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Abstract

We propose a novel Chain Guided Retriever-
reader (CGR) framework to model the rea-
soning chain for multi-hop Science Question
Answering. Our framework is capable of
performing explainable reasoning without the
need of any corpus-specific annotations, such
as the ground-truth reasoning chain, or human-
annotated entity mentions. Specifically, we
first generate reasoning chains from a seman-
tic graph constructed by Abstract Meaning
Representation of retrieved evidence facts. A
Chain-aware loss, concerning both local and
global chain information, is also designed to
enable the generated chains to serve as distant
supervision signals for training the retriever,
where reinforcement learning is also adopted
to maximize the utility of the reasoning chains.
Our framework allows the retriever to cap-
ture step-by-step clues of the entire reasoning
process, which is not only shown to be ef-
fective on two challenging multi-hop Science
QA tasks, namely OpenBookQA and ARC-
Challenge, but also favors explainability.

1 Introduction

Question Answering (QA) with external knowl-
edge has gained increasing attention in recent years
as it mimics human behavior to first filter out rel-
evant knowledge from massive information. Prior
works usually employ a retriever-reader architec-
ture (Chen et al., 2017), where the retriever re-
trieves top-ranked evidence facts from a large cor-
pus and the reader conducts reasoning with these
facts. This architecture works well in single-hop
QA, where the answer can be easily inferred with
only one evidence fact. However, it is hard to re-
trieve all necessary evidence facts to confidently
answer a complex question requiring multi-hop rea-
soning (Shao et al., 2021). As shown in Figure 1,
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Q: What would be more likely to attract a magnet?
(A) a plastic zipper (B) flowing water 
(C) a soup spoon (D) A wooden desk 

Evidence Facts:
(𝔻𝔻) Korean chopsticks and spoon made of stainless steel.
(𝕀𝕀)  Objects made from Iron and steel are magnetic metals.
(𝔻𝔻) A magnet attracts magnetic metals through magnetism.

Figure 1: An example of multi-hop QA with direct (D)
and indirect (I) facts to form a reasoning chain.

multi-hop QA usually involves a sequential nature
of evidence facts to form a reasoning chain, includ-
ing (1) direct facts sharing a semantic relationship
with the question or the answer; (2) indirect facts
sharing little lexical or semantic overlap but serving
an irreplaceable role to infer the answer.

A common practice for forming such reasoning
chains for multi-hop QA is to expand the chain
with iterative retrieval (Xiong et al., 2021) or sam-
ple from an existing or pre-constructed Knowledge
Graph (KG) (Asai et al., 2020; Yasunaga et al.,
2021). On one hand, iterative retrieval allows the
retriever to capture the evidence-evidence interac-
tions by reformulating the query with newly re-
trieved evidence fact. However, the retriever would
inevitably retrieve partially related facts. Such
noise is continuously amplified during the itera-
tive retrieval process, raising concerns about the
quality of the reasoning chain. Prior works ad-
dress this issue by training the retriever against the
ground-truth reasoning chain (Yang et al., 2018;
Geva et al., 2021). However, such method is less
effective when the ground-truth reasoning chain is
partially provided (Mihaylov et al., 2018; Ferguson
et al., 2020) or not applicable when the ground-
truth chain is unavailable (Clark et al., 2018). On
the other hand, KG maintains a good growing di-
rection for the reasoning chain. But building a KG
usually involves corpus-specific annotations, such
as document-level hyperlinks or annotated entity
mentions. These limitations make it less applicable
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in new domains, where hyperlinks and entities are
not prevalent (Xiong et al., 2021).

To address the aforementioned concerns for
multi-hop QA, we propose a novel framework,
Chain Guided Retriever-reader (CGR), to model
the reasoning chains, which is compatible with-
out the ground-truth reasoning chain and applica-
ble to broader textual data. In specific, the pro-
posed framework consists of three components:
a retriever, a reasoning chain generator, and a
reader. The retriever first iteratively retrieves all
possible evidence facts. Then the reasoning chain
generator adopts Abstract Meaning Representation
(AMR) (Banarescu et al., 2013) to automatically
construct a semantic graph that represents the rela-
tionship among the retrieved facts. We use AMR
because it is not specifically designed for a particu-
lar domain and can be adapted to a wide range of
sentences (e.g. Science with little named entity).
The final generated reasoning chains are supposed
to connect the question nodes and the answer nodes
on the semantic graph, such that: (i) the gener-
ated reasoning chains serving as a byproduct of our
framework can support explainability. (ii) the evi-
dence facts on these chains provide a more appro-
priate context for the reader because they together
fill the knowledge gap between the question and
the answer. (iii) the reasoning chains can be used as
distant supervision signals to train the retriever in
case the ground-truth reasoning chain is not avail-
able. To achieve these merits, a novel chain-aware
loss is proposed to adaptively model the reasoning
chains in both supervised and distantly supervised
manners. The chain-aware loss not only adopts
Reinforcement learning (RL) (Williams, 1992) to
maximize the utility of the local information from
some certain chains based on the reward from the
reader, but also enables the retriever to retrieve
indirect evidence facts by considering the global
information from all the generated chains. The
contributions are summarized as follows:

• Our CGR framework provides a novel formu-
lation to model the reasoning chains, allowing
explainable reasoning without the need of any
corpus-specific annotations.

