
Findings of the Association for Computational Linguistics: EMNLP 2021, pages 945–956
November 7–11, 2021. ©2021 Association for Computational Linguistics

945

Towards Improving Adversarial Training of NLP Models

Jin Yong Yoo, Yanjun Qi
Department of Computer Science

University of Virginia
Charlottesville, VA, USA

{jy2ma, yq2h}@virginia.edu

Abstract

Adversarial training, a method for learning ro-
bust deep neural networks, constructs adver-
sarial examples during training. However, re-
cent methods for generating NLP adversarial
examples involve combinatorial search and ex-
pensive sentence encoders for constraining the
generated instances. As a result, it remains
challenging to use vanilla adversarial training
to improve NLP models’ performance, and the
benefits are mainly uninvestigated. This paper
proposes a simple and improved vanilla adver-
sarial training process for NLP models, which
we name Attacking to Training (A2T). The
core part of A2T is a new and cheaper word
substitution attack optimized for vanilla adver-
sarial training. We use A2T to train BERT and
RoBERTa models on IMDB, Rotten Tomatoes,
Yelp, and SNLI datasets. Our results empir-
ically show that it is possible to train robust
NLP models using a much cheaper adversary.
We demonstrate that vanilla adversarial train-
ing with A2T can improve an NLP model’s ro-
bustness to the attack it was originally trained
with and also defend the model against other
types of word substitution attacks. Further-
more, we show that A2T can improve NLP
models’ standard accuracy, cross-domain gen-
eralization, and interpretability. 1

1 Introduction
Recently, robustness of neural networks against

adversarial examples has been an active area of
research in natural language processing with a
plethora of new adversarial attacks2 having been
proposed to fool question answering (Jia and Liang,
2017), machine translation (Cheng et al., 2018),
and text classification systems (Ebrahimi et al.,
2017; Jia and Liang, 2017; Alzantot et al., 2018;
Jin et al., 2019; Ren et al., 2019; Zang et al., 2020;

1Code is available at https://github.com/
QData/Textattack-A2T

2We use “methods for adversarial example generation” and
“adversarial attacks” interchangeably.

Garg and Ramakrishnan, 2020). One method to
make models more resistant to such adversarial at-
tacks is adversarial training where the model is
trained on both original examples and adversarial
examples (Goodfellow et al., 2014; Madry et al.,
2018). Due to its simple workflow, it is a popular
go-to method for improving adversarial robustness.

Typically, adversarial training involves gener-
ating adversarial example x′ from each original
example x before training the model on both x and
x′. In NLP, generating an adversarial example is
typically framed as a combinatorial optimization
problem solved using a heuristic search algorithm.
Such an iterative search process is expensive. De-
pending on the choice of the search algorithm, it
can take up to tens of thousands of forward passes
of the underlying model to generate one example
(Yoo et al., 2020). This high computational cost
hinders the use of vanilla adversarial training in
NLP, and it is unclear how and as to what extent
such training can improve an NLP model’s perfor-
mance (Morris et al., 2020a).

In this paper, we propose to improve the vanilla
adversarial training in NLP with a computationally
cheaper adversary, referred to as A2T . The pro-
posed A2T uses a cheaper gradient-based word im-
portance ranking method to iteratively replace each
word with synonyms generated from a counter-
fitted word embedding (Mrksic et al., 2016). We
use A2T and its variation A2T-MLM (which uses
masked language model-based word replacements
instead) to train BERT (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019) models on text classifi-
cation tasks such as IMDB (Maas et al., 2011), Rot-
ten Tomatoes (Pang and Lee, 2005), Yelp (Zhang
et al., 2015), and SNLI (Bowman et al., 2015)
datasets. Our findings are as following:

• Adversarial training with both A2T and
A2T-MLM can help improve adversarial ro-
bustness, even against NLP attacks that were
not used to train the model (see Table 5).

https://github.com/QData/Textattack-A2T
https://github.com/QData/Textattack-A2T

946

Original Training
Dataset

Original Training
Dataset

Train model on
original dataset

for N epochs

Adversarial
ExamplesClean Training

Original
Training
Dataset

Adversarial
Example

Generation

Adversarial
Training

Train model on both adversarial
examples and original dataset M times

Step 1
 Ranks words

Step 2
 Substitute

a word

Step 3
 Filter bad

choices using
constraints

Figure 1: Pipeline for vanilla adversarial training in NLP

• Adversarial training with A2T can provide a
regularization effect and improve the model’s
standard accuracy and/or cross-domain gener-
alization, while A2T-MLM tends to hurt both
standard accuracy and cross-domain general-
ization (see Table 7).

• Using LIME (Ribeiro et al., 2016) and AOPC
metric, we demonstrate that adversarial train-
ing with A2T can improve NLP models’ inter-
pretability (see Table 8).

2 Background
2.1 Vanilla Adversarial Training in NLP

Vanilla adversarial training has been a major de-
fense strategy in most existing work on adversarial
robustness (Goodfellow et al., 2014; Kurakin et al.,
2016; Madry et al., 2018). In our work, we define
vanilla adversarial training as adversarial training
that involves augmenting the training data with ad-
versarial examples generated from perturbing the
training data in the input space. In contrast, non-
vanilla adversarial training performs perturbations
on non-input space such as word embeddings (Miy-
ato et al., 2017; Zhu et al., 2019; Jiang et al., 2020;
Liu et al., 2020).

In recent NLP literature, vanilla adversarial train-
ing has only been evaluated in a limited context.
In most studies, adversarial training is only per-
formed to show that such training can make mod-
els more resistant to the attack it was originally
trained with (Jin et al., 2019; Ren et al., 2019; Li
et al., 2020; Zang et al., 2020; Li et al., 2021). This
observation is hardly surprising, and it is gener-
ally recommended to use different attacks to eval-
uate the effectiveness of defenses (Carlini et al.,
2019). Therefore, in this paper, we perform a more
in-depth investigation into how a practical vanilla
adversarial training algorithm we propose affects
NLP models’ adversarial robustness against a set
of different attacks that are not used for training.

In addition, we examine how adversarial training
affects model’s performance in other aspects such
as standard accuracy, cross-domain generalization,

and interpretability.

