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Abstract

Understanding the semantic meaning of con-
tent on the web through the lens of entities and
concepts has many practical advantages. How-
ever, when building large-scale entity extrac-
tion systems, practitioners are facing unique
challenges involving finding the best ways to
leverage the scale and variety of data avail-
able on internet platforms. We present learn-
ings from our efforts in building an entity ex-
traction system for multiple document types
at large scale using Transformers. We empir-
ically demonstrate the effectiveness of multi-
lingual, multi-task and cross-document type
learning. We also discuss the label collection
schemes that help to minimize the amount of
noise in the collected data.

1 Introduction

Content understanding finds myriad applications in
large scale recommendation system. One example
is ranking content with sparse data (Davidson et al.,
2010; Amatriain and Basilic, 2012). In such scenar-
ios, content signals can offer better generalization
to overcome cold-start problems (Lam et al., 2008;
Timmaraju et al., 2020). Another example is ex-
plaining the working theory of the recommendation
system to users and regulators (Chen et al., 2019).
In such scenarios, content signals can offer human
understandable features.

This paper presents an overview of the entity
extraction platform we build for our recommen-
dation system. Along the way, we overcome sev-
eral unique challenges: Multiple Languages - since
our business operates world wide and supports lan-
guages from various countries, it is imperative to
build a multi-lingual system; Multiple Entity Types -
we want to extract multiple types of entities includ-
ing named entities like people and places, as well
as commercial entities like products and brands;
Multiple Document Types - our system should work
across multiple structured document types such as

web pages, ads and user generated content; Scale
- owing to our scale, we need a system that is re-
sponsive and resource efficient to process billions
of documents per day.

In the subsequent sections, we will review the
methodology to collect data and the ideas behind
the models. Then we will discuss techniques to
deploy these models efficiently.

2 Notation and Setup

An entity is a human interpretable concept that is
grounded in a real world notion. A mention is a
word or a phrase in the text that refers to an entity.
For example, both “Joe Biden” and “Biden” can
be mentions for the same entity that represents the
46th president of the United States. Entity extrac-
tion is the task of extracting mentions from a given
text and linking them to entities. Each instance
of this problem consists of a structured document
with text attributes like title and description, as well
as categorical features and metadata, from which
we wish to extract multiple entities. We catego-
rize the entity extraction tasks into closed-world
task and open-world task. The former is applica-
ble when we have a fixed predefined universe of
entities, say, topics from Wikipedia; while the lat-
ter is needed when such a list is not available e.g.
products.

3 Open-World Entity Extraction

In this section, we discuss the data labeling and
the model architecture for open-world entity ex-
traction.

3.1 Data Labeling
Collecting data for the open-world entity extrac-
tion presents unique challenges since it entails col-
lecting free-form inputs from raters. We design a
widget to let raters highlight spans of text, generat-
ing a set of positive mentions per example. Each
example is rated by multiple raters and there are



70

different ways to combine mentions from all raters:
And – select tokens highlighted by all raters;
Or – select tokens highlighted by any rater;
Majority – select tokens highlighted by the major-
ity of raters.

We evaluate these methods by comparing to in-
house experts. Based on the evaluation in Table 1,
we choose the Majority method, which provides
the best label quality, for our label generating.

Method Exact Match F1
And 0.775
Or 0.706

Majority 0.794

Table 1: Exact Match F1 is the F1 score of the aggre-
gated rater labels of extract match compared with the
expert labels.

In order to audit and enhance the quality of the la-
beled data, we prepare detailed instructions on nav-
igating the user interface, task-specific reasoning
process, sample tasks elucidating the rules, and ex-
planations for handling corner cases. Additionally,
we routinely inject known examples to calibrate
external raters against our experts. We periodically
remove and retrain raters whose outputs digress
significantly from the experts. Furthermore, we
also track their consistency with consensus labels
to detect outliers. Finally, we also perform some
rule-based sanitization to rectify common errors.
For example, we find that raters often fail to select
all the occurrences of a same piece of text. Thus,
we broadcast selected mentions back to the entire
input to capture all occurrences.

3.2 Modeling
We divide the open world-entity extraction task into
the extraction stage and the clustering stage. There
are a few existing researches on similar problems,
e.g. Lin et al. (2012); Cao et al. (2020). However,
our method is a novel one in that it completely gets
rid of a predefined entity list.

3.2.1 Extraction Stage
In the extraction stage, We try to find all men-
tions in a text using a sequence to sequence model.
As depicted in Figure 1a, our extraction model
is based on a pre-trained cross-lingual language
model (Lample and Conneau, 2019). For com-
putation efficiency, we choose a multiple layer
perception on top of XLM instead of conditional
random field layer (Lafferty et al., 2001). We

find that the simple multiple layer perception with
take-continuous-positive-blocks decoding in the se-
quence works good enough to provide high quality
mentions.