• A novel chain-aware loss exploiting both local
and global information of reasoning chains is
developed to train the retriever, such that the
retriever can adapt its retrieval policy to allow
high-quality reasoning chains to be generated.

• Experimental results show that CGR can generate
reasoning chains to support explainable reason-
ing and achieve a remarkable improvement on
OpenBookQA and ARC-Challenge.

2 Framework

Problem Definition In this work, we tackle the
multi-hop Science QA in the form of multi-choices,
where each question qi is associated with J answer
choices aij , j ∈ {1, 2, ..., J}. To answer the ques-
tion, one can refer to an external textual corpus
E for relevant evidence facts. However, since the
external corpus is not specifically designed for a
particular multi-hop QA task, it does not neces-
sarily contain the relevant evidence facts. Finally,
based on the information at hand, our goal is to
determine the correct answer.

Framework Overview As shown in Figure 2-
a, CGR consists of three components: (1) A re-
triever iteratively retrieves a evidence pool E =
{e1, e2, ...}1 for each question-answer pair (q, a)
from an external textual corpus E. (2) A reasoning
chain generator first constructs a semantic graph us-
ing the fact AMRs in E and then finds all complete
reasoning chains C = {c1, c2, ...} on the semantic
graph, where ci is a sequence of evidence facts. (3)
A reader computes the ranking score of each an-
swer choice, only given the facts Ê = {ê1, ê2, ...}
on these reasoning chains as the context. During
training time, in addition to the standard reader
loss, we propose a novel chain-aware loss that uses
C as distant supervision to train the retriever.

2.1 Retriever
Hypothesis Generation As shown in Figure 2-a,
we first generate a hypothesis h for each question-
answer pair (q, a) as the initial query for the re-
triever. Hypothesis generation is to convert a
question-answer pair into its declarative form. Such
conversion keeps all meaningful contents and main-
tains a good grammatical structure, which avoids
noisy retrieval and allows AMR parser to generate
high-quality AMR in Sec. 2.2. We use the rule-
based model of Demszky et al. (2018) to generate
the hypothesis. For unsolvable cases, we concate-
nate the question and the answer as the hypothesis.

Iterative Retrieval Taking into account the se-
quential nature of multi-hop QA, we formulate the
retrieval process in an iterative fashion, where the

1We omit the subscript ij for simplicity.
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Figure 2: Overall architecture of CGR. In the reasoning chain generator, the black dash lines indicate that we discard
the edges between question and answer nodes. The pink arrows indicate the generated reasoning chains.

𝑞𝑞11 ℯ11

ℯ12

t=1

⊕𝑞𝑞11

⊕ 𝑞𝑞22

⊕ 𝑞𝑞21

…

t=2 t=3

𝐸𝐸

𝑞𝑞21

𝑞𝑞22

ℯ21

ℯ22

ℯ23

ℯ24

𝑞𝑞31

𝑞𝑞32

ℯ31

ℯ32

ℯ33

ℯ34

…

Figure 3: Iterative retrieval process with beam size 2.

query is updated in each iteration, conditioned on
the information at hand. We adopt a similar dual-
encoder of DPR (Karpukhin et al., 2020). The re-
trieval process is accomplished by maximum inner-
product search (MIPS) between the query represen-
tation and the evidence representation:

σ(qt, e) = Eq(qt)
>Ee(e), e ∈ E (1)

where Eq and Ee are BERTBase (Devlin et al.,
2019) query encoder and evidence encoder respec-
tively. We take the representation at [CLS] as the
output text representation. qt is the reformulated
query in each iteration t. We concatenate the query
at current iteration with newly retrieved evidence
fact to construct the query for the next iteration:

qt = g(qt−1, et−1) = [qt−1; [SEP]; et−1] (2)

where g(·) is the reformulation process, [; ] is the
concatenation. The number of iterations is T . The
initial query q1 is the hypothesis generated above.

As shown in Figure 3, we introduce beam search
of size K to retrieve more relevant evidence facts
while avoiding the search space from expanding ex-
ponentially. After the iterative retrieval, we collect

evidence facts retrieved in all iterations to form a
large evidence pool E, which is used to build the
semantic graph as presented in Sec. 2.2.