2.2 Components of an NLP Attack
Figure 1 includes a schematic diagram on vanilla

adversarial training where an adversarial attack is
part of the training procedure. We borrow the
framework introduced by Morris et al. (2020b)
which breaks down the process of generating natu-
ral language adversarial examples into three parts
(see Table 1): (1) A search algorithm to iteratively
search for the best perturbations (2) A transforma-
tion module to perturb a text input from x to x′ (e.g.
synonym substitutions) (3) Set of constraints that
filters out undesirable x′ to ensure that perturbed x′

preserves the semantics and fluency of the original
x.

Adversarial attacks frame their approach as a
combinatorial search because of the exponential
nature of the search space. Consider the search
space for an adversarial attack that replaces words
with synonyms: If a given sequence of text consists
of N words, and each word has M potential sub-
stitutions, the total number of perturbed inputs to
consider is (M + 1)N − 1. Thus, the graph of all
potential adversarial examples for a given input is
far too large for an exhaustive search. Studies on
NLP attacks have explored various heuristic search
algorithms, including beam search (Ebrahimi et al.,
2017), genetic algorithm (Alzantot et al., 2018),
and greedy method with word importance ranking
(Gao et al., 2018; Jin et al., 2019; Ren et al., 2019).

3 Method: A2T (Attacking to Training)
In this section, we present our algorithm A2T

for an improved and practical vanilla adversarial
training for NLP. We also present the cheaper ad-
versarial attacks we propose to use in A2T .

3.1 Training Objective
Following the recommendations by Goodfellow

et al. (2014); Kurakin et al. (2016), we use both
clean3 and adversarial examples to train our model.
We aim to minimize both the loss on the original
training dataset and the loss on the adversarial ex-
amples.

Let L(θ,x,y) represent the loss function for in-
put text x and label y and let A(θ,x,y) be the ad-
versarial attack that produces adversarial example
xadv. Then, our training objective is as following:

arg min
θ

E(x,y)∼D[L(θ,x,y)

+αL(θ,A(θ,x,y),y)]
(1)

3Clean examples refer to the original training examples.

947

α is used to weigh the adversarial loss. In this work,
we set α = 1, weighing the two loss equally. 4

3.2 A Practical Training Workflow
Previous works in adversarial training, especially

those from computer vision (Goodfellow et al.,
2014; Madry et al., 2018), generate adversarial ex-
amples between every mini-batch and use them to
train the model. However, it is difficult in practice
to generate adversarial examples between every
mini-batch update when using NLP adversarial at-
tacks.

This is because NLP adversarial attacks typi-
cally require other neural networks as their sub-
components (e.g. sentence encoders, masked lan-
guage models). For example, Jin et al. (2019)
uses Universal Sentence Encoder (Cer et al., 2018)
while Garg and Ramakrishnan (2020) uses BERT
masked language model (Devlin et al., 2018).
Given that recent Transformers models such as
BERT and RoBERTa models also require large
amounts of GPU memory to store the computation
graph during training, it is impossible to run adver-
sarial attacks and train the model in the same GPU.
We, therefore, propose to instead maximize GPU
utilization by first generating adversarial examples
before every epoch and then using the generated
samples to train the model.

Based on our initial empirical study, we found
that it is not necessary to generate adversarial exam-
ples for every clean example in the training dataset
to improve the robustness of the model. In fact,
as we see in Section 5.6, training with fewer ad-
versarial examples can often produce better results.
Therefore, we propose to leave the number of ad-
versarial examples produced in each epoch as a
hyperparameter γ where it is a percentage of the
original training dataset. For cases where the ad-
versarial attack fails to find an adversarial exam-
ple, we skip them and instead sample more from
the training dataset to compensate for the skipped
samples. In our experiments, unless specified, we
attack 20% of the training dataset, which was based
on our initial empirical findings.

Algorithm 1 shows the proposed A2T adversar-
ial training algorithm in detail. We run clean train-
ing for Nclean number of epochs before perform-
ing Nadv epochs of adversarial training. Between
line 6-13, we generate the adversarial examples
until we obtain γ percentage of the training dataset.
When multiple GPUs are available, we use data

4We leave tuning for the optimal α for future work.

Algorithm 1 Adversarial Training with A2T

Require: Number of clean epochs Nclean, num-
ber of adversarial epochs Nadv, percentage of
dataset to attack γ, attack A(θ,x,y), and train-
ing data D = {(x(i),y(i))}ni=1, α the smooth-
ing proportion of adversarial training

1: Initialize model θ
2: for clean epoch= 1, . . . , Nclean do
3: Train θ on D
4: end for
5: for adversarial epoch= 1, . . . , Nadv do
6: Randomly shuffle D
7: Dadv ← {}
8: i← 1
9: while |Dadv| < γ ∗ |D| and i ≤ |D| do

10: x
(i)
adv ← A(θ,x(i),y(i))

11: Dadv ← Dadv ∪ {(x(i)
adv,y

(i))}
12: i← i+ 1
13: end while
14: D′ ← D ∪Dadv
15: Train θ on D′ with α used to weigh the loss
16: end for

parallelism to speed up the generation process. We
also shuffle the dataset before attacking to avoid
attacking the same sample every epoch.

3.3 Cheaper Attack for Adversarial Training
The attack component in A2T is designed to be

faster than previous attacks from literature. We
achieve the speedup by making two key choices
when constructing our attack: (1) Gradient-based
word importance ordering, and (2) DistilBERT
(Sanh et al., 2019) semantic textual similarity con-
straint. Table 1 summarizes the differences be-
tween A2T and two other attacks from literature:
TextFooler (Jin et al., 2019) and BAE (Garg and
Ramakrishnan, 2020).

Faster Search with Gradient-based Word Im-
portance Ranking: Previous attacks such as Jin
et al. (2019); Garg and Ramakrishnan (2020) itera-
tively replace one word at a time to generate adver-
sarial examples. To determine the order of words
in which to replace, both Jin et al. (2019); Garg and
Ramakrishnan (2020) rank the words by how much
the target model’s confidence on the ground truth
label changes when the word is deleted from the
input. We will refer to this as deletion-based word
importance ranking.

