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Abstract

Bloom’s taxonomy is a common paradigm
for categorizing educational learning objec-
tives into three learning levels: cognitive, af-
fective, and psychomotor. For the optimiza-
tion of educational programs, it is crucial to
design course learning outcomes (CLOs) ac-
cording to the different cognitive levels of
Bloom’s Taxonomy. Usually, administra-
tors of the institutions manually complete the
tedious work of mapping CLOs and exam-
ination questions to Bloom’s taxonomy lev-
els. To address this issue, we propose a trans-
former based model named BloomNet that
captures linguistic as well semantic informa-
tion to classify the course learning outcomes
(CLOs) . We compare BloomNet with di-
verse set of basic as well as strong baselines
and we observe that our model performs bet-
ter than all the experimented baselines. Fur-
ther, we also test the generalisation capabil-
ity of BloomNet by evaluating it on differ-
ent distributions which our model does not en-
counter during training and we observe that
our model is less susceptible to distribution
shift compared to the other considered mod-
els. We support our findings by performing
extensive result analysis. In ablation study
we observe that on explicitly encapsulating the
linguistic information along with semantic in-
formation improves the model’s IID (indepen-
dent and identically distributed) performance
as well as OOD (out-of-distribution) general-
ization capability. The open-sourced codebase
including data can be found here: https://

github.com/macabdul9/BloomNet.

1 Introduction

One of the most difficult challenges faced by the
science educators is preparing a curriculum that
facilitates the learning process in a structured,
planned, and productive manner. It is the goal of
the scientific curriculum to educate students who

can investigate, question, participate in collabora-
tive projects, and effectively communicate. The
expected improvements for the students are artic-
ulated in a curriculum as learning outcomes (Zor-
luoğlu et al., 2019). Learning outcomes are used
to track, measure, and evaluate the standards and
quality of education received by the students at edu-
cational institutions (Attia, 2021). In terms of these
learning outcomes, we may also identify the level
of any student. Various measurement and evalua-
tion studies are thus incorporated to determine the
level of individual learning outcomes.

Exam evaluation is critical for determining
how well students understand the course material.
Therefore, the objectivity and scientific relevance
of the questions developed for exams must be ques-
tioned in order to guarantee that students’ learning
outcomes are tracked and judged effectively. One
of the relevant scientific techniques for analyzing
this is the Bloom’s Taxonomy (Anderson et al.,
2000), which is well-known among the educators
around the world. The examinations should take
account of the difficulty levels, which correspond
to the basic objectives and course outcomes in con-
ventional ways like the Bloom’s taxonomy.

Dr. Benjamin Bloom, an Educational Psycholo-
gist, developed the Bloom’s Taxonomy in 1965. Its
goal was to encourage high-order thinking, such as
analyzing and examining instead of rote memoriza-
tion of information (Adesoji, 2018). The Bloom’s
taxonomy is divided into three categories: cogni-
tive (mental skills), affective (emotional areas or
attitude), and psychomotor (physical skills). Our
study focuses on the cognitive domain, which in-
volves knowledge and intellectual skill develop-
ment. Researchers have recently demonstrated a
growing interest in automatic assessment based on
cognitive domains in Bloom’s Taxonomy. (Abdul-
jabbar and Omar, 2015; Mohammed and Omar,
2018; Yahya, 2019). The majority of previous re-
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search focused on question classification from a
specific domain, while Bloom’s taxonomy across
the multi-domain region is lacking ways for clas-
sifying questions (Sangodiah et al., 2017). This
work therefore seeks to establish a question clas-
sification method based on the cognitive domain
of Bloom’s taxonomy. The Hierarchical order of
levels in cognitive domain is: Knowledge, Com-
prehension, Application, Analysis, Synthesis and
Evaluation. The first three levels are categorised as
lower level of thinking, whilst the latter three levels
are considered as high level of thinking.

