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Abstract

Task-adaptive pre-training (TAPT) and Self-
training (ST) have emerged as the major semi-
supervised approaches to improve natural lan-
guage understanding (NLU) tasks with mas-
sive amount of unlabeled data. However, it’s
unclear whether they learn similar representa-
tions or they can be effectively combined. In
this paper, we show that TAPT and ST can
be complementary with simple TFS protocol
by following TAPT → Finetuning → Self-
training (TFS) process. Experimental results
show that TFS protocol can effectively uti-
lize unlabeled data to achieve strong combined
gains consistently across six datasets cover-
ing sentiment classification, paraphrase iden-
tification, natural language inference, named
entity recognition and dialogue slot classifica-
tion. We investigate various semi-supervised
settings and consistently show that gains from
TAPT and ST can be strongly additive by fol-
lowing TFS procedure. We hope that TFS
could serve as an important semi-supervised
baseline for future NLP studies.

1 Introduction

Deep neural networks (Goodfellow et al., 2016)
often require large amounts of labeled data to
achieve state-of-the-art performance (Xie et al.,
2020). However, acquiring high-quality labels is
a costly process, which inspires research on meth-
ods that can effectively utilize unlabeled data to
improve performance (He et al., 2020). Large pre-
trained language models like BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019) and T5 (Raffel
et al., 2020) can learn general language understand-
ing abilities from large-scale unlabeled corpora and
have reduced this annotation cost. In this paradigm,
large neural networks are first pre-trained on mas-
sive amounts of unlabeled data in a self-supervised
manner and then finetuned on large amount of la-
beled data for downstream tasks, which has led
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to large improvements for natural language un-
derstanding on standard benchmarks (Wang et al.,
2019b,a). However, their success still relies on
large amount of data during finetuning stage. For
example, Wu et al. (2020) shows that BERT only
achieves 6.4% joint goal accuracy with 1% fine-
tuning data for dialogue state tracking task, a core
component of task-oriented dialogue systems, mak-
ing it far behind its full counterpart 45.6%. This
data-intensive finetuning poses several challenges
for many real-world applications, where collecting
large amount of labeled data is not only expensive
and time-consuming, but also infeasible in many
cases due to data access and privacy constraints
(Wang et al., 2021).

Semi-supervised learning (Thomas, 2009) pro-
vides a plausible solution to address aforemen-
tioned data hungry issue by making effective use
of freely available unlabeled data. One of the most
popular semi-supervised learning algorithms is self-
training (Scudder, 1965). In self-training, a teacher
model is first trained on available labeled data and
then used to generate pseudo labels for unlabeled
data. The original hand-annotated labeled data and
the pseudo-labeled data are combined to train a
student model. The student model is assigned as a
teacher model in next round and the teacher-student
training procedure is repeated until convergence or
reaching maximum rounds. Self-training utilizes
unlabeled data in a task-specific way during pseudo
labeling process (Chen et al., 2020b) and has been
successfully applied to a variety of tasks, including
image recognition (Xie et al., 2020; Zoph et al.,
2020), automatic speech recognition (Kahn et al.,
2020), text classification (Du et al., 2021; Mukher-
jee and Awadallah, 2020), sequence labeling (Wang
et al., 2021) and neural machine translation (He
et al., 2020).

Recently, task-adaptive pre-training (TAPT) (Gu-
rurangan et al., 2020) was further proposed, which
can adapt pre-trained language models, e.g. BERT
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and RoBERTa to unlabeled in-domain training set
to improve performance (Gururangan et al., 2020).
The intuition of TAPT is that datasets curated to
capture specific tasks of interest tend to cover only
a subset of the text available within the broader do-
main and continued pretraining on the task dataset
itself or data relevant to the task can be helpful
(Gururangan et al., 2020). TAPT tends to adapt
its linguistic representation by utilizing the un-
labeled data in a task-agnostic way (Chen et al.,
2020b). With the recent success of task-adaptive
pre-training and self-training in natural language
understanding (NLU), a research question arises:
Are task-adaptive pre-training (TAPT) and self-
training (ST) complementary for natural language
understanding (NLU)?