One issue with this method is that an additional
forward pass of the model must be made for each

948

Components A2T A2T-MLM TextFooler BAE

Search Method
for Ranking Words

Gradient-based
Word Importance

Gradient-based
Word Importance

Deletion-based
Word Importance

Deletion-based
Word Importance

Word Substitution Word Embedding BERT MLM Word Embedding BERT MLM

Constraints
POS Consistency POS Consistency POS Consistency POS Consistency

DistilBERT Similarity DistilBERT Similarity USE Similarity USE Similarity

Table 1: Comparing A2T and variation with TextFooler (Jin et al., 2019) and BAE (Garg and Ramakrishnan, 2020)

Attack Runtime (sec)

A2T 5,988
TextFooler + Gradient Search 8,760

TextFooler 17,268

Table 2: The runtime (in seconds) of A2T, original TextFooler,
and TextFooler where deletion-based word importance rank-
ing is switched with gradient-based word importance ranking.
We can see that replacing the search method gives us approx-
imately 2× speedup. The attack was carried out against a
BERT model trained on IMDB dataset and 1000 samples were
attacked.

word to calculate its importance. For longer text
inputs, this can mean that we have to make up to
hundreds of forward passes to generate one adver-
sarial example.
A2T instead determines each word’s importance

using the gradient of the loss. For an input text
including n words: x = (x1, x2, . . . , xn) where
each xi is a word, the importance of xi is calculated
as:

I(xi) = ||∇eiL(θ,x,y))||1 (2)

where ei is the word embedding that corresponds
to word xi. For BERT and RoBERTa models where
inputs are tokenized into sub-words, we calculate
the importance of each word by taking the average
of all sub-words constituting the word.

This requires only one forward and backward
pass and saves us from having to make ad-
ditional forward passes for each word. Yoo
et al. (2020) showed that the gradient-ordering
method is the fastest search method and pro-
vides competitive attack success rate when com-
pared to the deletion-based method. Table 2
shows that when we switch from deletion-based
ranking (“TextFooler”) to gradient-based ranking
(“TextFooler+Gradient Search”), we can obtain ap-
proximately 2× speedup.

Cheaper Constraint Enforcing with Distil-
BERT (Sanh et al., 2019) semantic textual sim-
ilarity model: Most recent attacks like Jin et al.
(2019); Garg and Ramakrishnan (2020); Li et al.
(2020) use Universal Sentence Encoders (USE)

(Cer et al., 2018) to compare the sentence encod-
ings of original text x and perturbed text x′. If
the cosine similarity between two encodings fall
below a certain threshold, x′ is ignored. One of the
challenges of using large encoders like USE is that
it can take up significant amount of GPU memory –
up to 9GB in case of USE.

Instead of using USE, A2T uses DistilBERT
(Sanh et al., 2019) model trained on semantic tex-
tual similarity task as its constraint module 5. This
is because DistilBERT requires 10× less GPU
memory than USE and requires fewer operations.

3.4 A2T-MLM : Variation with a Different
Word Substitution Strategy

A2T generates replacements for each word by
selecting top-k nearest neighbors in a counter-fitted
word embedding (Mrksic et al., 2016), which helps
nearest-neighbor searches return better synonyms
than regular word embeddings. This word sub-
stitution strategy has been previously proposed by
Alzantot et al. (2018); Jin et al. (2019). In our work,
we first precompute all the top-k nearest neighbors
and cache them to speed up our attacks. We also
consider another variation we name as A2T-MLM
in which BERT masked language model is used
to generate replacements (proposed in Garg and
Ramakrishnan (2020); Li et al. (2020, 2021)).

We consider this variation because two strate-
gies prioritize different language qualities when
proposing word replacements. Counter-fitted word
embeddings are likely to propose synonyms as re-
placements, but could produce incoherent texts as
it does not take the entire context into account. On
the other hand, BERT masked language model is
more likely to propose replacement words that pre-
serve grammatical and contextual coherency but
fail to preserve the semantics. Comparing A2T
with A2T-MLM allows us to study the effect of
word substitution strategy on adversarial training.

5We use code from Reimers and Gurevych (2019)

949

4 Related Work
Past works on adversarial training for NLP mod-

els come in diverse flavors that differ in how adver-
sarial examples are generated. Miyato et al. (2017),
which is one of the first works to introduce adver-
sarial training to NLP tasks, perform perturbations
in the word embedding level instead of the actual
input space level. Likewise, Zhu et al. (2019); Jiang
et al. (2020); Liu et al. (2020) all apply perturba-
tions in the embedding level using gradient-based
optimization methods from computer vision.

Another family of work on adversarial training
involves computing the hyperspace of activations
that contains all texts that can be generated using
word substitutions and then training the model to
make consistent prediction for inputs inside the
hyperspace. Jia et al. (2019); Huang et al. (2019)
compute axis-aligned hyper-rectangles and lever-
ages Interval Bound Propagation (Dvijotham et al.,
2018) to defend the model against substitution at-
tacks while Dong et al. (2021) computes the desired
hyperspace as a convex hull in the embedding space
and further trains the model to be robust against
worst case embedding in the convex hull.

Yet, adversarial training that simply uses adver-
sarial examples generated in the input space is still
a relatively unexplored area of research despite
its simple, extendable workflow. Most works that
have discussed such form of adversarial training
only train limited number of models and datasets
to show that adversarial training can make models
more resistant to the particular attack used to train
the model (Jin et al., 2019; Ren et al., 2019; Li
et al., 2020; Zang et al., 2020; Li et al., 2021). Our
work demonstrates that simple vanilla adversarial
training can actually provide improvements in ad-
versarial robustness across many different word
substitution attacks. Furthermore, we show that it
can improve both generalization and interpretabil-
ity of models, properties that have not been exam-
ined by previous works.

5 Experiment and Results
5.1 Datasets & Models

We chose IMDB (Maas et al., 2011), Movie Re-
views (MR) (Pang and Lee, 2005), Yelp (Zhang
et al., 2015), and SNLI (Bowman et al., 2015)
datasets for our experiment. For Yelp, instead of
using the entire training set, we sampled 30k exam-
ples for training and 10k for validation.

We trained BERT (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019) models using the im-

Dataset Train Dev Test

IMDB 20k 5k 25k
MR 8.5k 1k 1k
Yelp 30k 10k 38k
SNLI 550k 10k 10k

Table 3: Overview of the datasets.

plementation provided by Wolf et al. (2020). All
texts were tokenized up to the first 512 tokens and
we trained the model for one clean epoch and three
adversarial epochs. Adam optimizer with weight
decay of 0.01 (Loshchilov and Hutter, 2017) and
learning rate of 5e−5 were used for training. Also,
we used a linear scheduler with 500 warm-up steps
for IMDB and Yelp, 100 steps for MR, and 5000
steps for SNLI. We performed three runs with ran-
dom seeds for each model.