2.2 Reasoning Chain Generator

As shown in Figure 2, our reasoning chain gener-
ator is a non-parameterized component that gen-
erates reasoning chains using the evidence pool.
It first relies on AMR to dynamically construct a
semantic graph to show the relationship among the
facts in the evidence pool, and then generates rea-
soning chains connecting both question and answer
nodes. These reasoning chains serving as a byprod-
uct of our framework can support explainability.

Semantic Graph Construction As depicted in
Figure 2-b, AMR nodes are high-level abstractions
of concepts conveyed in the corresponding sen-
tence, which capture more semantic information
than named entities and can be applied to different
domains of sentences. We leverage on the state-of-
the-art AMR parser (Cai and Lam, 2020) to gener-
ate AMRs G = {GH , G1, G2, ...} for the hypothe-
sis and its corresponding evidence pool, where GH ,
Gi are the AMR of the hypothesis and the ith fact
in the evidence pool. The construction procedures
are given as follows:
Nodes: We reuse most of the concepts found
in G as the nodes for our semantic graph
except for some over-general concepts (e.g.
(p/planet:name(n/name:op1"Earth")),
node n/name is an over-general concept). Fortu-
nately, such nodes always have non-node attribute
(e.g. Earth of n/name) that shows the specific
referent. Therefore, we replace concepts with their
attributes as the nodes in the semantic graph if
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applicable.
Inner-AMR Edges: We split the nodes of GH into
question nodes QH and answer nodes AH to repre-
sent the concepts conveyed in the question and the
answer respectively. As one question is provided
with J answer choices, where we can generate J
hypothesis AMRs accordingly for each question.
We take the shared nodes of J hypothesis AMRs
as QH , while the remaining as AH :

QHij = ∩Jj=1{v|v ∈ GHij}, AHij = {v|v ∈ GHij , v /∈ QHij}
(3)

We preserve the edges in GH as edges in our se-
mantic graph except for the edges between QH and
AH to guarantee the reasoning chains are spotted
outside GH . All edges in Gi are preserved.
Inter-AMR Edges: We add an edge between nodes
of the same concept, except the root of any AMR,
because these roots are mostly verbs, which may
create unwanted shortcuts (e.g. have-03 in Fig-
ure 2-b). Duplicate nodes will be unified into one
node, and all edges connecting those duplicate
nodes are redirected to the unified node.

Reasoning Chain Generation As shown in Fig-
ure 2-a, a reasoning chain is a sequence of evidence
facts that logically connect the question with the
answer, while our constructed semantic graph con-
sists of nodes in the form of AMR concepts. To
tackle the mismatch, we preserve the source of
each concept to show which evidence fact it comes
from. During generation, we first apply depth first
search on our constructed semantic graph to find
all completed paths that start from one of the ques-
tion nodes, pass multiple nodes outside GH , and
end at one of the answer nodes. We then map the
nodes to their source evidence facts and thus form
evidence-level reasoning chains C. We find the
evidence-level reasoning chain is effective enough
to capture the relationships among evidence facts
and leave a more fine-grained concept-level graph
in future work.

2.3 Reader

Existing works (Chen et al., 2017) typically pack-
age all the top-retrieved facts as the context for each
question-answer pair, while we use the evidence
facts Ê only on the generated reasoning chains.

Ê = ∪li=1{e|e ∈ ci} (4)

We concatenate the question, the answer and all
the evidence facts in Ê as the reader input, where

[CLS] is inserted at the beginning of the sequence,
and [SEP] are separators among the three texts.
The output [CLS] representation is fed into a clas-
sification layer, which is a linear transformation for
computing the score for each question-answer pair.

2.4 Chain-Aware Loss

2.4.1 Reasoning Chain Modeling
Similar to our iterative retrieval, we model the rea-
soning chain in an iterative fashion. The probability
of generating one reasoning chain c = {et}lt=1 is:

p(c|h) =

l∏
t=1

exp(σ(qt, et))

exp(σ(qt, et)) +
∑
e∈B−t

exp(σ(qt, e))
(5)

where Bt denotes all evidence facts at the t-th itera-
tion and B−

t = Bt\et denotes the in-batch negative
examples for et, qt is the reformulated query at the
t-th iteration from Eq. (2) with q1 = h.

Based on this modeling, we propose a novel
chain-aware loss to train our retriever, which en-
ables both supervised training with a ground-
truth reasoning chain as well as distantly super-
vised training with generated reasoning chains.