The primary aim of this study is to assess the util-
ity and efficacy of Bloom’s Taxonomy as a frame-
work for establishing course learning outcomes, op-
timizing curriculum, and evaluating various educa-
tional programs. In this paper, we propose Bloom-
Net, a novel transformer-based model that incorpo-
rates both linguistic and semantic information for
the classification of bloom’s course learning out-
comes. We also examine the generalisation capabil-
ity of BloomNet on new distributions because train
and test distributions are usually not distributed
identically. The evaluation datasets rarely represent
the entire distribution and the test distribution often
drifts over time (Quionero-Candela et al., 2009),
resulting in train-test discrepancies. Due to these
discrepancies, models can face unexpected condi-
tions at the test time. Therefore, models should be
able to detect and generalise to out-of-distribution
(OOD) examples.

In most NLP evaluations, the train and test
samples are assumed to be independent and iden-
tically distributed (IID). Large pretrained trans-
former models can achieve high performance on
a variety of tasks in the IID scenario (Wang et al.,
2018). However, high IID accuracy does not al-
ways imply OOD robustness. Furthermore, be-
cause pretrained Transformers rely largely on false
cues and annotation artifacts (Gururangan et al.,
2018; Cai et al., 2017) that OOD instances are less
likely to feature, their OOD robustness is unknown.
Hence, we examine the robustness of BloomNet
and other experimented models such as CNNs,
LSTMs, pretrained transformers, and more.

The contributions of our research can be summa-
rized as follows:

1. We propose a transformer-based model,
BloomNet, that can distinguish between six
different cognitive levels of Bloom’s taxon-
omy (Knowledge, Comprehension, Applica-

tion, Analysis, Synthesis and Evaluation).

2. We implement, train and evaluate multiple
models to perform comparative analysis.

3. We evaluate experimented models for OOD
generalization and we observe that pretrained
transformers (RoBERTa, DistilRoBERTa (Liu
et al., 2019; Sanh et al., 2019)) along with
proposed model have better generalization ca-
pability compared to other models.

4. We perform ablation study to asses the con-
tribution of various components in proposed
model.

The following is the final exhibition. Section
2 and Section 3 describes the previous work and
methodology respectively. Section 4 delves into
the experiments and results. The conclusion and
possible future directions are discussed in Section
5.

2 Related Work

Text classification is an important NLP research
area with numerous applications. A number of
scholars have concentrated on automatic text clas-
sification. In recent years, classification of exam
questions for the cognitive domain of Bloom’s tax-
onomy has received a lot of attention. Previous
works have used different features and methods
for text classification. Some of these works are
discussed in this section.

In (Chang and Chung, 2009), an online exam-
ination system is created that supports automatic
Bloom’s taxonomy analysis for the test questions.
The researchers introduce fourteen keywords for
the analysis on questions. Each keyword is associ-
ated with a specific cognition level. The experiment
is conducted on 288 test items and a 75% accuracy
is achieved for the "Knowledge" cognition level.

A. Swart and M. Daneti (Swart and Daneti,
2019) analyzed the learning outcomes for Elec-
tronic fundamental module (of two universities) us-
ing Bloom’s Taxonomy. To identify the proportion
of each cognition level, the verbs of each learning
outcome are connected to certain specific verbs
in Bloom’s taxonomy. This reflected the balance
between theory and practice for the cognitive de-
velopment of electrical engineering students. The
consistency of the findings of the two universities
demonstrated that students could blend theory and



practice because they had around 40 percent of
higher level cognitive outcomes.

Likewise, (Mohammed and Omar, 2020) classi-
fied exam questions for the cognitive domain of
Bloom’s Taxonomy using TFPOS-IDF and pre-
trained word2vec. To classify the questions, the
extracted features are fed to three distinct classi-
fiers i.e. logistic regression, K-nearest neighbour,
and Support Vector Machine. For the experiment,
they employ two datasets, one with 141 questions
and the other with 600 questions. The first dataset
results in a weighted average of 71.1%, 82.3% and
83.7% while the second achieves a weighted aver-
age of 85.4%, 89.4% and 89.7%.