5.2 Baselines
Adversarial training can be viewed as a data aug-

mentation method where hard examples are added
to the training set. Therefore, besides just having
models that are trained on clean adversarial exam-
ples (i.e. “natural training”) as our baseline, we
also compare our results to models trained using
more conventional data augmentation methods. We
use SSMBA (Ng et al., 2020) and backtranslation6

(Xie et al., 2019) methods as our baselines as both
have reported strong performance on text classi-
fication tasks. We use these methods to generate
approximately the same number of new training
examples as adversarial training.

5.3 Results on Adversarial Robustness
To evaluate models’ robustness to adversarial at-

tacks, we attempt to generate adversarial examples
from 1000 randomly sampled clean examples from
the test set and measure the attack success rate.

attack success rate =
of successful attacks

of total attacks

Table 4 shows the attack success rates of A2T at-
tack and A2T-MLM attack against models that have
been trained using A2T, A2T-MLM, and other base-
line methods. Note that the overall attack success
rates appear fairly low because we applied strict
constraints to improve the quality of the adversarial
examples (as recommend by Morris et al. (2020b)).
Still, we can see that for both attacks, adversarial
training using the same attack can decrease the at-
tack success rate by up to 70%. What is surprising

6For backtranslation, we use English-to-German model
and German-to-English model trained by Ng et al. (2019).

950

is that training the model using a different attack
also led to a decrease in the attack success rate.
From Table 4, we can see that adversarial training
using the A2T-MLM attack lowers the attack suc-
cess rate of A2T attack while training with A2T
lowers the attack success rate of A2T-MLM attack.

To further measure how adversarial training us-
ing A2T can improve model’s robustness, we eval-
uated accuracy of BERT-A2T on 1000 adversar-
ial examples that have successfully fooled BERT-
Natural models. Table 6 shows that adversarial
training using A2T greatly improves model’s per-
formance against adversarial examples from base-
line 0% to over 70% for IMDB and Yelp datasets.

Another surprising observation is that training
with data augmentations methods like SSMBA and
backtranslation can lead to improvements in robust-
ness against both adversarial attacks. However, in
case of smaller datasets such as MR, data augmen-
tation can also hurt robustness.

When we compare the attack success rates be-
tween BERT and RoBERTa models in Table 4, we
also see an interesting pattern. BERT models, re-
gardless of the training method, tend to be more
vulnerable to A2T attack than RoBERTa models.
At the same time, RoBERTa models tend to be
more vulnerable to A2T-MLM attack than BERT
models.

Lastly, we use attacks proposed from literature
to evaluate the models’ adversarial robustness. Ta-
ble 5 shows the attack success rate of TextFooler
(Jin et al., 2019), BAE (Garg and Ramakrishnan,
2020), PWWS (Ren et al., 2019), and PSO (Zang
et al., 2020).7 Across four datasets and two models,
we can see that both A2T and A2T-MLM lower the
attack success rate against all four attacks in all
but five cases. The results for PWWS and PSO are
especially surprising since both use different trans-
formations - WordNet (Miller, 1995) and HowNet
(Dong et al., 2010) - when carrying out the attacks.

5.4 Results on Generalization
To evaluate how adversarial training affects the

model’s generalization ability, we evaluate its accu-
racy on the original test set (i.e. standard accuracy)
and on an out-of-domain dataset (e.g. Yelp dataset
for model trained on IMDB dataset). In Table 7, we
can see that in all but two cases, adversarial training
using A2T attack beats natural training in terms of
standard accuracy. In the two cases (SNLI) where

7These attacks were implemented using the TextAttack
library (Morris et al., 2020a).

natural training beats A2T , we can see that A2T
still outperforms natural training in cross-domain
accuracy. Overall, in six out of eight cases, A2T im-
proves cross-domain accuracy. On the other hand,
adversarial training with A2T-MLM attack tends to
hurt both standard accuracy and cross-domain ac-
curacy. This confirms the observations reported by
Li et al. (2021) and suggests that using a masked
language model to generate adversarial examples
can lead to a trade-off between robustness and gen-
eralization. We do not see similar trade-off with
A2T .

5.5 Results on Interpretability
We use LIME (Ribeiro et al., 2016) to gener-

ate local explanations for our models. For each
example, LIME approximates the local decision
boundary by fitting a linear model over the samples
obtained by perturbing the example. To measure
the faithfulness of the local explanations obtained
using LIME, we measure the area over perturbation
curve (AOPC) (Samek et al., 2017; Nguyen, 2018;
Chen and Ji, 2020) which is defined as:

AOPC =
1

K + 1

K∑
k=1

1

N

N∑
i=1

f(x
(i)
(0))− f(x

(i)
(k))

(3)
where x

(i)
(0) represents example x(i) with none of

the words removed and x
(i)
(k) represents example

x(i) with the top-k most important words removed.
f(x) here represents the model’s confidence on
the target label y(i). Intuitively, AOPC measures
on average how the model’s confidence on the tar-
get label changes when we delete the top-k most
important words determined using LIME.

For each dataset, we randomly pick 1000 ex-
amples from the test set for evaluation. When
running LIME to obtain explanations, we gener-
ate 1000 perturbed samples for each instance. We
set K = 10 for the AOPC metric. Table 8 shows
that across three sentiment classification datasets,
BERT model trained using A2T attack achieves
higher AOPC than natural training. For RoBERTa
models, the same observation holds (although by
smaller margins). Overall, we see that the AOPC
scores for RoBERTa models are far lower than
those for BERT models, suggesting that RoBERTa
might be less interpretable than BERT.

