimen-
tal results show that the treebank normaliza-
tion is essential for cross-lingual transfer per-
formance and the typological features intro-
duce further improvement. As a result, our
approach improves the baseline F1 of multi-
source transfer by 5 on average.

1 Introduction

Recent pretrained multilingual language models
have become a key step in cross-lingual transfer
for many natural language processing tasks such
as name entity recognition, part-of-speech tagging,
natural language inference, and dependency pars-
ing (Wu and Dredze, 2019). These models are
desirable in research on cross-lingual transfer be-
cause bilingual information is not required.

Cross-lingual transfer is when a trained model
for a source language is applied to a target (unseen)
language. There are two transfer scenarios, single-
source and multi-source transfer. For single-source
transfer, each time, the model is trained on only one
source language. In this scenario, multiple models
are available for cross-lingual transfer in practice.
Additional model selection is necessary for single-
source transfer because cross-lingual transfer relies
on language isomorphism. For multi-source trans-
fer, to leverage all existing resources, treebanks of

multiple languages are combined to train a multi-
lingual parser that can be later used for any unseen
language. In this work, we study the multi-source
transfer for sophisticated structure prediction, i.e.,
constituency parsing. Our work will serve as a
benchmark for cross-lingual constituency parsing
using pretrained multilingual language model.

For constituency parsing, training a multilingual
parser has two main issues that must be consid-
ered. First, the source languages can produce di-
verse word orders—for instance, different subject-
verb-object or noun-adjective orders. These lan-
guage properties can be simply identified using
existing typology databases, e.g., The World At-
las of Language Structures (WALS) or Syntactic
Structures of the World’s Languages (SSWL). It
is intuitive that these language properties can be
used to guide a multilingual parser to share cor-
responding model parameters among similar lan-
guages (Naseem et al., 2012; Ammar et al., 2016;
Scholivet et al., 2019; Üstün et al., 2020). For cross-
lingual transfer, the typological features could hurt
performance (Ammar et al., 2016), and an effec-
tive integration technique is required (Üstün et al.,
2020). Inspired by this, we investigate the useful-
ness of typological features for cross-lingual con-
stituency parsing and propose a training strategy to
generalize the cross-lingual capability of the model
using smooth sampling and random dropout.

The second issue is that even though con-
stituency structure is universal, the design of a label
set is language specific. For dependency structures,
this problem has inspired the creation of the Uni-
versal Dependency project (Nivre et al., 2016). The
syntactic label sets of constituency structure vary
across languages—for instance, very few labels
are shared and even labels for the same syntactic
category may be different across languages. This
increases the complexity of multi-source transfer.
Therefore, we propose normalization of the con-
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Figure 1: Overall architecture of our parser. The multilingual treebanks are normalized (a) before training the
parser (b). A span classifier (c) is also integrated with a feature extractor (d) for binary typological vectors, as
shown in the right-most example.

stituency treebanks to universalize the multilingual
parsing model.

The contributions of this paper are summarized
as follows: 1) typological feature integration for
model generalization on unseen languages (Sec-
tion 4.1), and 2) treebank normalization is proposed
to reduce the complexity of cross-lingual structural
prediction (Section 4.2).

2 Related Work

In multi-source transfer, task-specific knowledge of
multiple source languages is combined and jointly
transferred to an unseen or zero-shot language.
This combination can be categorized according to
three levels (Das and Sarkar, 2020), that is, the
level of treebanks (McDonald et al., 2011; Am-
mar et al., 2016; Scholivet et al., 2019; Üstün
et al., 2020), model parameters (Cohen et al., 2011;
Søgaard and Wulff, 2012), or parse outputs (Rosa
and Žabokrtský, 2015; Agić, 2017). This work
focuses on treebank level, that is, treebank con-
catenation and, unlike previous studies, we study
a more sophisticated structure, constituency tree-
banks, which simultaneously contain diverse syn-
tactic labels across multiple source languages.