In this paper, we show that TAPT and ST can
be complementary with simple TFS protocol by
following TAPT → Finetuning → Self-training
process (TFS). TFS protocol follows three steps:
(1) TAPT on unlabeled corpus drawn from a task
(2) Standard supervised finetuning on labeled data
inheriting parameters from TAPT as initialization
to train a teacher model (3) Teacher model gener-
ates pseudo labels for the same unlabeled corpus in
(1) and trains a student model in a self-training
framework until convergence or reaching maxi-
mum rounds as shown in Figure 1. The first step
utilizes unlabeled corpus in a task-agnostic way to
learn general linguistic representations while the
third one utilizes unlabeled corpus in a task-specific
way during pseudo-labeling process. Therefore, un-
labeled data are utilized twice through two different
ways by taking advantages of TAPT and ST. TFS
can effectively utilize unlabeled data to achieve
strong combined gains of TAPT and ST consis-
tently across six datasets covering sentiment classi-
fication, paraphrase identification, natural language
inference, named entity recognition and dialogue
slot classification. We further investigate various
semi-supervised settings and consistently show that
gains from TAPT and ST can be strongly additive
by following TFS procedure.

2 Related Work

Pre-training. Unsupervised or self-supervised pre-
training have achieved remarkable successes in nat-
ural language processing (Devlin et al., 2019; Liu
et al., 2019; Radford et al., 2019; Raffel et al., 2020;
Brown et al., 2020). However, these models are
pre-trained on a very large general domain cor-

pus, e.g. Wikipedia, and may limit their perfor-
mance on a specific task due to distribution shift
(Lee et al., 2020; Wu et al., 2020; Gururangan
et al., 2020). To better handle aforementioned issue,
domain-adaptive pre-training (DAPT) by continu-
ing pre-training of existing language models, e.g.
BERT and RoBERTa, on a large corpus of unla-
beled domain-specific text data has been proposed
and achieved great successes in specific domains
(Gururangan et al., 2020; Lee et al., 2020; Wu et al.,
2020). Lee et al. (2020) proposed BioBERT by
continuing pre-training of BERT on biomedical
domain corpus and outperformed BERT in biomed-
ical text mining significantly. Following a sim-
ilar idea, Wu et al. (2020) proposed ToD-BERT
by continuing pre-training of BERT on nine dia-
logue datasets for NLU tasks in task-oriented di-
alogue systems and achieved great successes in
various few-shot NLU tasks in dialogue domain.
Gururangan et al. (2020) took one step further and
continued pre-training of language models on a
much smaller amount of unlabeled data but drawn
from the same distribution for a given task (TAPT),
which not only can achieve competitive results with
DAPT but also is complementary with it.

Self-training. Self-training as one of the earliest
and simplest semi-supervised learning has recently
shown state-of-the-art performance for tasks like
image classification (Xie et al., 2020; Sun et al.,
2019), object detection (Zoph et al., 2020) and
can perform at par with fully supervised models
while using much less training data. On natural
language processing, Mukherjee and Awadallah
(2020) applied self-training for few-shot text classi-
fication and incorporated uncertainty estimation
of the underlying neural network for unlabeled
data selection. Wang et al. (2021) improved self-
training with meta-learning by adaptive sample
re-weighting to mitigate error propagation from
noisy pseudo-labels for named entity recognition
and slot tagging in task-oriented dialog systems.
He et al. (2020) injected noise to the input space
as a noisy version of self-training for neural se-
quence generation and obtained state-of-the-art per-
formance for tasks like neural machine translation.
Du et al. (2021) utilized information retrieval to
retrieve task-specific in-domain data from a large
bank of web sentences for self-training. Beyond
these applications of self-training, Wei et al. (2021)
further theoretically proved that self-training and
input-consistency regularization will achieve high
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accuracy with respect to ground-truth labels under
certain assumptions.