5.6 Analysis
A2T vs A2T-MLM attack We can see that model
trained using A2T attack outperforms the model

951

Attack Model
IMDB MR Yelp SNLI

A.S.% ∆% A.S.% ∆% A.S.% ∆% A.S.% ∆%

A2T

BERT-Natural 42.9 20.9 25.4 53.3
BERT-A2T 12.7 -70.4 13.2 -36.8 11.5 -54.7 15.6 -70.7
BERT-A2T-MLM 34.5 -19.6 18.9 -9.6 21.0 -17.3 47.2 -11.4
BERT-SSMBA 29.5 -31.2 21.1 1.0 23.3 -8.3 51.0 -4.3
BERT-BackTranslation 33.1 -22.8 19.2 -8.1 24.0 -5.5 48.3 -9.4

RoBERTa-Natural 34.3 18.6 19.9 48.4
RoBERTa-A2T 12.4 -63.8 12.1 -34.9 7.6 -61.8 8.3 -82.9
RoBERTa-A2T-MLM 19.5 -43.1 17.1 -8.1 13.0 -34.7 40.3 -16.7
RoBERTa-SSMBA 24.0 -30.0 21.8 17.2 19.3 -3.0 48.7 0.6
RoBERTa-BackTranslation 28.9 -15.7 18.3 -1.6 16.1 -19.1 48.6 0.4

A2T-MLM

BERT-Natural 76.6 37.7 47.1 77.9
BERT-A2T 61.7 -19.5 33.2 -11.9 42.5 -9.8 76.7 -1.5
BERT-A2T-MLM 48.3 -36.9 24.7 -34.5 27.9 -40.8 37.1 -52.4
BERT-SSMBA 59.6 -22.2 36.2 -4.0 44.8 -4.9 76.9 -1.3
BERT-BackTranslation 68.8 -10.2 36.3 -3.7 46.8 -0.6 77.3 -0.8

RoBERTa-Natural 81.5 40.9 53.2 78.6
RoBERTa-A2T 69.8 -14.4 38.4 -6.1 45.2 -15.0 76.5 -2.7
RoBERTa-A2T-MLM 37.0 -54.6 28.5 -30.3 25.8 -51.5 35.2 -55.2
RoBERTa-SSMBA 57.0 -30.1 43.1 5.4 47.8 -10.2 78.3 -0.4
RoBERTa-BackTranslation 74.3 -8.8 41.1 0.5 43.8 -17.7 79.1 0.6

Table 4: Attack success rate of A2T and A2T-MLM attacks. A.S.% represents the attack success rates and ∆% column represents
the percent change between the attack success rate of natural training and the different training methods.

Attack Model
IMDB MR Yelp SNLI

A.S.% ∆% A.S.% ∆% A.S.% ∆% A.S.% ∆%

TextFooler

BERT-Natural 85.0 91.6 55.9 97.5
BERT-A2T 66.0 -22.4 90.6 -1.1 57.9 3.6 92.2 -5.4
BERT-A2T-MLM 88.2 3.8 89.0 -2.8 67.7 21.1 94.1 -3.5

RoBERTa-Natural 95.2 94.4 74.5 96.7
RoBERTa-A2T 82.4 -13.4 91.0 -3.6 68.7 -7.8 91.4 -5.5
RoBERTa-A2T-MLM 72.9 -23.4 88.6 -6.1 71.7 -3.8 90.8 -6.1

BAE

BERT-Natural 60.5 52.6 37.8 76.7
BERT-A2T 46.7 -22.8 51.5 -2.1 34.4 -9.0 75.9 -1.0
BERT-A2T-MLM 52.4 -13.4 43.8 -16.7 31.3 -17.2 60.9 -20.6

RoBERTa-Natural 65.5 56.4 44.4 75.6
RoBERTa-A2T 56.8 -13.3 54.7 -3.0 38.0 -14.4 76.0 0.5
RoBERTa-A2T-MLM 42.3 -35.4 48.3 -14.4 28.7 -35.4 61.2 -19.0

PWWS

BERT-Natural 87.5 82.1 67.9 98.5
BERT-A2T 70.9 -19.0 80.4 -2.1 65.4 -3.7 97.5 -1.0
BERT-A2T-MLM 87.1 -0.5 81.3 -1.0 72.2 6.3 97.5 -1.0

RoBERTa-Natural 96.6 83.8 77.9 98.2
RoBERTa-A2T 84.4 -12.6 81.9 -2.3 73.1 -6.2 97.1 -1.1
RoBERTa-A2T-MLM 73.5 -23.9 79.8 -4.8 70.7 -9.2 96.5 -1.7

PSO

BERT-Natural 43.8 81.6 - 40.3 92.1
BERT-A2T 16.5 -62.3 73.2 -10.3 26.4 -34.5 89.1 -3.3
BERT-A2T-MLM 29.9 -31.7 75.4 -7.6 34.4 -14.6 89.7 -2.6

RoBERTa-Natural 34.8 88.0 35.7 90.6
RoBERTa-A2T 12.9 -62.9 81.6 -7.3 21.6 -39.5 85.3 -5.8
RoBERTa-A2T-MLM 13.1 -62.4 77.5 -11.9 20.3 -43.1 84.8 -6.4

Table 5: Attack success rate of attacks from literature, including original TextFooler (Jin et al., 2019), BAE (Garg and
Ramakrishnan, 2020), PWWS (Ren et al., 2019), and PSO (Zang et al., 2020). A.S.% represents the attack success rates and ∆%
column represents the percent change between natural training and the different training methods.

952

Dataset Model A2T A2T-MLM TextFooler BAE PSO PWWS

IMDB BERT-A2T 94.60 75.87 93.96 78.42 87.00 89.14
MR BERT-A2T 65.90 53.25 57.56 31.96 36.57 47.76
Yelp BERT-A2T 92.00 77.78 87.17 73.88 72.44 83.21
SNLI BERT-A2T 56.43 47.10 41.99 42.71 41.67 39.84

Table 6: Accuracy of BERT-A2T on 1000 adversarial examples that have successfully fooled BERT-Natural.

Model
IMDB MR Yelp SNLI

Standard
Accuracy

Yelp
Accuracy

Standard
Accuracy

Yelp
Accuracy

Standard
Accuracy

IMDB
Accuracy

Standard
Accuracy

MNLI
Accuracy

BERT-Natural 93.97 92.13 85.40 90.60 96.34 88.31 90.29 73.34
BERT-A2T 94.49 92.50 85.61 88.45 96.68 89.24 90.16 73.79
BERT-A2T-MLM 93.05 90.67 83.80 85.32 95.85 85.01 87.87 70.93
BERT-SSMBA 93.94 91.59 85.33 89.49 96.28 88.54 90.23 73.27
BERT-BackTranslation 93.97 91.73 85.65 89.46 96.46 88.77 90.57 72.82

RoBERTa-Natural 95.26 94.09 87.52 93.42 97.26 91.94 91.56 77.66
RoBERTa-A2T 95.57 94.41 88.03 93.45 97.45 91.86 91.16 77.88
RoBERTa-A2T-MLM 94.71 94.48 86.49 92.93 96.84 90.44 88.56 74.82
RoBERTa-SSMBA 95.25 94.11 86.46 93.03 97.16 91.90 91.38 77.02
RoBERTa-BackTranslation 95.31 93.84 87.78 93.77 97.25 91.76 90.79 76.70

Table 7: Accuracy on in-domain and out-of-domain datasets. We can see that adversarial training can helps model outperform
both naturally trained models and models trained using data augmentation methods.