Typological features are a valuable resource for
multi-source transfer where source languages have
diverse structures, and they have been used specif-
ically for sharing the parameters of non-neural
(Naseem et al., 2012; Täckström et al., 2013; Zhang
and Barzilay, 2015) and neural (Ammar et al.,
2016; Scholivet et al., 2019; Üstün et al., 2020)
models. Following the same motivation, we also in-
vestigate the usefulness of typological features for a
multilingual constituent parser and propose a train-
ing strategy that generalizes the model for zero-shot
languages. Specifically, we integrate typological

features into the self-attentive constituency parser
(Kitaev and Klein, 2018).

Our work is similar to that of Kitaev et al. (2019)
who investigated the multilingualism of the self-
attentive constituency parser (Kitaev and Klein,
2018) using the pretrained multilingual language
model. However, our work differs from theirs such
that we focus on zero-shot performance. In ad-
dition, we propose to normalize the concatenated
treebanks and integrate typological features for bet-
ter zero-shot performance. We also extend the sam-
pling technique that Kitaev et al. (2019) use by
constraining the minimum size of each treebank.

3 The Self-Attentive Parser

The basis of our model (Fig. 1b) follows the self-
attention based encoder–decoder architecture of
Kitaev and Klein (2018). Specifically, the encoder
consists of word embedding and self-attention lay-
ers to produce the contextual presentation for each
word. At the decoder side, all possible spans are
extracted and each span (i, j) is represented by a
hidden vector vi,j that is constructed by subtract-
ing the representations associated with the start and
end of the span. Then, each span (i, j) is assigned a
labeling score s(i, j, ·) by an MLP span classifier as

s(i, j, ·) = W2g(f(W1vi,j + c1)) + c2, (1)

where W∗ and c∗ are the weight and bias, re-
spectively; f and g are the layer normalization
and ReLU (”Re”ctified ”L”inear ”U”nit) activation
function, respectively, as shown in Figure 1c. For
each sentence, the constituency structure T is rep-
resented by a set of labeled spans {(it, jt, lt) : t =
1, . . . , |T |} where l is a label. Therefore, the score
of T is

s(T ) =
∑

(i,j,l)∈T
s(i, j, l). (2)
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At test time, the optimal structure can be ob-
tained using a CKY-style inference algorithm. For
training, the model is optimized using a max-
margin objective function, the details of which can
be found in Kitaev and Klein (2018). In addition,
the parser’s hyperparameters are unchanged from
Kitaev and Klein (2018).

To perform cross-lingual parsing, an external pre-
trained multilingual language model must be used
and simply take the place of the word embedding
layer. Because the model is trained on sub-words,
only the last sub-word unit of the corresponding to-
ken is used to represent a word. In this experiment,
we use a recent multilingual language model, i.e.
XLM-RoBERTa-Large (Conneau et al., 2020).

4 Proposed Methods

4.1 Typological Feature Integration
A typology database is a valuable resource that
represents various aspects of languages. Recent
lang2vec (Littell et al., 2017) provides an inter-
face to represent languages as binary vectors of
typological features. Inspired by the recent work of
Üstün et al. (2020), we also integrate typological
features f (TF) into our model to guide the multi-
lingual model’s sharing of the structural knowledge
among similar languages, as Figure 1d shows. We
use simple feature concatenation to integrate typo-
logical features into the span classifier. Like Üstün
et al. (2020), we embed binary typological vectors
using two linear layers and a ReLU activation func-
tion g, and further apply random dropout over the
binary typological vectors as

f ′ = M2g(M1dropout(f) + z1) + z2. (3)

We then concatenate f ′ with each span vector, vi,j ,
which modifies Equation 1 as

s(i, j, ·) = W2g(f(W1[vi,j , f
′] + c1)) + c2. (4)

Dropout is applied directly to the binary fea-
tures because, during training, typological features
only vary with respect to the number of source
languages, and each feature is only helpful in the
context of other features, which is known as co-
adaptation (Hinton et al., 2012). Therefore, for
a zero-shot language, without dropout, the model
would not be able to extract individual features in a
new feature context, which can be prevented using
simple random dropout (Hinton et al., 2012). Like
Hinton et al. (2012), we drop 50% of the features
during training.