2.4.2 Supervised Training
Some datasets (Mihaylov et al., 2018; Khot et al.,
2020) annotate or partially annotate the ground-
truth reasoning chain, which is a good supervision
to train the retriever. We take the ground-truth
reasoning chain as one part of our chain-aware loss
if the dataset provided. Specifically, let c+ be an
ordered ground-truth reasoning chain and h+ be the
generated hypothesis corresponding to the correct
answer a+. The supervised chain loss is defined as:

LS = −log p(c+|h+) (6)

2.4.3 Distantly Supervised Training
The ground-truth reasoning chain is quite corpus-
dependent and expensive to obtain, which is not
applicable in many multi-hop QA tasks (Clark et al.,
2018). To handle this, we leverage the generated
reasoning chains from Sec. 2.2 as weak supervision
signals to facilitate the distantly supervised training
of the retriever. Since there are likely multiple
generated reasoning chains for the same hypothesis,
we elaborate two losses, namely Local Chain Loss
and Global Chain Loss, to model the local chain
information (in a certain reasoning chain) and the
global chain information (across all the reasoning
chains), respectively.



1147

Local Chain Loss (MLE) The local chain in-
formation is modeled in a bidirectional sequence
manner that maximizes the likelihood (MLE) be-
tween the current evidence fact with all previous
evidence facts in the reasoning chain. Specifically,
we sample up to N chains {ĉi}N from the gener-
ated reasoning chains C corresponding to h+. The
forward part of MLE loss is defined by traversing
each ĉi forwardly:

−−→
Lmle = − 1

N

∑N

i=1
log p(

−→
ĉi |h+) (7)

Sometimes, it may be difficult to retrieve multi-
hop evidence facts from a forward direction when
the question is rather confusing. Similarly, we
define the backward loss

←−−
Lmle that traverses each

ĉi in a reversed order. Then the MLE loss is:

Lmle =
−−→
Lmle +

←−−
Lmle (8)

Local Chain Loss (RL) Despite the independent
training of the retriever and the reader, the reader
is supposed to benefit from good reasoning chains.
To bridge such gap, we pass the information of
how the reasoning chains affect the reader perfor-
mance to the retriever via Reinforcement Learning
(RL) (Williams, 1992), such that the retriever can
adapt its retrieval policy accordingly and thus al-
low high-quality reasoning chains to be generated.
Specifically, given the question-answer pair as well
as the corresponding reasoning chains, the action
follows the same reasoning chains sampled above.
The policy defines the probability of bidirectionally
generating those reasoning chains using Eqn. 5 and
the reward defines the correctness of the reader
prediction. We use the following RL loss to update
the parameters of the retriever via policy gradient:

Lrl =− 1

N

∑N

i=1
[r(â, a+)− r̄]·

[log p(
−→
ĉi |h+) + log p(

←−
ĉi |h+)]

(9)

where â is the predicted answer, r(·, ·) is the reward
implemented as the 0/1 indicator function. r̄ is the
average reward in a mini-batch as the bias term.

Finally, the local chain loss is the combination
of MLE and RL loss:

Llocal = Lmle + Lrl (10)

Global Chain Loss A reasoning chain usually
involves indirect facts that are only related to the
direct facts while share little semantic overlap with
the hypothesis. Such indirect facts are unlikely to

be retrieved if we fail to retrieve their correspond-
ing direct facts. To handle this, we compute a
global representation of reasoning chains by aver-
aging the representations of all evidence facts in
these chains and propose a global chain loss to
maximize the likelihood between the hypothesis
and the global chain information:

Lglobal = − log ψ(Ê,h+)

ψ(Ê,h+)+
∑

E∈B−
ψ(E,h+)

ψ(Ê, h+) = exp( 1

|Ê|

∑
e∈Ê σ(h+, e))

(11)

where we use the similar in-batch negative exam-
ples B− = B \ Ê to train the global chain loss as
well. B denotes the collection of all evidence facts
in current mini-batch and Ê is the set of evidence
facts selected by Eqn. 4 for the current hypothesis
h+.

2.5 Training & Inference
We use the supervised chain-aware loss LS and the
distantly supervised chain-aware loss LD = Llocal+
Lglobal to train the retriever and the standard Cross-
Entropy loss Lreader between the reader prediction
and the correct answer choice to train the reader.
The final training objective is:

L = Lreader + LS + LD (12)

During inference, each question-answer pair fol-
lows the same pipeline of our retriever, reasoning
chain generator, and reader to get its ranking score.
The top-ranked choice is chosen as the output.