Model IMDB MR Yelp

BERT-Natural 7.78 33.43 12.78
BERT-A2T 10.74 34.25 13.18
BERT-A2T-MLM 9.12 32.17 11.14
BERT-SSMBA 7.21 32.21 10.94
BERT-BackTranslation 6.02 0.39 11.10

RoBERTa-Natural 0.35 0.01 -1.09
RoBERTa-A2T 0.43 0.45 -1.01
RoBERTa-A2T-MLM 0.09 -0.12 -1.13
RoBERTa-SSMBA 0.26 0.05 -0.43
RoBERTa-BackTranslation -0.04 0.05 -1.06

Table 8: AOPC scores of the LIME explanations for each
model. Higher AOPC scores indicates that the model is more
interpretable.

0.0 0.2 0.4 0.6 0.8 1.0
Gamma

20

30

40

50

60

70

80

At
ta

ck
 S

uc
ce

ss
 R

at
e

Attack Success Rate

A2T
A2T-MLM

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Gamma

92.5

93.0

93.5

94.0

94.5

Ac
cu

ra
cy

Standard and Cross-domain Accuracies

Standard
Cross-domain

(b)
Figure 2: Left: Attack success rates of A2T and A2T-MLM
attacks on BERT-A2T model trained on IMDB dataset. Right:
Standard accuracies and cross-domain accuracies (on Yelp)
for the same model.

trained using A2T-MLM attack in standard accu-
racy and cross-domain accuracy in all but one case.
This suggests that using counter-fitted embeddings
can generate higher quality adversarial examples
than masked language models. Since masked lan-
guage models are only trained to predict words that
are statistically most likely to appear, it is likely
that it will propose words that do change the se-

mantics of the text entirely; this can lead to false
positive adversarial examples.

We also hypothesize that A2T-MLM’s tendency
to generate false positive adversarial examples is
the reason why RoBERTa appears to be more vul-
nerable to A2T-MLM than BERT models. Since
RoBERTa models tend to have better generalization
capability than BERT models, RoBERTa models
are more likely to predict the correct labels for false
positive adversarial examples that A2T-MLM can
generate (whereas BERT models can predict the
wrong labels for false positive adversarial examples
and appear falsely robust).

Effect of Gamma Recall γ, which is the desired
percentage of adversarial examples to generate in
every epoch. To study how it affects the results
of adversarial training, we train BERT model on
IMDB dataset with A2T method and γ value rang-
ing from 0 (no adversarial training) to 1.0. Figure 2
shows the attack success rates, standard accuracies,
and cross-domain accuracies.

We can see from Figure 2 (a) that higher γ does
not necessarily mean that our trained model is more
robust, with γ = 0.2 producing model that is more
robust than others. Overall, we can see that adver-
sarial training is insensitive to the specific choice
of γ and a smaller γ can be used for faster training.

Effect of Adversarial Training on Sentence Em-
bedding In BERT (Devlin et al., 2018), the output
for [CLS] token represents the sentence-level em-

953

A2T

A2T-
MLM

Tex
tFo

ole
r

BAE
PS

O
PW

WS
0

5

10

15

20

25

30

L2
 D

ist
an

ce

IMDB

A2T

A2T-
MLM

Tex
tFo

ole
r

BAE
PS

O
PW

WS
0

5

10

15

20

25

30

L2
 D

ist
an

ce

MR

A2T

A2T-
MLM

Tex
tFo

ole
r

BAE
PS

O
PW

WS
0

5

10

15

20

25

30

L2
 D

ist
an

ce

Yelp

A2T

A2T-
MLM

Tex
tFo

ole
r

BAE
PS

O
PW

WS
0

5

10

15

20

25

30

L2
 D

ist
an

ce

SNLI

Average L2 Distance of [CLS] Embeddings of Original Input and Adversarial Example

Attacks Used to Generate Adversarial Examples

BERT-Natural
BERT-A2T

Figure 3: BERT-A2T decreases the `2 distance between [CLS] embeddings of original x and adversarial x′.

bedding that is used by the final classification layer.
For BERT-Natural and BERT-A2T , we measured
the `2 distance between the [CLS] embeddings of
original text x and its corresponding adversarial
example x′ using six different attacks8. We noticed
that across all cases, adversarial training decreases
the average `2 distance between x and x′, as shown
by Figure 3. This suggests that adversarial training
improves the robustness of models by encouraging
the model to learn a closer mapping of x and x′.

6 Conclusion
In this paper, we have presented a practical

vanilla adversarial training process called A2T that
uses a new adversarial attack designed to generate
adversarial examples quickly. We demonstrated
that using A2T allows us to improve model’s ro-
bustness against several different types of adversar-
ial attacks that have been proposed from literature.
Also, we have shown that models trained using
A2T can achieve better standard accuracy and/or
cross-domain accuracy than baseline models.

References
Alan Akbik, Duncan Blythe, and Roland Vollgraf.

2018. Contextual string embeddings for sequence
labeling. In COLING 2018, 27th International Con-
ference on Computational Linguistics, pages 1638–
1649.

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,
Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. arXiv preprint arXiv:1804.07998.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical

8The adversarial examples used were the same examples
used to generate results for Table 6

Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Nicholas Carlini, Anish Athalye, Nicolas Papernot,
Wieland Brendel, Jonas Rauber, Dimitris Tsipras,
Ian J. Goodfellow, Aleksander Madry, and Alexey
Kurakin. 2019. On evaluating adversarial robust-
ness. CoRR, abs/1902.06705.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Con-
stant, Mario Guajardo-Cespedes, Steve Yuan, Chris
Tar, Yun-Hsuan Sung, Brian Strope, and Ray
Kurzweil. 2018. Universal sentence encoder. CoRR,
abs/1803.11175.