The number of multilingual treebanks commonly
differs, and high-resource languages tend to be
over-represented during training. Similar to the
exponential smoothing in Kitaev et al. (2019), at
each epoch, we sample da examples from each
language, where d is the size of each language tree-
bank and a is a hyperparameter. Unlike Kitaev
et al. (2019), we use a = 0.95 because the size
of each treebank is not as large as the unlabeled
corpora. We also constrain the smoothed number
of examples as da > m, where m is the smallest
treebank size in the source-language pool. We call
this approach “smooth sampling.”

For the typological features, we combine the
syntax features of WALS (Dryer and Haspelmath,
2013) or SSWL (Collins and Kayne, 2011)1. We
only select the relevant features such as 81A, 82A,
83A, 85A, 87A, 88A, 89A, 90A, 144A, and other
unknown ID features such as subject b/a object2,
possessor b/a noun, degree word b/a adjective,
and subordinator word b/a clause. In addition, we
exclude the morphological features, which contain
the word prefix or suffix, and the missing features
of any source language. For zero-shot languages,
the missing features are set to zero. After that, we
further automatically remove unnecessary features
that are repeated for all source languages. Like Us-
tun et al. (Üstün et al., 2020), we set the hidden and
output layer of our TF to 10 and 32, respectively.

4.2 Treebank Normalization
Another obvious issue of constituency treebanks is
the difference in their syntactic labels. We observed
that high-resource languages tend to have more
diverse labels, whereas low-resource languages use
a much smaller label set; for instance, Myanmar
and Khmer have five and six labels, respectively,
whereas English has 26. Moreover, label symbols
for each treebank are very language specific; for
example, French and English, which have large
label sets, only share two labels.

Therefore, we propose treebank normalization
(TN) as the preprocessing step in our approach.
Specifically, we first remove any non-terminal span
that has length or number of children less than two.
In other words, they are any span (i, j) ∈ T where
j − i < 2. After that, we mask the labels of all
the remaining non-terminal spans with an unified
symbol, e.g., “P” as in the example in Figure 1a.

1These features can be obtained using lang2vec by pass-
ing a syntax wals+syntax sswl. argument.

2b/a denote “before or after”.
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Code Language Train Valid Test
de German 40, 472 5, 000 5, 000
en English 39, 832 1, 700 2, 416
ko Korean 23, 010 2, 066 2, 287
my Myanmar 18, 088 1, 000 1, 018
zh Chinese 17, 544 352 348
ja Japanese 17, 204 953 931
ar Arabic 15, 762 1, 985 1, 959
fr French 14, 759 1, 235 2, 541

km Khmer 8, 788 510 654
hu Hungarian 8, 146 1, 051 1, 009
eu Basque 7, 577 948 946
pl Polish 6, 578 821 822
sv Swedish 5, 000 494 666
he Hebrew 5, 000 500 716

Table 1: Data statistics. The numbers refer to numbers
of sentences where upper languages are high-resource
languages and lower for low-resource languages.

As a result, our label classifier is simplified to only
detect the span as a span or non-span.

5 Experiments

5.1 Setups

The evaluation was performed on 14 languages:
English from the Penn Treebank (Marcus et al.,
1993); Chinese from the Chinese Penn Treebank
5.1 (Xue et al., 2005); Japanese, Khmer, and Myan-
mar (my) from the Asian Language Treebank (Riza
et al., 2016); and Arabic, Basque, French, German,
Hebrew, Hungarian, Korean, Polish, and Swedish
from the SPMRL 2013 shared task (Seddah et al.,
2014). The standard splits of each treebank were
applied to prepare the training, validation, and
test datasets.

We grouped the languages into high- and low-
resource (zero-shot) languages based on their
amount of data; those with fewer than 10k samples
were treated as low-resource languages (Khmer,
Hungarian, Basque, Polish, Swedish, and He-
brew). We trained a multilingual model on the
high-resource languages and evaluated the cross-
lingual parsing on the low-resource languages.