3 Experimental Setup

Datasets: We evaluate the effectiveness of our
CGR framework on two multi-hop science QA
datasets: OpenBookQA (Mihaylov et al., 2018)
and ARC-Challenge (Clark et al., 2018), where
the ground-truth reasoning chain is either par-
tially provided or not provided. OpenBookQA
and ARC-Challenge provide their corresponding
leaderboards with train, develop and test sets pub-
licly available. Following AllenAI (2019), we
combine the training set of OpenBookQA (4957),
ARC-Easy (2251), ARC-Challenge (1119) and
RegLivEnv (665) as the final training set of ARC-
Challenge task. The data splits is shown in Table 1.
OpenBookQA annotates one evidence fact on the
ground-truth reasoning chain for each question-
answer pair, which is used in LS. ARC-Challenge
does not provide the ground-truth reasoning chain,
where LS is eliminated from the final training ob-
jective. The textual corpus is ARC Corpus (Clark
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Train Dev Test
OpenBookQA 4957 500 500

ARC-Challenge 8992 299 1172

Table 1: Number of instances in each dataset.

et al., 2018) for both two tasks, consisting of 14M
science facts. Moreover, OpenBookQA provides
an accompanying open-book with 1326 science
facts, which are highly related to the questions in
this dataset. Therefore, we performed an extra re-
trieval in the open-book in the first iteration.

Implementation: We use AristoRoBERTa (Al-
lenAI, 2019) as our reader and Sentence-
BERT (Reimers and Gurevych, 2019) as our re-
triever. As indicated by Lewis et al. (2020), train-
ing the evidence encoder Ee that requires periodic
updates of the evidence index is costly and does
little improvement to the performance. Therefore,
we fix the evidence encoder and cache all evidence
representations offline for efficiency purposes. We
set the beam size K to 10 and the total iteration
step T to 2, resulting in an average size of evidence
pool to be 78 and 53 for OpenBookQA and ARC-
Challenge respectively. We then select facts for the
reader with maximum evidence size of 15 and 20
respectively. The number of sampled chains N is
set to 1. 2 More details and analysis can be found
in Appendix A.1 and A.2.

Comparison Methods: For fair comparison, we
compare CGR with recently published methods
that use similar power of pretrained models, in-
cluding five textual knowledge based methods:
AristoRoBERTa (AllenAI, 2019), KF-SIR (Baner-
jee and Baral, 2020), FreeLB (Zhu et al., 2020),
DPR (Karpukhin et al., 2020), AMR-SG (Xu et al.,
2021) and another two methods leveraging on an
additional knowledge graph (Speer et al., 2017):
PG (Wang et al., 2020), and MHGRN (Feng et al.,
2020).

4 Results

4.1 QA Performance

OpenBookQA: Table 2 shows the comparison
results of OpenBookQA. Our CGR significantly im-
proves over the baseline AristoRoBERTa with 4.6
accuracy score. Meanwhile, CGR can also provide

2Our code is available at: https://github.com/
wwxu21/CGR

Methods Additional
KG

Output
Chains

Test Acc.

PG X X 81.8
AMR-SG × × 81.6
DPR × × 80.8
MHGRN X X 80.6
KF-SIR × × 80.0

AristoRoBERTa × × 77.8
+ CGR × X 82.4

Table 2: Test accuracy on OpenBookQA. Methods that
use additional KG or can output reasoning chains are
ticked respectively.

Methods Additional
KG

Output
Chains

Test Acc.

AMR-SG × × 68.94
FreeLB × × 67.75
arcRoberta ♠ × × 67.15
xlnet+Roberta ♠ × × 67.06

AristoRoBERTa × × 66.47
+ CGR × X 69.20

Table 3: Test accuracy on ARC-Challenge. ♠ are un-
published methods.

the reasoning chains as an additional output that re-
flect the step-by-step reasoning process to infer the
answer, making the QA process explainable. When
compared to recently published methods, we find
that CGR can also surpass methods leveraging on
additional KG. It suggests that textual knowledge
resource is still under-investigated, where the gap
between the query and indirect fact is one of the
issues that restricts the retriever performance for
multi-hop QA. UnifiedQA (Khashabi et al., 2020)
and T5 3B (Raffel et al., 2020) are two extremely
large models (with 30x more parameters than other
models), which are not fair for comparison.

ARC-Challenge: We implement CGR on an-
other task: ARC-Challenge, where the ground-
truth reasoning chain is not available. As shown
in Table 3, our CGR significantly improves the
baseline AristoRoBERTa with 2.73 accuracy score,
which demonstrates the effectiveness of CGR in
generating and modeling the reasoning chain in a
more general manner. Notably, CGR achieves a
new state-of-the-art performance in this challeng-
ing task in a computationally practicable setting.

Ablation Study: Table 4 shows our ablation
study on the composition of the training objectives
both in the presence or absence of the ground-truth
reasoning chain on OpenBookQA. We can observe

https://github.com/wwxu21/CGR
https://github.com/wwxu21/CGR


1149

Methods w/o LS w/ LS

CGR 79.70±0.33 81.70±0.49
- Lglobal 78.60±0.28 80.95±0.30
- Llocal (MLE) 79.10±0.30 80.55±0.52
- Llocal (RL) 78.70±0.36 80.80±0.22
- Llocal (Both) 78.40±0.37 81.05±0.30
- LD 78.20±0.37 80.55±0.38

Table 4: Ablation study on the composition of the train-
ing objectives on OpenBookQA. Accuracy (mean±
standard deviation) are computed over 4 runs.