3.2.2 Semi-supervised Clustering Stage
In the clustering stage, we try to collapse all men-
tions referring to the same concept to a canonical
entity. Intuitively, one can run k-means algorithm
on embeddings coming from the extraction stage.
However we found that the performance of this
approach not acceptable for two reasons: The k-
means is based on a uniform distribution assump-
tion which the embeddings do not follow; Embed-
dings taken from extraction model fail to align with
the human interpretation for two mentions being
the same concept.

We solve the problem with a semi-supervised
graph based approach, where we build a dedicated
model as illustrated in Figure 1b to predict links
between mentions if they represent the same un-
derlying entity. This model is trained on a dataset
specialized in mention concept similarity that we
collect separately. We adopt the Siamese neural
network architecture in order to scale for process-
ing all pairs between hundreds of millions of doc-
uments during graph construction. Then we run
Louvain community detection algorithm (Blondel
et al., 2008) on the resulting graph to collapse close
mentions into an entity. We find that this could
significantly improve the quality of the clusters.

4 Closed-World Entity Extraction

In this section, we discuss the data labeling and the
model architecture for closed-world entity extrac-
tion.

4.1 Data Labeling
In an ideal world, we would want our raters to se-
lect the mentions freely from input text and attach
the corresponding Wikipedia entity to it. But that
makes it hard for raters to reach any consensus, and
impossible for us to perform any quality control.
Instead, we make the task a multiple-choice, where
we extract beforehand a list of possible mentions,
alongside with their potential Wikipedia link can-
didates, with the help of a pre-defined dictionary.
Now the rater only need to choose all the positive
mentions, and their corresponding Wikipedia entity,
both from a given list.

Similar to open-world, we perform quality anal-
ysis on different consensus methods. Here we treat
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Figure 1: (a) The open-world extraction model, where each sentence piece is classified as B/I/O/E; (b) The open-
world link prediction model, which predicts if two mentions refer to the same entity. (c) The closed-world linking
model, which predicts the probability that a mention corresponds to each entity candidate (entity embeddings are
generated offline and fetched from the storage at inference time).

wiki entities selected by 2 out of 5 raters to be our
community ground truth. This method, compared
against the oracle labels provided by in-house ex-
perts, can achieve 80% chance of having all ex-
tracted entities being correct, and 70% chance of
having all correct entities being extracted. Both
number would further increase by 14% if we toler-
ate one single error. As reference, the F1 score of
an individual average rater on this task is 0.68.

4.2 Modeling
Similar to the open-world model, we break up the
task into the extraction stage and the linking stage.

4.2.1 Extraction Stage
Instead of finding possible entity links dynamically
after the mentions are extracted, we rely on a static
dictionary, containing mapping from various men-
tion aliases to entities, to extract all possible links
in advance using fuzzy string matching. This sim-
plifies the labeling effort, while also reduces the
computation time for both training and inference.

The performance would then heavily depend on
the quality of the dictionary. We recursively trace
Wikipedia’s Redirection, which defines a mapping
from a mention to an entity, and Disambiguation
pages, which maps a mention onto multiple possi-
ble entities, to build the dictionary. Various rule-
based clean-ups are also performed for the men-
tions, entities and the mapping.

4.2.2 Linking Stage
The linking model then computes the similarity be-
tween the mention and its candidate entities. The
mention tower is similar to the open world model,
where we run the input document through a lan-
guage model and pool the outputs to get embed-
dings for the mentions. On the entity side, its
Wikipedia texts are summarized offline into embed-
dings. For each mention-entity pair, the mention

embedding is broadcasted to dot with its candidate
entity embeddings after a linear projection, to out-
put a relevance score, as shown in Figure 1c.

We also experimented with first predicting a
mention score as in the open world case, but found
little difference in the final entity metric. Addi-
tional supervision on salience is also added for
entities based on the number of votes received
from the raters. We concatenate these scores with
some counter-based features such as the prior of the
mention-entity link, to get the final linking score
after feed forward layer.

5 Scaling Challenges

To have a good coverage over various documents,
our system needs to scale across languages, entity
types and document types. Naively, we can de-
velop a model for each triple (language, entity type,
document type) and run a combination of models
for each piece of document. However, this would
bring significant overhead in model development
and model serving. Therefore, our system tackles
these scaling challenges with the following tech-
niques and train a single model instead.

5.1 Cross Language Model and Fine-Tuning

Transformer (Vaswani et al., 2017) based pre-
trained language model has led to strong improve-
ments on various natural language processing tasks
(Wang et al., 2018). With cross-lingual pretraining,
XLM (Lample and Conneau, 2019) can achieve
state-of-art results cross languages. In our work, we
employ XLM and further improve the prediction
by fine-tuning on multilingual data. We compare
the performance of zero-shot and fine-tuned prod-
uct extraction models on ads in Table 2. While the
zero-shot model predicts reasonably for Romance
languages, e.g. French (fr), Portuguese (pt), it has
a poor performance for Arabic (ar) and Vietnamese
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(vi). This is expected since the latter have very dif-
ferent characteristics from English. By fine-tuning
on all-language data, we see a substantial boost in
model performance for all languages.