Note that Khmer and Myanmar scripts have no
word boundaries, so we simply use their gold seg-
mented long token3 for this experiment. We ob-
serve that XLM-RoBERTa-Large’s tokenizer pro-

3Khmer and Myanmar written scripts can be segmented
into morphemes (short tokens) or at compound level (long
tokens) (Ding et al., 2018)

Lang. Sbest Sdist Mbase TNours + TFours

km 70.0 70.0 55.5 69.0 71.8
hg 64.7 31.2 68.6 73.9 74.7
eu 33.2 27.2 27.3 34.7 35.8
pl 72.8 72.8 65.6 67.9 68.3
sv 74.8 74.8 67.8 73.1 73.8
he 77.1 71.3 80.5 81.6 82.2

avg 64.5 55.5 61.9 66.2 67.0

Table 2: Main unlabeled F1 results. The best F1 for
each row is highlighted in bold text.

duces reasonable sub-words for Khmer and Myan-
mar’s long tokens, even when the tokenizer was
trained using SentencePiece for these two lan-
guages. Table 1 presents detailed data statistics
for each language.

For comparison, we trained two baselines, single-
and multi-source models. For the single-source
model, we trained parser for each high-resource
language and then selected the best model based
on its parsing accuracy on the oracle test set (Sbest)
of the low-resource language or used the precom-
puted syntactic distance (Littell et al., 2017) (Sdist).
For the same-value syntactic distance, we further
weighted each source language based on the size
of its corresponding training data. For the multi-
source baseline, a multilingual parser (Mbase) was
trained on concatenated treebanks without treebank
normalization or typological features.

Because the label sets of each treebank differ and
calculating the accuracy of label prediction was dif-
ficult, we calculated the unlabeled F1 measure to
evaluate cross-lingual performance. All following
F1 values refer to the unlabeled F1 for simplic-
ity. We also removed unnecessary spans such as
sentence-level and length-of-one spans.

5.2 Results

As shown in Table 2, the performance of single-
source transfer was very high, especially when the
best source language can be accurately detected.
Unfortunately, the precomputed syntactic distance
is not enough to choose the best source language;
in the results, it failed in three out of six cases. The
alternative to source selection is to train a multilin-
gual parser. Interestingly, even the straightforward
treebank concatenation Mbase has a competitive
performance when compared with single-source
transfer. The results further show that treebank nor-
malization is essential when training a multilingual
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Figure 2: Improvements in the F1 of TN+TF over TN
model with or without SD. SD refers to Smooth sam-
pling and random Dropout.

constituency parser for zero-shot languages, where
the improvement over Mbase is 4.3 in average F1.
This result suggests that reducing the complexity of
the structure improves cross-lingual performance.

In addition to treebank normalization, our inte-
gration of typological features constantly improves
cross-lingual performance. An analysis of Fig-
ure 2 further shows that the straightforward inte-
gration of typological feature yields smaller im-
provements or hurts the performance for some zero-
shot languages, indicating the effectiveness of our
smooth sampling and dropout, which generalize the
typology-guided cross-lingual parser for zero-shot
languages. We additionally observe that the combi-
nation of both smooth sampling and dropout is the
best configuration for the cross-lingual parsing.

6 Conclusion

We demonstrated the strong ability of recent pre-
trained multilingual language models for cross-
lingual constituency parsing. This result will serve
as a new benchmark for future cross-lingual con-
stituency parsing. Moreover, we found that our
treebank normalization is crucial when training
multilingual treebanks with diverse label sets. In
addition, our typological feature integration with
dropout and smooth sampling generalizes and im-
proves the model for zero-shot languages. Because
we integrated typological features into the span
classifier using a simple concatenation approach,
more advanced techniques—for instance, a parame-
ter generator (Üstün et al., 2020)—with our dropout
and smooth sampling could be studied in the future.

Additionally, our parser could make the applica-
tions that leverage structures possible for a wide
range of languages without additional treebanks.
For example, pseudo constituency structures that
our parser generate could be used to apply the re-
current neural network grammar (Dyer et al., 2016;
Kim et al., 2019) or the syntax-based neural ma-

chine translation (Ma et al., 2019) for many non-
English languages. However, since the pseudo
structures could be noisy or irrelevant to the model,
selective or soft integration techniques should be
considered (Chakrabarty et al., 2020).
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