IR Methods Acc. Dir. Ind. Com.

TF-IDF 52.4 3.72 0.38 0.46
Dense Vector 54.6 4.68 0.40 0.68
Iterative Retrieval 63.6 5.00 0.48 0.70
Chain Generator 60.2 5.24 0.96 0.74

Table 5: Automatic and Human Evaluations of the IR
performance on OpenBookQA.

the same performance trend under two scenarios.
First, we observe a degradation of QA performance
when removing Lglobal. As Lglobal provides a rough
idea of the reasoning chain, it reduces the difficulty
to retrieve indirect facts. Moreover, Lglobal is still
important even the ground-truth evidence chain is
present because it improves the generalization of
our framework to retrieve other reasoning chains
that can answer the question rather than overfitting
to the ground-truth reasoning chain. Second, dis-
carding Llocal also casts a negative impact on the
QA performance. Llocal, on the other hand, is a
fine-grained modeling of evidence-evidence inter-
actions. It is effective to distinguish the correct
answer because the incorrect ones would get a rela-
tively low probability to form the reasoning chain.
Third, discarding both global and local chain losses
results in more severe performance degradation,
which demonstrates the necessity of our modeling
for the reasoning chains both globally and locally.

4.2 Iterative Retriever Performance
As mentioned, one of our major contributions is
to form reasoning chains that capture both direct
and indirect evidence facts. To evaluate the quality
of the retrieved facts, we conduct both automatic
and human evaluations. As OpenBookQA provides
one ground-truth evidence fact, we use the retrieval
accuracy (Acc.) as our automatic evaluation. For
human evaluation, we evaluate the quality from
three aspects: (1) Directly-Related (Dir.): The ev-
idence is a direct fact and is useful to answer the
question. (2) Indirectly-Related (Ind.): The evi-
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Figure 4: Retriever accuracy on OpenBookQA. The
ground-truth evidence in the context of (1) the correct
answer choice; (2) any three incorrect answer choices.

dence is an indirect fact and is useful to answer the
question. (3) Completeness (Com.): All evidence
facts in Ê can together form a real reasoning chain
that completely fills the knowledge gap between
the question and the answer. We randomly sample
50 questions and evaluate the quality of evidence
facts corresponding to the correct answer choice,
where each fact contributes 1 score if it meets the
requirement of Dir. and Ind. (ranging from 0 to
15), and all evidence facts in Ê contribute 1 score
if they together meet Com. (ranging from 0 to 1).

As shown in Table 5, we conduct evaluations on
four Information Retrieval (IR) methods. Among
those IR methods, Dense Vector retriever is effec-
tive in finding direct facts than word-match based
retriever (TF-IDF) but faces the same limitation
in finding indirect facts. Iterative Retrieval can
remedy this to some extent, but it is a relatively
loose restriction, where the retrieved facts can be
biased to some particular facts. Surprisingly, our
Reasoning Chain Generator significantly improves
the recall of retrieving indirect facts with Ind. al-
most doubled. Though Reasoning Chain Generator
may hurt Acc., the improvements on both Dir. and
Ind. show that it can still find alternative facts from
the textual corpus to form the reasoning chain.

5 Discussions on Explainability

5.1 Effect of Chain Modeling

We plot the accuracy of the ground-truth evidence
fact retrieved either by the hypothesis correspond-
ing to the correct answer and the hypotheses corre-
sponding to incorrect answers in Figure 4. Firstly,
though the main purpose of Lglobal is to improve
the generalization ability of our framework, it can
also slightly reduce the retrieval accuracy for incor-
rect answers with little hurt to the correct answer.
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Figure 5: QA performance in terms of reasoning chain
length on OpenBookQA. TF-IDF and iterative retriever
only use retriever-reader architecture.

Secondly, Llocal significantly reduces the retrieval
accuracy for incorrect answers. It makes the in-
correct answers less deceptive and thus makes it
much easier for the reader to distinguish the cor-
rect answer, which is concise with the results in
Table 4. Thirdly, the combination of the two chain-
aware losses may affect the retriever performance
marginally, but in terms of overall QA performance,
they obviously bring benefits.