Zero-Shot Fine-Tuned
Language Precision Recall F1 Precision Recall F1

ar 0.2556 0.0676 0.1069 0.3170 0.5331 0.3976
da 0.2437 0.4037 0.3040 0.4093 0.5444 0.4673
de 0.2966 0.3670 0.3281 0.3349 0.5921 0.4279
en 0.4301 0.6750 0.5254 0.4251 0.7036 0.5300
es 0.2739 0.3500 0.3073 0.3439 0.5955 0.4360
fr 0.3499 0.3584 0.3541 0.4067 0.5988 0.4844
it 0.3157 0.3626 0.3375 0.4152 0.6146 0.4956
nl 0.2466 0.4673 0.3228 0.3316 0.5299 0.4079
pt 0.3075 0.4395 0.3618 0.4122 0.6555 0.5061
ru 0.3144 0.4467 0.3691 0.4300 0.7021 0.5334
vi 0.1886 0.0283 0.0492 0.3653 0.6888 0.4774

Overall 0.3315 0.3834 0.3556 0.3861 0.6331 0.4797

Table 2: Multilingual fine-tuning of product name ex-
traction model. Zero-shot model is trained on English
only; fine-tuned model is trained on all languages (one-
tenth of English sample size for each new language).

5.2 Multi-Task Learning For Extraction,
Clustering, and Linking

Multi-task learning (Caruana, 1997) is a subfield
of machine learning, in which multiple tasks are
simultaneously learned by a shared model. Such
approaches offer advantages like improved data ef-
ficiency, reduced overfitting through shared repre-
sentations, and fast learning by leveraging auxiliary
information. It has been proved effective in various
applications like Computer Vision (Zhang et al.,
2014) and Natural Language Processing (Vaswani
et al., 2017). In previous subsections, we train
models separately and predict in parallel for differ-
ent entity types. This is advantageous in that we
can train a model for a new entity type or update
the model for an existing entity type without af-
fecting other entity models. However, this causes
ever-increasing inference costs as new entity types
are considered. Currently we have 5 entity types
and 7 Transformer-based models, which means to
run 7 XLM encoders for every ad, web page, etc.
The heavy inference cost is a major blocker for
our service. To resolve this issue, we developed
the unified model structure and training framework.
We are able to co-train all entity extraction and
linking models with a shared XLM encoder. Since
the encoding part accounts for the majority of all
computation, the inference time is reduced to 1/7
of before and unblocks the service. Table 3 dis-
plays the performance of the shared-encoder mod-
els trained with the framework. It can be seen that

Task Metric Separate Models Shared-Encoder Models

Extraction
Precision 0.4301 0.4171

Recall 0.6750 0.6671
F1 0.5254 0.5133

Closed-World Accuracy 0.6729 0.6815

Table 3: Co-train product name extraction and closed-
world linking models with a shared XLM encoder

Task Metric
Ads Model Ads+Web Pages Model

Ads Web Pages Ads Web Pages

Extraction
Precision 0.4301 0.4519 0.4315 0.5148

Recall 0.6750 0.5167 0.6951 0.6906
F1 0.5254 0.4821 0.5325 0.5899

Closed-World Accuracy 0.6729 0.6106 0.6811 0.6852

Table 4: Transfer learning between product name ex-
traction and closed-world linking models between ads
and web pages data. The first model is trained on ads
only; the second is trained on both ads and web pages.
The sample sizes of ads and web pages are the same.

they have a performance comparable with that of
separately trained models. While the closed-world
linking model has a slightly better accuracy with
co-training, the product name extraction model per-
forms slightly worse. This is probably because a
single XLM of a moderate size may not encode all
info required by different entity extraction heads.
We expect increasing the capacity of encoder will
reduce the conflicts. To sum up, the unified model
permits new entity types with little inference cost
and only slight performance drop.

5.3 Cross Document Transfer Learning

Transfer learning aims at improving the perfor-
mance of target models on target domains by trans-
ferring the knowledge contained in different but
related source domains (Zhuang et al., 2021). Dif-
ferent transfer learning approaches are developed
from zero-shot transfer learning (Xian et al., 2017)
to few-shot transfer learning (Vinyals et al., 2016).
We incorporate the transfer learning framework in
our system to solve cross document types challenge.
We run experiments on zero-shot transfer learning
and few-shot transfer learning as in Table 4. As
we can see, the transfer learning could boost the
performance of the model on both document types.

6 Conclusion And Future Work

In this paper, we present the platform of the en-
tity extraction at giant internet company’s scale.
We discuss the practical learnings from our work.
In the future, we would like to improve the effi-
ciency of Transformer related language model as
discussed in (Tay et al., 2020).
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