Adidah Lajis et al. proposed (Lajis et al., 2018)
a framework for assessing students’ programming
skills. Bloom’s taxonomy cognitive domain serves
as the foundation for the framework. According
to the findings, Bloom’s taxonomy could be used
as a basis for grading students. It said that the stu-
dents would be judged based on their ability using
Bloom’s taxonomy. The authors also suggested
that taxonomy be used as an evaluation framework
rather than learning.

Based on their domain knowledge, teachers
and accreditation organizations manually classify
course learning outcomes (CLOs) and questions on
distinct levels of cognitive domain. This is time-
consuming and usually leads in errors due to human
bias. As a result, this technique must be automated.
Several scholars have sought to automate this pro-
cess through the use of natural language processing
and machine learning techniques (Haris and Omar,
2012; Jayakodi et al., 2015; Osadi et al., 2017;
Kowsari et al., 2019). Deep learning has recently
exhibited impressive results when compared to tra-
ditional machine learning methods, particularly in
the field of text classification (Minaee et al., 2020).

For text classification tasks, several neural mod-
els that automatically represent text as embedding
have been developed, such as CNNs, RNNs, graph
neural networks, and a variety of attention mod-
els such as hierarchical attention networks, self-
attention networks, and so on. The majority of
previous efforts on Bloom’s taxonomy have either
used traditional machine learning approaches or
representative deep neural models such as RNNs,
LSTMs, and so on. In this research, we propose
a transformer-based approach for performing text
classification as per cognitive domains. Transform-
ers, (Vaswani et al., 2017) provide significantly

better parallelization than RNNs, allowing for effi-
cient (pre-)training of very large language models
and an enhanced performance rate.

3 Methodology

In this section we discuss the methodology part of
our research. Our model is inspired by (Gupta et al.,
2021) and (Yang et al., 2016b). In BloomNet , we
encapsulate the linguistic information along with
generic input representation and we also explicitly
model word level attention. In following sections
we describe each component of our model (shown
in Figure 1) in detail.
Notation: We denote current input as set of to-
kens x ∈ X = {t0, t1, t2, ...tn} where n is the
number of tokens in input. We define a model as
fmodel : x −→ h where h ∈ Rd. We define our
final classfieir as fc : x −→ C where C is the
softmax output and its size is equal to number of
classes in our data.

3.1 Representation Model

Representation model or language encoder is main
component of BloomNet which gives contextual-
ized embeddings (Devlin et al., 2019; Pennington
et al., 2014) for the text input. and for this we
use pretrained RoBERTa (Liu et al., 2019) model
from huggingface model hub repository (Wolf et al.,
2020). The reason we use RoBERTa instead of its
other widely used counterparts such as BERT (De-
vlin et al., 2019), DistilBERT (Sanh et al., 2019) is
that it has seen much more data during its pretrain-
ing compare to its predecessor which results in in-
creased robustness for subpopulation as well distri-
bution shift. We feed tokenized input to RoBERTa
model and we use CLS token as input representa-
tion. It can be represented as :

hrep = frep(x) (1)

3.2 Linguistic Encapsulation

Work by (Gupta et al., 2021) shows that explicit en-
capsulation of linguistic information increases the
performance of the model for claim detection task,
inspired by the same we also explicitly encapsulate
linguistic information in modelling of BloomNet.
We use POS (Part-Of-Speech) and NER (Named
Entity Recognition) information coming from a
trained model for POS and NER tasks respectively.
We freeze the POS and NER model during train-
ing so that it’s weights do not change and hence it
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Figure 1: A high level architectrue digram of the proposed model BloomNet . POS (Part of Speech
Module. NER(Named Entity Recognition) Module. HWA (Hierarchical Word Attention) Module. LE

(Linguistic Encapsulation).

carries linguistic information. We use CLS token
representation of the model and we define it as as
follows:

hPOS = fPOS(x) (2)

hNER = fNER(x) (3)