5.2 Scalability on Chain length
We plot the QA performance in terms of different
chain lengths on OpenBookQA in Figure 5. As
we may generate multiple reasoning chains with
different lengths for each question-answer pair, we
define the length of the reasoning chain for each
question as the most frequent length with respect
to the correct answer. Length of 0 indicates that
we cannot generate any reasoning chain for these
questions, because (1) some decisive evidence facts
are missing in our textual corpus, and (2) the per-
formance of the AMR parser also limits the upper
bound of our reasoning chain generator. Mean-
while, such cases are also difficult for TF-IDF and
iterative retriever, which should be highly consid-
ered in the future. Apart from this, we can observe
a comprehensive improvement of CGR in handling
multi-hop QA. Such improvement is much more ob-
vious when the chain length becomes larger, which
is commonly hard for reasoning. This demonstrates
the effectiveness of our explicit modeling for the
reasoning chain, especially when the question is
more complex.

5.3 Case Study on Reasoning
We show how our generated reasoning chain can
support explainable reasoning in Table 6. Iterative
retrieval can retrieve the first evidence fact as it

Question: A person wants to be able to have more nat-
ural power in their home. They choose to cease using a
traditional electric company to source this electricity, and
so decide to install (A) sun grafts (B) sunlight shields (C)
panels collecting sunlight (D) solar bees
Useful facts retrieved by iterative retrieval:
[1] A solar panel converts sunlight into electricity.
Additional facts from reasoning chain generator:
[2] Solar energy is a renewable resource.
[3] Such renewable resources are called, natural resources.
Reasoning Chain:
Question natural−03−−−−−−−→ [3] renew−01−−−−−→ [2] solar−−−→ [1]

panel−−−→ (C)

Table 6: Case study on OpenBookQA.

shares critical semantic information panel with
the choice C. However, it fails to retrieve the second
and the third evidence fact because (1) the second
one is an indirect fact sharing little semantic over-
lap with either the question or the answer choice,
and (2) the third one though serves as a direct fact,
it shows a relatively low similarity with the ques-
tion due to the massive information conveyed in the
question. On the other hand, our reasoning chain
is able to discover evidence facts that fail to be re-
trieved by an iterative retriever and form a reason-
ing chain with AMR concepts as anchors. As the
incorrect answers are not likely to form reasoning
chains, the evidence facts on the reasoning chains
are highly discriminative and can effectively sup-
port the reader to select the correct answer. More
cases can be found in Appendix A.3.

6 Related Work

Multi-hop QA: Multi-hop QA is a challenging
task as it requires gathering multiple evidence facts,
especially indirect facts, to form a reasoning chain.
Early attempts mostly rely on iterative retrieval.
For example,Yadav et al. (2019) extract evidence
facts in consideration of their relevance, overlap
and coverage. Banerjee et al. (2019); Yadav et al.
(2020) reformulate their queries with unused words
in the last iteration. However, these methods may
retrieve irrelevant facts as the query grow biased to
unimportant words. As some recent QA datasets
annotate the ground-truth reasoning chain (Yang
et al., 2018; Mihaylov et al., 2018), they enable
training supervised classifier to identify the correct
evidence facts (Nie et al., 2019; Tu et al., 2020). It
is a good step to control the quality of reasoning
chains, but still remains an issue when the ground-
truth reasoning chain is not available (Clark et al.,
2018). Other works explore the effectiveness of
KG by either automatically constructing the graph
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using named entity or semantic role labeling (Qiu
et al., 2019; Bosselut et al., 2019; Fang et al., 2020;
Chen et al., 2019) or resorting to existing KG (Sax-
ena et al., 2020; Zhang et al., 2020; Yasunaga et al.,
2021). Despite the high precision of those KGs,
they are known to suffer from sparsity in existing
KG (Zhao et al., 2020), where complex reasoning
chains are unlikely to be covered by the closed-
form relations in KG (Lei et al., 2020).

Dense-Vector Retriever: In contrast to term-
based retriever implemented with TF-IDF or
BM25 (Chen et al., 2017; Wang et al., 2018), dense-
vector retriever has received increasing attention
as it captures the semantic matching beyond sim-
ple word overlap and can be trained along with the
reader (Zhu et al., 2021). It has been reported to out-
perform term-based methods in many open-domain
QA tasks (Das et al., 2019; Karpukhin et al., 2020;
Min et al., 2021), including those on multi-hop
QA (Asai et al., 2020; Xiong et al., 2021).

AMR: AMR has been successfully coupled with
many natural language processing tasks in ex-
plicit reasoning, such as summarization (Liao
et al., 2018), event detection (Li et al., 2015), ma-
chine translation (Song et al., 2019), and sym-
bolic QA (Kapanipathi et al., 2020). Comparing
to named entity (Shao et al., 2020), we use AMR
as our graph annotation because it is not specifi-
cally designed for a particular domain and can be
adapted to a wide range of textual data.