There also exists works combing pre-training
with self-training. Chen et al. (2020b) first con-
ducted self-supervised pre-training with SimCLR
(Chen et al., 2020a) on ImageNet (Russakovsky
et al., 2015) in a task-agnostic way, then finetuned
pre-trained models on limited labeled data and fi-
nally did self-training/knowledge distillation (Hin-
ton et al., 2015) via the same unlabeled examples
as pre-training in a task-specific way. Such a frame-
work enables models to make use of data twice in
both pre-training and self-training/knowledge dis-
tillation stage. (Xu et al., 2020) followed this frame-
work on speech recognition and achieved state-of-
the-art performance only with very limited labeled
data. However, it’s unclear that language models
like BERT that have already been pre-trained in a
very large general corpus can benefit this frame-
work or not since Chen et al. (2020b) and Xu et al.
(2020) conducted pre-training from scratch. In ad-
dition, they only did self-training in one round,
making it unclear whether iterative self-training
without pre-training can achieve comparable re-
sults in the end. A recent work (Du et al., 2021)
did both continuing pre-training and self-training
in retrieved data from open domains but only ob-
serve gains for self-training while our work utilizes
existing in-domain unlabeled data and found that
both TAPT and self-training are effective.

3 Algorithms

3.1 Problem setup

Denote Dl = {xi, yi}N to be a set of N labeled
instances, where xi is a sequence of m tokens:
xi = {xi1, xi2, ..., xim} with yi being its label.
Also, consider Du = {xj}M to be a set of M
unlabeled instances drawn from the same distribu-
tion of {xi}N , where M � N . Assuming that
we can only access a small amount of labeled data
along with a much larger amount of unlabeled data,
our goal is to fully leverage unlabeled data Du to
improve model performance.

3.2 Task-adaptive Pre-training (TAPT)

One simple yet effective way to improve BERT-like
models with unlabeled data is task-adaptive pre-
training (TAPT). The approach of TAPT is quite
straightforward – simply continuing pre-training
BERT-like models with masked language modeling
(MLM) (Devlin et al., 2019) on unlabeled text data

for a given task (Gururangan et al., 2020).
Specifically, during MLM process, a proportion

of random sample of tokens in the input sequence
is selected and replaced with the special token
[MASK]. We conduct dynamical token masking
during batch training following (Liu et al., 2019;
Wu et al., 2020). The MLM loss function is the
cross entropy loss on predicting the masked tokens:

Lmlm = −
M∑
j=1

m∑
k=1

1 ∗ log( p(xjk)), (1)

where 1 is 1 if xjk is masked out in the input,
otherwise 0.

3.3 Self-training (ST)
Self-training begins with a teacher model pt trained
on the labeled data Dl. The teacher model is used
to generate pseudo labels for unlabeled data Du.
The augmented data Dl ∪Du is then used to train
a student model ps. Specifically, ∀xj ∈ Du, we
use teacher model to generate its soft label and
then student model is trained with standard cross-
entropy loss for labeled data and KL divergence for
unlabeled data, which can be formulated as:

Lst = −
∑

(xi,yi)∈Dl

log(yi|ps(xi))

−
∑
xj∈Du

KL(pt(xj)||ps(xj)),
(2)

where teacher model pt is fixed in the current round.
After training of student model with objective Lst,
it is assigned as a new teacher model in the next
round and the teacher-student training procedure is
repeated until convergence or reaching maximum
rounds.

3.4 TAPT→ Finetuning→ Self-training
(TFS)

Although TAPT has been proven effective to utilize
unlabeled data, it’s task-agnostic in the sense that
it’s unaware of specific tasks, e.g. classification
or name entity recognition. This paradigm learns
general linguistic representations buried under un-
labeled data, which are not directly tailored to a
specific task. Utilizing data in a task-agnostic may
lose the information of unlabeled data key to the
task at hand. On the contrary, self-training utilizes
unlabeled data in a task-specific way. Pseudo la-
bels are obtained through trained models and task-
specific information can be encoded into pseudo
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Figure 1: The overall pipeline of TFS. It has three steps (1) TAPT on unlabeled corpus drawn from a task (2)
Train a teacher model on labeled data with TAPT as initialization (3) Teacher generates pseudo labels from share
unlabeled corpus with (1) and trains a student model with both labeled and pseudo labeled data in an iterative
self-training framework.

labels. However, this method may be effective only
when a good fraction of the predictions on unla-
beled samples are correct (He et al., 2020), other-
wise early mistakes made by teacher model pt due
to scarcity of labeled data can reinforce itself by
generating incorrectly labeled data and re-training
with this data will lead to an even worse ps in the
next round (Zhu and Goldberg, 2009).