3.3 Hierarchical Word Attention and
Classification

Inspired by (Yang et al., 2016b) we use word level
attention to get the better dense representation of
the input. For this we use GRU Cho et al. (2014)
and apply word level attention on its output. As
result we get a vector from this module as input
representation and we use this along with other
information for classification. We denote this as
follows :

hHWA = fHWA(x) (4)

Finally, we get four different representation com-
ing from different components and we fuse these
information using concatenation and feed this to a
linear classification model. We write the concate-
nation as:

H = hRep ⊕ hPOS ⊕ hNER ⊕ hHWA (5)

Classification module can be represented as:

C = fc(H) (6)

4 Experiments and Results

4.1 Dataset

We use two open domain datasets to evaluate the
proposed approach. First dataset was proposed in
(Yahya et al., 2012) which comprises 600 open-
ended questions. The second dataset was compiled
from a variety of websites, publications, and previ-
ous research (Haris and Omar, 2015). It contains
141 open-ended questions. The datasets are anno-
tated and classified into six categories (Knowledge,
Comprehension, Application, Analysis, Synthesis,
and Evaluation). Table 1 illustrates the label dis-
tribution for both datasets. The questions in these
two datasets come from a variety of fields of study,
including chemical, literature, biological, artistic,
and computer science, among others.

4.2 Baselines

In this section, we describe the various baseline
models that we used for comparative analysis.
These models are arranged in the order of their
performance.

4.2.1 VDCNN
Very Deep CNN (VDCNN) (Schwenk et al., 2017)
learns a hierarchical representation of a sentence
with the help of a deep stack of convolutions and
max-pooling of size 3 and by operating at the char-



Cognitive Level Dataset 1 Dataset 2

Knowledge Level 100 26

Comprehension Level 100 23

Application Level 100 15

Analysis Level 100 23

Synthesis Level 100 30

Evaluation Level 100 24

Total 600 141

Table 1: Number of questions in each cognitive level

acter level representation of the text. VDCNNs are
substantially deeper than convolutional neural net-
works published previously. This is the first CNN
model to present the "advantage of depth" in the
field of NLP.

4.2.2 LSTM
Text is viewed as a sequence of words in RNN-
based models, which are designed to capture word
dependencies and text structures for text classifica-
tion. RNNs (Jain and Medsker, 1999) can mem-
orise the local structure of a word sequence, but
they struggle with long-range dependencies. Long-
Short Term Memory (LSTM) (Sari et al., 2020)
is the most popular variant of RNN, that is cre-
ated to capture long term dependencies. Vanilla
RNNs suffer from gradient vanishing problem and
LSTMs resolve this issue by using a memory cell
that remember values across arbitrary time periods.

4.2.3 HAN
Hierarchical Attention Networks (HAN) (Yang
et al., 2016a) collects relevant tokens from sen-
tences and aggregate their representation with the
help of an attention mechanism. The same ap-
proach is used to retrieve relevant sentence vectors
that is used in the classification task.

4.2.4 CNN
RNNs are taught to detect patterns over time, while
CNNs (Kim, 2014) are taught to recognise patterns
over space. RNNs work for NLP tasks like POS tag-
ging or QA that need understanding of long-range
semantics, but CNNs are good for recognising local
and position-invariant patterns (LeCun et al., 1998).

These patterns could be key phrases expressing a
specific emotion or a topic. As a result, CNNs have
become one of the most common text classification
model.

4.2.5 RCNN
In contrast to CNN, Recurrent CNN (Girshick et al.,
2014) comprises of bi-directional recurrent struc-
ture that captures greater contextual data from word
representations. This is followed by a max pool-
ing layer which is responsible for extracting key
features for text classification.

4.2.6 Seq2Seq-Attention
Deep learning models known as sequence-to-
sequence (Bahdanau et al., 2015) models have been
deployed in tasks such as machine translation, text
summarization, and image captioning. Seq2Seq
comprises of encoder, decoder and attention layer
where encoder is responsible for compiling data in
the form of vector. Further this context is parsed to
the decoder that produces desired output sequence.
The primary idea behind the attention mechanism is
to avoid learning a single vector representation for
each sentence and instead be attentive to specific
input vectors based on the attention weights.