7 Conclusion

We propose a novel Chain Guided Retriever-reader
framework for multi-hop QA. Our modeling for the
reasoning chains is effective to find both direct and
indirect facts and is less likely to introduce noise.
Moreover, our framework is corpus-independent
and is capable of handling the setting without any
ground-truth annotations. Further analysis and dis-
cussions also elucidate some of the inner workings
of our framework while maintaining the explain-
ability at the same time.
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A Appendix

A.1 Implementation
For OpenBookQA, we implement our CGR frame-
work only in the last fine-tuning process as indi-
cated in AllenAI (2019), where only OpenBookQA
dataset is used. The initial learning rate is 9e-6,
the batch size is 4 and the max sequence length
is 256. For ARC-Challenge, we implement our
CGR framework on the combination of all above
training sets. The initial learning rate, the batch
size and the max sequence length are 1e-5, 6, and
384 respectively. We use grid search to find optimal
hyper-parameters, where the learning rate is chosen
from {5e-6,8e-6,9e-6,1e-5,1.1e-5, 1.2e-5,1.5e-5},
the batch size is chosen from {4,6,8,12,16}, beam
size K is chosen from {5,10,15,20} and iteration
step T is chosen from {1,2,3}.

We introduce 110M parameters of our retriever
in addition to 355M of our reader. We run all ex-
periments on one TITAN RTX card, which takes
about 2 hour and 8 hours to complete the training
of OpenBookQA and ARC-Challenge respectively.

A.2 Effect of Beam size and Iteration Step
We vary two hyper-parameters K and T to show
their effects on OpenBookQA. As depicted in Fig-
ure 6, the model with T = 1 has a relatively lower
performance than the other two models because it
suffers from a low recall of relevant evidence facts,
which also explains why it benefits more from a
larger K. Moreover, model with T = 2 performs
better than model with T = 3. It indicates most of
the questions can be solved with a reasoning chain
of length 2, which is consistent with the construc-
tion of this dataset. In addition, models with T > 1
reaches the top at K = 10. This might be due to
more noisy retrievals in a larger evidence pool.
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Figure 6: Effect of hyper-parameter Beam size (K) and
Iteration Step (T ) on OpenBookQA.

A.3 Case Study
More case studies can be found in Table 7.
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(a) Case Study 1

Question: Which requires energy to move? (A) weasel (B)willow (C) mango
(D) poison ivy

Related Evidence Facts: [1] An animal requires energy to move.
[2] Predator is a animal.
[3] A weasels food chain is a predator.

Reasoning Chain: Question
energy−−−−→ [1] animal−−−−→ [2]

predator−−−−−→ [3] weasel−−−−→ (A)

(b) Case Study 2

Question: A positive effect of burning biofuel is (A) shortage of crops for the
food supply (B) an increase in air pollution (C) powering the lights
in a home (D) deforestation in the amazon to make room for crops

Related Evidence Facts: [1] Biofuel is used to produce electricity by burning.
[2] Some light bulbs convert electricity into light and heat energy.

Reasoning Chain: Question biofuel−−−−−→ [1]
electricity−−−−−−−→ [2]

light−−−→ (C)

(c) Case Study 3

Question: An example of conservation is avoiding the use of (A) gasoline (B)
air (C) snow (D) clothes

Related Evidence Facts: [1] An example of conservation is not using fossil fuel.
[2] Gasoline is a fuel mixture.

Reasoning Chain: Question conserve−01−−−−−−−−→ [1] fuel−−−→ [2]
gasoline−−−−−→ (A)

(d) Case Study 4

Question: They studied the soil by using (A) plants (B) a telescope (C) roots
(D) a microscope

Related Evidence Facts: [1] Studying a soil sample means studying the small microorganisms
in that soil.
[2] Magnifying makes seeing microorganisms easier through using
a microscope.

Reasoning Chain: Question soil−−−→ [1]
microorganism−−−−−−−−−→ [2]

microscope−−−−−−−→ (D)

(e) Case Study 5

Question: Birds carrying away fruit helps the tree (A) grow (B) fertilize (C)
reproduce (D) conquer

Related Evidence Facts: [1] Birds are a vehicle for spreading the seeds of a plant.
[2] Ex2: plants reproduce with seeds.

Reasoning Chain: Question bird−−−→ [1]
plant−−−→ [2]

reproduce−01−−−−−−−−−→ (C)

(f) Case Study 6

Question: The salamander could eat a large amounts of what? (A) fettuccine
(B) waxy leaves from certain plants (C) dead carcass meat from
livestock (D) six legged winged organisms

Related Evidence Facts: [1] A salamander eats insects.
[2] Insects have three parts to their bodies, wings, two feelers, and
six legs.

Reasoning Chain: Question salamander−−−−−−−→ [1] insect−−−−→ [2]
wing−−−→ (D)

Table 7: More case studies in addition to Table 6