TFS protocol by following TAPT→ Finetuning
→ Self-training (TFS) process can take advantages
of TAPT and ST but at the same time avoid their
weakness. The overall pipeline of TFS is shown in
Figure 1. TFS first utilizes unlabeled data in a task-
agnostic way by TAPT to have a better initializa-
tion for finetuning in next step and then finetunes
a teacher model initializing its parameters from
TAPT on labeled data in a standard supervised way.
These two steps can build a better teacher model,
avoid early mistakes and generate more accurate

Algorithm 1 TFS Protocol
Input: Labeled corpus Dl, unlabeled corpus Du

and initialized model pθ
1: Update model pθ with TAPT on unlabeled cor-

pus Du by Equation 1
2: Train a teacher model pτ initialized with pθ by

finetuning on labeled corpus Dl

3: repeat
4: Apply pτ to the unlabeled corpus Du to

obtain D̂u := {(xj , pτ (xj))|∀xj ∈ Du}
5: Train a student model pτ on Dl ∪ D̂u by

Equation 2
6: Assign pτ as a teacher for the next round
7: until Convergence or maximum rounds are

reached

predictions for students, which is key to the success
of self-training. The unlabeled data is leveraged
again during self-training process in a task-specific
way to further boost the performance of models
at hand. We summarize the workflow of TFS in
Algorithm 1.

4 Experiments

Here we conduct comprehensive experiments and
analysis on different NLU datasets to demonstrate
the effectiveness of TFS.

4.1 Experimental Setup

We use six popular large-scale datasets covering
sentiment classification, paraphrase identification,
natural language inference, named entity recogni-
tion and dialogue slot classification as follows.

(1) SST-2 (Socher et al., 2013) consists of sen-
tences from movie reviews and human annotations
of their sentiment. The task is to predict the senti-
ment of a given sentence (Wang et al., 2019b).

(2) Both QNLI (Wang et al., 2019b) and MNLI
(Williams et al., 2018) are natural language infer-
ence datasets. QNLI is adapted from the SQuAD
(Rajpurkar et al., 2016) question answering dataset
and the task is to determine whether the context
sentence contains the answer to the question (Wang
et al., 2019b), which can be regarded as a binary
classification problem. MNLI is slightly differ-
ent from QNLI as it has multiple genres. Given a
premise sentence and a hypothesis sentence, the
task is to predict whether the premise entails the
hypothesis (entailment), contradicts the hypothesis
(contradiction), or neither (neutral) (Wang et al.,
2019b).

(3) QQP (Chen et al., 2018) is a paraphrase iden-
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Dataset Task Train size Number of classes Evaluation metrics
SST-2 Sentiment analysis 67,349 2 Accuracy
QNLI Natural language inference 104,743 2 Accuracy
MNLI Natural language inference 100,000* 3 Accuracy
QQP Paraphrase identification 100,000* 2 F1
CoNLL 2003 Named entity recognition 14,041 9 F1
MultiWOZ 2.1 Slot classification 56,557 30 Micro-F1

Table 1: Dataset summary for evaluation. * are datasets that we randomly sample 100K instances from original
training sets due to the high cost of iterative self-training.

tification dataset. The goal is to determine if two
questions asked on Quora are semantically equiva-
lent (Wang et al., 2019b), which can also be formu-
lated as a binary classification problem.

(4) CoNLL 2003 (Tjong Kim Sang and
De Meulder, 2003) is a name entity recognition
dataset and the task is to recognize four types of
named entities: persons, locations, organizations
and miscellaneous entities, where miscellaneous
type does not belong to any of the previous three.

(5) MultiWOZ 2.1 (Eric et al., 2020) is a large-
scale, multi-domain dialogue dataset of human-
human conversations. We convert each dialogue
into turns and the task is to predict whether a slot,
e.g. restaurant name, is mentioned in a turn and can
be cast as a multi-label binary slot classification
problem (Li et al., 2021).

SST-2, QNLI, MNLI and QQP datasets are
from GLUE benchmark 1 and we only report
their results on development sets as extensive
experiments don’t allow us to submit predictions
on their test sets to the official leaderboard due
to submission limitations 2. Note that for both
MNLI and QQP, we randomly downsample their
training sets into 100K and development sets into
5K otherwise iterative self-training in various
semi-supervised setups can be too costly and
for MNLI, we report results on the matched
development set. On both CoNLL 2003 and
MultiWOZ 2.1, we report results of their test sets.
For SST-2, MNLI and QNLI, we use standard
accuracy metric and for QQP and CoNLL 2003
we report their F1 scores. For MultiWOZ 2.1, we
report micro-F1. We summarize details of each
dataset including task, full training data size, num-
ber of classes and their evaluation metric in Table 1.