4.2.7 Self-Attention
Self-attention is a type of attention that allows
us to learn the relationship between words in a
sentence. Various NLP tasks and Transformers
(Vaswani et al., 2017) use self-attention. Despite
the fact that CNNs are less sequential than RNNs,
the computing cost of capturing relationships be-
tween words in a phrase increases with the length
of the sentence, much like RNNs. Transformers
get around this constraint by using self-attention
to compute a "attention score" for each word in
a sentence or document in parallel, modelling the
influence each word has on the others.

4.2.8 TF-IDF Random Forest
Random Forest (RF) models (Xue and Li, 2015) are
made up of a collection of decision trees that were
trained on random feature subsets. This model’s
predictions are obtained via a majority vote of
all forest tree projections. In addition, RF clas-
sifiers are simple to apply to text classification of
high-dimensional noisy data. Furthermore, TF-IDF
(Term Frequency Inverse Document Frequency)
(Sammut and Webb, 2010) is a commonly used ap-
proach for converting text to a number representa-
tion that may be employed by a machine algorithm.



TfidfVectorizer weights word counts based on how
frequently they appear in the sentence.

4.2.9 DistilRoBERTa

DistilRoBERTa has been distilled from RoBERTa-
base model (Liu et al., 2019; Sanh et al., 2019)
that contains around half number of parameters
as BERT model. It is based on same training
process as that of DistilBERT. Moreover, Distil-
RoBERTa maintains 95 percent of BERT’s per-
formance on the GLUE language understanding
benchmark (Wang et al., 2018).

4.2.10 RoBERTa

RoBERTa (Robustly Optimized BERT Pretraining
Accuracy) model (Liu et al., 2019) is a more robust
version of BERT that is trained with a lot more data.
It is based on fine-tuning the hyper-parameters
that has improved the results and performance of
the model significantly. To boost performance of
BERT, RoBERTa also modified its training proce-
dure and architecture. These modifications include
removing next sentence prediction and dynamically
changing the masking pattern during pre-training.

4.3 Experimental Setup

We use HuggingFace Transformers (Wolf et al.,
2020), PyTorch (Paszke et al., 2019), PyTorch-
Lightning (Falcon, 2019) and Scikit-learn (Pe-
dregosa et al., 2011) for model implementation,
training and evaluation. We train all of the
models with KFold (k=5) cross validation and
report mean and std values across the folds.
We observe that the text in the dataset is rela-
tively short, thus we use maximum sequence
lengths = 128. For LSTM-like models, we
employ hidden size = 768, number of
layers = 4, and dropout = 0.10 through-
out the experiments. We use Adam (Kingma and
Ba, 2015) as the optimizer and cross-entropy
as the objective function. We use different
learning rates for different models depend-
ing on how they are initialized, and for BloomNet
we use learning rate = 2e-5 and train all
models for 50 epochs with batch size =
32 and early stopping to prevent overfitting.
We do not change the shared hyper-parameters
across the models so that the comparison is as fair
as possible. We do not conduct comprehensive
hyper-parameter searches due to computational
constraints.

4.4 Results

We evaluate following baselines to compare the
performance of our proposed model, BloomNet:
VDCNN (Schwenk et al., 2017), LSTM (Sari et al.,
2020), HAN(Yang et al., 2016a), CNN(Kim, 2014),
RCNN (Girshick et al., 2014), Seq2Seq-Attention
(Bahdanau et al., 2015), Self-Attention (Vaswani
et al., 2017), Random Forest (Xue and Li, 2015),
DistilRoBERTa (Liu et al., 2019), and RoBERTa
(Liu et al., 2019). We find that BloomNet out-
performs all the considered baselines on the two
datasets, demonstrating its higher performance for
text classification. Table 2 reports the performance
of BloomNet and all the baselines.