Hanjie Chen and Yangfeng Ji. 2020. Learning varia-
tional word masks to improve the interpretability of
neural text classifiers. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 4236–4251, On-
line. Association for Computational Linguistics.

Minhao Cheng, Jinfeng Yi, Huan Zhang, Pin-Yu Chen,
and Cho-Jui Hsieh. 2018. Seq2sick: Evaluating the
robustness of sequence-to-sequence models with ad-
versarial examples. CoRR, abs/1803.01128.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Xinshuai Dong, Anh Tuan Luu, Rongrong Ji, and Hong
Liu. 2021. Towards robustness against natural lan-
guage word substitutions. In International Confer-
ence on Learning Representations.

Zhendong Dong, Qiang Dong, and Changling Hao.
2010. Hownet and its computation of meaning. In
Proceedings of the 23rd International Conference on
Computational Linguistics: Demonstrations, COL-
ING ’10, page 53–56, USA. Association for Compu-
tational Linguistics.

Krishnamurthy Dvijotham, Sven Gowal, Robert Stan-
forth, Relja Arandjelovic, Brendan O’Donoghue,

http://arxiv.org/abs/1902.06705
http://arxiv.org/abs/1902.06705
http://arxiv.org/abs/1803.11175
https://doi.org/10.18653/v1/2020.emnlp-main.347
https://doi.org/10.18653/v1/2020.emnlp-main.347
https://doi.org/10.18653/v1/2020.emnlp-main.347
http://arxiv.org/abs/1803.01128
http://arxiv.org/abs/1803.01128
http://arxiv.org/abs/1803.01128
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://openreview.net/forum?id=ks5nebunVn_
https://openreview.net/forum?id=ks5nebunVn_

954

Jonathan Uesato, and Pushmeet Kohli. 2018. Train-
ing verified learners with learned verifiers. CoRR,
abs/1805.10265.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2017. Hotflip: White-box adversarial exam-
ples for text classification. In ACL.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun
Qi. 2018. Black-box generation of adversarial text
sequences to evade deep learning classifiers. 2018
IEEE Security and Privacy Workshops (SPW), pages
50–56.

Siddhant Garg and Goutham Ramakrishnan. 2020.
Bae: Bert-based adversarial examples for text clas-
sification.

Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2014. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572.

Po-Sen Huang, Robert Stanforth, Johannes Welbl,
Chris Dyer, Dani Yogatama, Sven Gowal, Krish-
namurthy Dvijotham, and Pushmeet Kohli. 2019.
Achieving verified robustness to symbol substitu-
tions via interval bound propagation. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 4083–4093, Hong
Kong, China. Association for Computational Lin-
guistics.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.

Robin Jia, Aditi Raghunathan, Kerem Göksel, and
Percy Liang. 2019. Certified robustness to adver-
sarial word substitutions. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4129–4142, Hong Kong,
China. Association for Computational Linguistics.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xi-
aodong Liu, Jianfeng Gao, and Tuo Zhao. 2020.
SMART: Robust and efficient fine-tuning for pre-
trained natural language models through principled
regularized optimization. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 2177–2190, Online. Asso-
ciation for Computational Linguistics.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2019. Is bert really robust? natural lan-
guage attack on text classification and entailment.
ArXiv, abs/1907.11932.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio.
2016. Adversarial examples in the physical world.
CoRR, abs/1607.02533.

Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris
Brockett, Ming-Ting Sun, and Bill Dolan. 2021.
Contextualized perturbation for textual adversarial
attack.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,
and Xipeng Qiu. 2020. Bert-attack: Adversarial at-
tack against bert using bert.

Xiaodong Liu, Hao Cheng, Pengcheng He, Weizhu
Chen, Yu Wang, Hoifung Poon, and Jianfeng Gao.
2020. Adversarial training for large neural language
models.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. Fixing
weight decay regularization in adam. CoRR,
abs/1711.05101.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018.
Towards deep learning models resistant to adversar-
ial attacks. In International Conference on Learning
Representations.

George A. Miller. 1995. Wordnet: A lexical database
for english. Commun. ACM, 38(11):39–41.

Takeru Miyato, Andrew M. Dai, and Ian Goodfel-
low. 2017. Adversarial training methods for semi-
supervised text classification.

John Morris, Eli Lifland, Jin Yong Yoo, and Yanjun
Qi. 2020a. TextAttack: A framework for adversar-
ial attacks in natural language processing. ArXiv,
abs/2005.05909.

John X. Morris, Eli Lifland, Jack Lanchantin, Yangfeng
Ji, and Yanjun Qi. 2020b. Reevaluating adversarial
examples in natural language.

Nikola Mrksic, Diarmuid Ó Séaghdha, Blaise Thom-
son, Milica Gasic, Lina Maria Rojas-Barahona, Pei
hao Su, David Vandyke, Tsung-Hsien Wen, and
Steve J. Young. 2016. Counter-fitting word vectors
to linguistic constraints. In HLT-NAACL.

Nathan Ng, Kyunghyun Cho, and Marzyeh Ghassemi.
2020. SSMBA: Self-supervised manifold based data
augmentation for improving out-of-domain robust-
ness. In Proceedings of the 2020 Conference on

http://arxiv.org/abs/1805.10265
http://arxiv.org/abs/1805.10265
http://arxiv.org/abs/2004.01970
http://arxiv.org/abs/2004.01970
https://doi.org/10.18653/v1/D19-1419
https://doi.org/10.18653/v1/D19-1419
http://arxiv.org/abs/1707.07328
http://arxiv.org/abs/1707.07328
https://doi.org/10.18653/v1/D19-1423
https://doi.org/10.18653/v1/D19-1423
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/2009.07502
http://arxiv.org/abs/2009.07502
http://arxiv.org/abs/2004.09984
http://arxiv.org/abs/2004.09984
http://arxiv.org/abs/2004.08994
http://arxiv.org/abs/2004.08994
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
http://arxiv.org/abs/1605.07725
http://arxiv.org/abs/1605.07725
http://arxiv.org/abs/2004.14174
http://arxiv.org/abs/2004.14174
https://doi.org/10.18653/v1/2020.emnlp-main.97
https://doi.org/10.18653/v1/2020.emnlp-main.97
https://doi.org/10.18653/v1/2020.emnlp-main.97

955

Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1268–1283, Online. Associa-
tion for Computational Linguistics.

Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott,
Michael Auli, and Sergey Edunov. 2019. Facebook
fair’s wmt19 news translation task submission. In
Proc. of WMT.