1We only consider datasets with training data size larger
than 10K in GLUE benchmark.

2See more about FAQ 1 at https://
gluebenchmark.com/faq

TAPT. We use BERT-base and BERT-large
as our backbone to leverage both labeled and un-
labeled data. Both labeled and unlabeled data are
used for TAPT in our implementation so that we
can use the same checkpoint for different data split
and labeled data size without repeating costly pre-
training process on the same dataset. During TAPT
process, we use MLM objective with random to-
ken masking probability 0.15 for each training set
listed in Table 1 following previous work (Wu et al.,
2020).
Finetuning. We follow standard supervised fine-
tuning paradigm (Devlin et al., 2019) by adding a
linear projection layer with weight W ∈ RK×I on
top of BERT in labeled data for each dataset listed
in Table 1, where K is the number of classes and I
is the dimensionality of representations of BERT.
Specifically, for SST-2, QNLI, MNLI and QQP,
we pass the representation of [CLS] token HCLS

to a linear layer followed by a Softmax function.
Models are trained with cross-entropy loss between
the predicted distributions Softmax(W (HCLS))
and their ground truth labels. For CoNLL 2003
name entity recognition task, we feed the represen-
tation of each token into a linear layer followed by a
Softmax function. Models are trained with aver-
age cross-entropy loss between the predicted distri-
butions and their labels over all tokens 3. For multi-
label binary slot classification task on MultiWOZ
2.1, we pass the representation of [CLS] token
HCLS into a linear layer followed by a Sigmoid
function. Models are trained with mean binary
cross-entropy loss between the predicted distri-
butions Sigmoid(W (HCLS)) and their ground
truth labels.
Self-training. We use the finetunned models with
labeled data as teachers to generate pseudo soft la-
bels on unlabeled data following (Du et al., 2021).

3We only calculate loss of the first token for words with
multiple tokens after tokenization.

https://gluebenchmark.com/faq
https://gluebenchmark.com/faq
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Dataset Model FT TAPT ST TFS

SST-2
BERTbase 87.31.5 88.50.7 (+1.2) 88.41.0 (+1.1) 89.40.8 (+2.1)
BERTlarge 89.04.2 90.70.7 (+1.7) 90.14.2 (+1.1) 91.40.4 (+2.4)

QNLI
BERTbase 79.10.8 82.00.5 (+2.9) 80.20.7 (+1.1) 83.10.6 (+4.0)
BERTlarge 82.60.4 83.20.6 (+0.6) 83.70.4 (+1.1) 84.40.6 (+1.8)

MNLI
BERTbase 57.31.9 58.81.3 (+1.5) 59.22.1 (+1.9) 60.91.4 (+3.6)
BERTlarge 66.42.6 67.61.5 (+1.2) 68.72.2 (+2.3) 69.41.4 (+3.0)

QQP
BERTbase 71.30.8 74.30.8 (+3.0) 72.30.6 (+1.0) 75.10.9 (+3.8)
BERTlarge 73.11.7 75.10.9 (+2.0) 74.21.8 (+1.1) 76.10.9 (+3.0)

CoNLL 2003
BERTbase 78.81.1 79.31.6 (+0.5) 81.61.1 (+2.8) 82.21.3 (+3.4)
BERTlarge 76.32.4 79.81.0 (+3.5) 79.42.4 (+3.1) 82.21.1 (+5.9)

MultiWOZ 2.1
BERTbase 75.60.7 79.80.5 (+4.2) 76.60.8 (+1.0) 80.20.4 (+4.6)
BERTlarge 77.70.4 81.40.2 (+3.7) 78.70.6 (+1.0) 81.80.3 (+4.1)

Table 2: Results comparison (%) of finetuned baselines on labeled data (FT), TAPT, ST and TFS of BERTbase
and BERTlarge on six different datasets with 1% labeled data. Mean results along with their standard deviation in
the subscript are listed and values inside the parentheses are gains over FT.