The model is trained on Dataset1 and evaluated
for both the datasets. Dataset1 is used for evaluat-
ing BloomNet’s IID performance while Dataset2 is
used to test BloomNet’s generalisation capabilities
(OOD performance) by assessing it on new distribu-
tions that our model does not encounter during the
training process. We observe that in comparison to
the baseline models, BloomNet is less vulnerable
to distribution shift.

4.4.1 Comparative Analysis
As seen in Table 2 BloomNet outperforms the
baseline models and achieves 87.50± 1.88 and
70.40± 2.52 and Macro-F1 score 87.23± 2.47
and 67.10± 2.43 on Dataset1(IID) and
Dataset2(OOD) respectively.

In addition, we also made some very in-
depth observations while evaluating the base-
lines. Surprisingly, the TF-IDF (Sammut and
Webb, 2010) encoded text with random for-
est performs better than several strong base-
lines like LSTM, HAN, CNN, and RCNN. It
is the third best performing baseline model that
achieves 70.66± 2.52 and 62.12± 1.38 accuracy
and Macro-F1 70.50± 2.75 and 58.04± 1.73 on
Dataset1(IID) and Dataset2(OOD) respectively.

We also observe that Attention based models
like Seq2Seq-Attention and Self-Attention show
better classification performance than vanilla mod-

1Very Deep Convolutional Networks for Text Classifica-
tion(VDCNN)

2Long Short-Term Memory (LSTM)
3Hierarchical Attention Networks (HAN)
4Convolutional Neural Network (CNN)
5Recurrent Convolutional Neural Network (RCNN)
6Sequential to Sequential Model with Attention
7Term Frequency - Inverse Document Frequency(TF-IDF)
8Distilled from RoBERTa model
9Robustly Optimized BERT Pre-training Approach



Model Dataset1 (IID) Dataset2(OOD)
ov Accuracy Macro-F1 Accuracy Macro-F1

VDCNN1 32.00± 6.78 31.70± 6.71 28.79± 3.82 26.54± 4.12
LSTM2 58.50± 3.99 59.27± 3.55 47.09± 4.05 45.47± 2.71
HAN3 59.64± 3.72 58.90± 4.16 54.69± 3.39 50.61± 3.12
CNN4 60.67± 1.11 60.57± 1.36 49.79± 2.17 48.17± 2.00

RCNN5 66.33± 3.01 65.90± 3.51 54.04± 3.57 51.05± 3.09
Seq2Seq-Attention6 64.00± 3.09 63.79± 3.50 52.91± 2.22 50.92± 2.11

Self-Attention 70.17± 3.55 69.92± 3.80 55.46± 2.07 52.75± 1.81
Random Forest TF-IDF7 70.66± 2.52 70.50± 2.75 62.12± 1.38 58.04± 1.73

DistilRoBERTa8 80.50± 3.23 80.21± 3.49 67.80± 1.59 63.94± 1.48
RoBERTa9 82.00± 2.01 81.67± 2.20 68.65± 2.74 65.65± 2.82

BloomNet 87.50± 1.88 87.23± 2.47 70.40± 2.52 67.10± 2.43

Table 2: Mean and Standard deviation of the results obtained over 5 folds. BloomNet performs significantly better
(p < 0.004) than the RoBERTa. Bold shows best performance. All models are trained and evaluated on Dataset1
hence IID, and OOD evaluation is performed on Dataset2.

els (like VDCNN, CNN, LSTM, and RCNN).
Further, we investigate BERT-based models
DistilRoBERTa and RoBERTa (which are pre-
trained Transformers) that achieve superior per-
formanc over all the other considered baselines.
RoBERTa is the best performing model with
accuracy of 82.00± 2.01 and 68.65± 2.74 and
Macro-F1 score 81.67± 2.20 and 65.65± 2.82 on
Dataset1(IID) and Dataset2(OOD) respectively.