Dong Nguyen. 2018. Comparing automatic and hu-
man evaluation of local explanations for text clas-
sification. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 1069–
1078, New Orleans, Louisiana. Association for Com-
putational Linguistics.

Bo Pang and Lillian Lee. 2005. Seeing stars: Ex-
ploiting class relationships for sentiment categoriza-
tion with respect to rating scales. In Proceed-
ings of the 43rd Annual Meeting of the Association
for Computational Linguistics (ACL’05), pages 115–
124, Ann Arbor, Michigan. Association for Compu-
tational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che.
2019. Generating natural language adversarial ex-
amples through probability weighted word saliency.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
1085–1097, Florence, Italy. Association for Compu-
tational Linguistics.

Marco Túlio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. "why should I trust you?": Ex-
plaining the predictions of any classifier. CoRR,
abs/1602.04938.

W. Samek, A. Binder, G. Montavon, S. Lapuschkin,
and K. Müller. 2017. Evaluating the visualization
of what a deep neural network has learned. IEEE
Transactions on Neural Networks and Learning Sys-
tems, 28(11):2660–2673.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:

System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Qizhe Xie, Zihang Dai, Eduard H. Hovy, Minh-Thang
Luong, and Quoc V. Le. 2019. Unsupervised data
augmentation. CoRR, abs/1904.12848.

Jin Yong Yoo, John X. Morris, Eli Lifland, and Yanjun
Qi. 2020. Searching for a search method: Bench-
marking search algorithms for generating nlp adver-
sarial examples.

Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu,
Meng Zhang, Qun Liu, and Maosong Sun. 2020.
Word-level textual adversarial attacking as combina-
torial optimization. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 6066–6080, Online. Association
for Computational Linguistics.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems 28, pages
649–657. Curran Associates, Inc.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom
Goldstein, and Jingjing Liu. 2019. Freelb: En-
hanced adversarial training for language understand-
ing. CoRR, abs/1909.11764.

https://doi.org/10.18653/v1/N18-1097
https://doi.org/10.18653/v1/N18-1097
https://doi.org/10.18653/v1/N18-1097
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.18653/v1/P19-1103
http://arxiv.org/abs/1602.04938
http://arxiv.org/abs/1602.04938
https://doi.org/10.1109/TNNLS.2016.2599820
https://doi.org/10.1109/TNNLS.2016.2599820
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
http://arxiv.org/abs/1904.12848
http://arxiv.org/abs/1904.12848
http://arxiv.org/abs/2009.06368
http://arxiv.org/abs/2009.06368
http://arxiv.org/abs/2009.06368
https://www.aclweb.org/anthology/2020.acl-main.540
https://www.aclweb.org/anthology/2020.acl-main.540
http://arxiv.org/abs/1909.11764
http://arxiv.org/abs/1909.11764
http://arxiv.org/abs/1909.11764

956

A Appendix
A.1 A2T and A2T-MLM Attacks

Here, we give more details about A2T and
A2T-MLM . We will use the framework introduced
by (Morris et al., 2020a) to break down adversar-
ial attacks into the following four components: (1)
goal function, (2) transformation, (3) a set of con-
straints, (4) search method.

Goal Function In this work, we perform untar-
geted attack since they are generally easier than
targeted attack. We aim to maximize the following
as our goal function:

1− P (y|x; θ) (4)

where P (y|x; θ) means the model’s confidence of
label y given input x and parameters θ.

Transformation

1. A2T Counter-fitted word embedding (Mrksic
et al., 2016)

2. A2T-MLM : BERT masked language model
(Devlin et al., 2018)

For both methods, we select the top 20 words
proposed as replacements. This helps us narrow
down our replacements to the best ones and save
time from considering less desirable replacements.

Constraints We use the following constraints for
both attacks:

• Part-of-speech Consistency: To preserve flu-
ency, we require that the two words being
swapped have the same part-of-speech. This
is determined by a part-of-speech tagger pro-
vided by Flair (Akbik et al., 2018), an open-
source NLP library.

• DistilBERT Semantic Textual Similarity
(STS) (Sanh et al., 2019): We require that
cosine similarity between the sentence encod-
ings of original text x and perturbed text x′

meet minimum threshold value of 0.9. We
use fine-tuned DistilBERT model provided by
Reimers and Gurevych (2019).

• Max modification rate: We allow only 10%
of the words to be replaced. This limits us
from modifying the text too much and causing
the semantics of the text to change.

Algorithm 2 A2T ’s Search Method: Gradient-
based Word Importance Ranking

Require: Original text x = (x1, x2, ...xn). Trans-
formation module T (x, i) that perturbs x by
replacing xi.

Ensure: Adversarial text xadv if found
1: Calculate I(xi) for all words xi by making one

forward and backward pass.
2: R ← ranking r1, . . . , rn of words x1, . . . , xn

by descending importance
3: x∗ ← x
4: for i = r1, r2, . . . , rn in R do
5: Xcand ← T (x∗, i)
6: if Xcand 6= ∅ then
7: x∗ ← arg maxx′∈Xcand

1− P (y|x; θ)
8: if x∗ fools the model then
9: return x∗ as xadv

10: end if
11: end if
12: end for

Also, for A2T attack, we require that the word
embeddings between original text x and perturbed
text x′ have minimum cosine similarity of 0.8.

The threshold values for word embedding simi-
larity and sentence encoding similarity were set
based on the recommendations by Morris et al.
(2020b), which noted that high threshold values
encourages strong semantic similarity between the
original text and the perturbed text.

Search Method Search method is responsible for
iteratively perturbing the original text x until we
discover an adversarial example xadv that causes
the model to mispredict. Algorithm 2 shows A2T
’s search algorithm. If the search method fails to
find an adversarial example by the time its search
is over, it has failed to generate one. It can also exit
preemptively if it has reached maximum number
of queries to the victim model. Such limit is called
query budget.

During training, we limit the search method to
making only 200 queries to the victim model for
faster generation of adversarial examples. For eval-
uation using A2T and A2T-MLM , we increase the
query budget to 2000 queries for a more extensive
search. For other attacks such as TextFooler (Jin
et al., 2019), BAE (Garg and Ramakrishnan, 2020),
PWWS (Ren et al., 2019), and PSO (Zang et al.,
2020), the query budget is set to 5000.