Pseudo labeled data are combined with original
labeled data to trained student models by optimiz-
ing objective function in Equation 2. In the first
round, students utilize the same pre-trained check-
points as their teachers and in the following rounds,
students inherit parameters from teachers. We set
maximum rounds as 3 since we observe that setting
a much larger round brings the same results or very
marginal gains on both SST-2 and CoNLL 2003.

4.2 Main results

In this section, we simulate data scarcity scenarios
for these mentioned datasets in Table 1 for both
BERTbase and BERTlarge. Specifically, for each
dataset we randomly sample 1% training data as la-
beled corpus and left 99% as unlabeled data. Both
labeled and unlabeled corpus is used as the input of
TAPT while only unlabeled corpus is used for self-
training. For all datasets, we randomly choose three
data splits and have three different runs for each
of them except BERTlarge on CoNLL 2003 and
MultiWOZ 2.1 to combat their instability by lever-
aging their results on development sets. In these
two datasets, we use ten different runs for each data
split on BERTlarge and report corresponding test
set results based on top three runs on development
sets. Results are summarized in Table 2.
Comparison between TAPT and ST. TAPT and
ST in both BERTbase and BERTlarge models
consistently outperform finetuned baseline results
across six different datasets, demonstrating their
effectiveness as semi-supervised methods on NLU
tasks. However, TAPT has inconsistent results

compared to ST. TAPT outperforms ST in SST-
2, QQP and MultiWOZ 2.1 datasets but underper-
forms ST or only achieves comparable results for
QNLI, MNLI and CoNLL 2003. These results in-
dicate that they learn different representations from
unlabeled data since they utilize data from different
perspectives.
TFS shows strong additive gains over individual
TAPT and ST. On QNLI, TFS on BERTbase im-
proves 4% accuracy over finetuned baselines (FT),
equal to the sum of gains from TAPT (+2.9%) and
ST (+1.1%), and on BERTlarge improves 1.8% ac-
curacy, even slightly larger than the sum of gains
from TAPT (+0.6%) and ST (+1.1%). On MNLI,
TFS on BERTbase improves 3.6% accuracy, larger
than the sum of gains from TAPT (+1.5%) and ST
(+1.9%). Similar results on BERTbase also hold
for CoNLL 2003. For results of other settings, im-
provements of TFS can also be well approximated
by simply adding gains from corresponding TAPT
and ST over FT. These consistent and significant
results show that TAPT and ST are complemen-
tary to each other and TFS can effectively add their
gains.

4.3 Varying size of labeled data

We have demonstrated the effectiveness of TFS
on both BERTbase and BERTlarge in six different
datasets with 1% training data in section 4.2. We
further explore different sizes of labeled data on
six datasets in Table 1 with BERTbase model.

Specifically, on relatively simple dataset
SST-2, we vary labeled data ratio as
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Figure 2: Results comparison (%) of FT, TAPT, ST and TFS with different sizes of labeled data on six datasets.
TAPT+ST is not a method but references to demonstrate additive gains of TFS.

{0.1%, 0.2%, 0.5%, 1.0%} and on more dif-
ficult QNLI, MNLI and QQP datasets, we vary
their labeled ratios as {1%, 2%, 5%, 10%}. For
CoNLL 2003, we explore labeled data ratio
in {0.5%, 0.6%, 0.7%, 0.8%0.9%, 1.0%} and
for MultiWOZ 2.1, we set labeled data ratio
as {1%, 2%, 3%, 4%, 5%}. Following previous
settings, for each labeled data ratio among these six
datasets, we randomly select 3 data splits and each
data split has three different runs. Final average
results for each data ratio are reported over these
nine runs. To better measure additive property of

TFS, we introduce TAPT+ST in our results for
references, which directly adds performance gains
of TAPT and ST on FT.

Results of six different datasets among different
sizes of labeled data are summarized in Figure 2.
TAPT outperforms ST in SST-2, QNLI, QQP and
MutiWOZ 2.1 datasets in various labeled data se-
tups but underperforms it on MNLI and CoNLL
2003, indicating that TAPT and ST learn differ-
ent representations from unlabeled data and have
their pros and cons. However, TFS consistently
and significantly outperforms TAPT and ST in all
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scenarios among six different datasets and again
proves its effectiveness over TAPT and ST alone.
For example, in CoNLL 2003 with 0.5% labeled
data, TFS has relative 4.4% and 3.1% improvement
over TAPT and ST, respectively. More importantly,
TFS overall has very similar results with TAPT+ST
in various labeled data size of different datasets,
which further strengthens that TFS protocol can
yield strong additive gains over TAPT and ST.