4.4.2 Out-of-distribution Generalisation
We evaluate models on new data which is not seen
during training to evaluate the OOD robustness.
We observe that OOD and IID performance is lin-
early correlated. The models that do not perform
well on IID data such as VDCNN, LSTM, etc also
perform poor on OOD data. Pretrained transform-
ers have been proven robust to distribution shift
(Hendrycks et al., 2020; Ramesh Kashyap et al.,
2021) but in our case we notice significant perfor-
mance drop ( 20%) between IID and OOD data
across all the pretrained transformer based models
in our experiment which is same for other models
as well. We hypothesise that this might be caused
by large discrepancy between IID and OOD data.

4.5 Ablation Study
Our proposed model BloomNet has three main
component: 1. Representation model or Language
Encoder 2. Linguistic Encapsulation Module and 3.
Hierarchical Word Attention Model. We conduct
an ablation study to assess the contribution of dif-
ferent components in our model. First we remove

Component Accuracy Macro-F1

RoBERTa 82.00 81.67
+ WA 84.11 84.10

+ POS-NER 84.64 84.48
+ WA + POS-NER 87.50 87.23

Table 3: Ablation results for BloomNet . Mean of IID
Accuracy and Macro-F1 is reported. Linguistic Encap-
sulation along with Word level attention yields signifi-
cantly better (p <0.004) results. WA: Word Attention.
POS: Part-of-speech. NER: Named-Entity Recogni-
tion.

the word attention module from BloomNet and
train it like other models with same configuration.
We observe the BloomNet without word attention
yields ≈ 84 and ≈ 65 accuracy for IID and OOD
data respectively. Then we remove the linguistic
encapsulation block and train the model like previ-
ously. BloomNet without linguistic encapsulation
yeilds similar IID performance (≈ 84 accuracy)
but performs better on OOD data. If we remove the
both components word attention as well as linguis-
tic encapsulation BloomNet is same as RoBERTa
(Liu et al., 2019) baseline. The result of ablation is
stated in the table 3.

5 Discussion

Limitations: We propose a novel transformer
based model named BloomNet which has three
language encoder (we use RoBERTa), two for
linguistic encoding named as POS Encoder and



NER Encoder, and one generic encoder. Due to
three large transformer based language encoder
proposed model is compute and memory heavy
hence it becomes very cumbersome to deploy
it in production. To asses the generalization
capability of models we evaluate them on a
different distribution which they do not see during
training. We do not quantify the shift between
IID and OOD and we restrict ourselves to only
evaluation as investing the cause of performance
drop on OOD data is beyond scope of this study.
The datasets used in our work is relatively small
having 600 and 141 samples respectively in both
Dataset1 and Dataset2. Although we do cross
validation and report mean and standard-deviation
but we expect change in performance on bigger
dataset. For same reason we do not train models
on Dataset2.

Ethical Considerations: We are well aware
of the societal implication of deploying large
language models it could have unintended bias
against marginalized groups and model itself plays
significant role in amplifying those biases. We
do not see any immediate misuse of our work,
but more research in this area could lead to the
development of systems such as automated scoring,
which can have a disproportionately detrimental
impact on marginalized groups.

6 Conclusion and Future Work

We propose a novel transformer-based model,
BloomNet, that captures the linguistic and seman-
tic information to classify the course learning out-
comes according to the different cognitive domains
of Bloom’s Taxonomy. BloomNet outperforms
the considered baseline models analyzed in this
study in terms of performance and generalization
capability. Interestingly, we observe that care-
fully processed text with TF-IDF encoding out-
performs numerous strong baselines like CNN,
RNN, and attention based models. We also ob-
serve that pretrained Transformers generalize to
OOD examples surprisingly well. Overall, we
use a state-of-the-art Natural Language Process-
ing (NLP) model for a relatively new task, and we
believe it opens up new research directions for NLP
in the education domain. We believe that, similar
to previous domain-oriented NLP studies, such as
NLP4Health, NLP4Programming, LegalNLP, and
so on, NLP4Education has the potential to improve

existing systems for the mutual benefit of the com-
munity and society in general. This is a novel task
employing the state-of-the-art Natural Language
Processing(NLP) system into education which is
relatively new and we believe that it will open a
new direction for NLP research.
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