4.4 Analysis

Given the promising results in the previous ex-
periments, we aim to answer why TFS outper-
forms ST consistently and significantly. Indeed,
the differences between TFS and ST lie in two
aspects: (1) TFS uses initialization from the
checkpoint of TAPT rather than original BERT
as ST. (2) TFS utilizes pseudo labels gener-
ated from TAPT finetuned models while
ST uses pseudo labels generated from BERT
finetuned models (FT). To further investi-
gate these two perspectives, we design a variant
of original ST, ST with TAPT Initilization (STTI),
which utilizes pseudo labels generated by BERT
finetuned models as ST but is initialized with the
same checkpoints from TAPT as TFS during the
first round of self-training. The intermediate vari-
ant can help us better understand what makes TFS
work. We run experiments on SST-2 with 0.1%
and 1.0% labeled data for BERTbase to compare
ST, STTI and TFS. The results of STTI are obtained
by running over the same three data splits as ST
and TFS, and having three different runs for each
data split. Results are averaged and summarized in
Table 3.
Importance of initialization. Table 3 shows that
STTI consistently outperforms ST in both 0.1%
and 1% labeled setup. Comparing its difference
with ST, we can conclude that its improvement over
ST comes from its TAPT initialization. Results of
MNLI and CoNLL 2003 in Figure 2 (c) and (e)
also validate the importance of initialization. In
these two datasets, although ST can consistently
generate more accurate labels than TAPT finetuned
models, meaning that it can match TAPT finetuned
performance during self-training process, it still
underperforms TFS in the end. These results again
indicate the importance of initialization. Without
TAPT as initialization, even if ST itself can outper-
form TAPT finetuned models, who are teachers of
TFS in self-training process, but still at its end will

FT TAPT ST STTI TFS
Init. BERT TAPT* BERT TAPT* TAPT*

Pseud. - - FT FT TAPT
Acc. (0.1%) 72.0 84.5 74.1 75.4 85.7
Acc. (1.0%) 87.3 88.5 88.4 88.8 89.4

Table 3: Results comparison of FT, TAPT, ST, STTI
and TFS on SST-2 dataset. Rows with Init. and Pseud.
show initialization and pseudo labeler of different mod-
els, respectively. Last two rows list accuracy with 0.1%
and 1.0% labeled training data of these models. * rep-
resents models without finetuning on labeled data.

be left behind of TFS.

Importance of pseudo label correctness. Table 3
also shows that STTI underperforms TFS in both
0.1% and 1% labeled setup although both of them
inherit the same parameters from TAPT. These re-
sults indicate that beyond initialization, accurate
pseudo labels also matter for self-training process.
STTI takes pseudo labels generated from BERT
finetuned baselines (FT) that have more errors
while TFS utilizes more accurate pseudo labels
generated from TAPT finetuned models. Suffering
from more incorrect pseudo labels in the beginning
of self-training process, STTI may converge to a
worse local optima than that of TFS. This is even
more severe when labeled data is 0.1% and FT is
left far behind of TAPT finetuned models, causing
that STTI has 10.3% accuracy gap compared to
TFS. These results prove the importance of accu-
rate pseudo labels for self-training.

Combining these findings, we argue that TFS
can outperform ST at least for two reasons: (1) it
has a better initialization from TAPT compared to
ST from BERT (2) it utilizes more accurate pseudo
labels from TAPT finetuned models than ST.

5 Conclusion

In this paper, we demonstrate that TAPT and ST
are complementary for NLU tasks with TFS by
following TAPT → Finetuning → Self-training
process. Our extensive experiments in various
semi-supervised setups across six popular datasets
show that they are not only complementary but also
strongly additive with TFS protocol. We further
show that TFS outperforms ST through (1) a better
initialization from TAPT (2) more accurate predic-
tions from TAPT finetuned models. We hope that
TFS could serve as an important semi-supervised
baseline for future NLP studies.
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