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Abstract
In this article, we tackle the math word problem,
namely, automatically answering a mathemati-
cal problem according to its textual description.
Although recent methods have demonstrated
their promising results, most of these methods
are based on template-based generation scheme
which results in limited generalization capabil-
ity. To this end, we propose a novel human-
like analogical learning method in a recall and
learn manner. Our proposed framework is com-
posed of modules of memory, representation,
analogy, and reasoning, which are designed to
make a new exercise by referring to the exer-
cises learned in the past. Specifically, given a
math word problem, the model first retrieves
similar questions by a memory module and
then encodes the unsolved problem and each
retrieved question using a representation mod-
ule. Moreover, to solve the problem in a way
of analogy, an analogy module and a reasoning
module with a copy mechanism are proposed to
model the interrelationship between the prob-
lem and each retrieved question. Extensive
experiments on two well-known datasets show
the superiority of our proposed algorithm as
compared to other state-of-the-art competitors
from both overall performance comparison and
micro-scope studies.

1 Introduction

The task of Math Word Problem (MWP) aims at
automatically solving a mathematical question ac-
cording to its textual description. Given a prob-
lem description, a model needs to understand the
relevant quantities and reason the corresponding
expression, which is a difficult task because it re-
quires the model to learn mathematics knowledge
from the labeled problem and generalize the knowl-
edge to the unseen problems.

In fact, great efforts have been made to address
the MWPs in the research community. Boosted

*Both authors contributed equally to this research.
†Corresponding author.

Figure 1: Illustration of our proposed framework for
solving math word problems in a recall and learn man-
ner.

by the proliferation of deep learning techniques,
Seq2Seq-based models have been developed to
solve MWPs. Wang et al. (2017) presented a large-
scale MWP dataset Math23K and proposed an
RNN-based framework with a number mapping
technique, which aims to generate a math template
first, and then fill the extracted number from the
problem into the slots of the generated template
to obtain an expression. This two-stage method is
widely used as a baseline by the latest papers, such
as Math-EN (Wang et al., 2018), GTS (Xie and
Sun, 2019), Graph2Tree (Zhang et al., 2020b), Ape
(Zhao et al., 2020) and so on (Wang et al., 2019b;
Li et al., 2019).

Despite its value and significance, the math word
problem has not been well addressed due to the fol-
lowing challenges: 1) Although promising results
have been reported, the aforementioned models all
use the template-based framework to solve MWPs,
such a two-stage process may introduce systematic
cumulative errors. In light of this, how to solve
MWPs properly without using the template is a
non-trivial task. 2) Furthermore, instead of learning
through a single training example, the way human
learn often rely on the so-called analogical learning
method, which is able to explore the inherent laws
between various cases and generalize them to new
examples (Schwartz et al., 2016; Hope et al., 2017).
Therefore, how to combine the analogical learning



787

method in a unified framework is worth exploring.
To address the aforementioned issues, as re-

vealed in Figure 1, we design a novel memory-
augmented model named REAL (short for “REcall
And Learn”) to solve the MWP task in an end-to-
end manner. REAL is able to recall some familiar
questions that have been solved when solving a new
problem, and learns to generate a similar solution in
an analogical way. Specifically, REAL model first
initializes a memory module by a dataset formed
with questions and their expressions. When solv-
ing a problem, the memory module is utilized to
retrieve the most similar questions as references ac-
cording to the unsolved problem. Next, a represen-
tation module is proposed to extract item memories
of the unsolved problem and the retrieved ques-
tion. Thereafter, we employ an analogy module
to construct relational memory based on the item
memories. Finally, a reasoning module is applied
to generate the expression of the unsolved problem
by combining the generation and copy mechanisms.
Extensive experiments show that we have achieved
competitive performance on MWP task. Moreover,
our proposed model is able to improve the perfor-
mance by retrieving more questions, which shows
the model has the ability to learn by analogy.

The main contributions of this work are summa-
rized as follows:

• To the best of our knowledge, this is the first
model that learns to solve math word prob-
lems using human-like analogical learning
way.

• We develop a novel memory-augmented
framework combined with the copy mecha-
nism, REAL, to solve MWPs in a recall and
learn manner, in which the model is composed
of modules of memory, representation, anal-
ogy and reasoning.

• Extensive experiments are conducted on two
well-known datasets, and the results showed
that the REAL model not only achieves com-
petitive performance on MWP task, but also
demonstrates the unique ability of learning by
analogy. Meanwhile, we have released the
code to facilitate the research community.1

2 Related Work

In this section, we briefly review some literatures
that are tightly related to our work, namely, math

1https://github.com/sfeng-m/REAL4MWP

word problems and memory-augmented generative
methods.

2.1 Math Word Problems
In the MWP task, the algorithms are designed
to calculate a mathematical expression based on
the textual description of mathematical problems.
Therefore, the methods of natural language pro-
cessing can be widely used in MWP task. Most of
existing models adopt an encoder-decoder frame-
work, where the encoder is designed as a bidi-
rectional RNN and the decoder is designed as
a unidirectional RNN. For example, Wang et al.
(2017) constructed a large dataset and proposed
a Seq2Seq model that shows the superiority over
previous works. Wang et al. (2018) proposed an
equation normalization technique to solve the order-
duplicated problem and bracket-duplicated prob-
lem. Wang et al. (2019b) designed a tree-structure
model to predict the suffix expression of MWPs,
which reduces the target space of the problem. Xie
and Sun (2019) proposed a tree-structured gated
recurrent unit as decoder, which passes the informa-
tion through the expression tree in both top-down
and bottom-up manners. Zhang et al. (2020b) pro-
posed a graph encoder to enrich the quantity rep-
resentations in the problem, and decode the ex-
pression by a tree structure decoder. Zhao et al.
(2020) presented a new large-scale and template-
rich MWP dataset Ape210K and proposed a strong
Seq2Seq model, which achieves state-of-the-art
performance on both the Math23K and Ape210K
datasets. However, these models highly rely on a
method that extracting numbers from the question,
and then mapping numbers to the slots of the gen-
erated templates. Such a two-stage process will
introduce some systematic errors to the model.

Therefore, we consider exploring the pipeline of
generating expression directly instead of utilizing
the template as an intermediate process, in which
the model may gain more information from the
question description and benefit from the end-to-
end training strategy.

2.2 Memory-augmented Generative Methods
In the text generation task, there are mainly two
types of models, one is based on retrieval (Zhou
et al., 2016, 2018; Zhang et al., 2018; Chen et al.,
2019b; Wang et al., 2019a), and the other is based
on generation (Qian et al., 2018; Zhou and Wang,
2018; Dong et al., 2019; Han et al., 2019). The
retrieval algorithm can solve a particular task by

https://github.com/sfeng-m/REAL4MWP
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Figure 2: The illustration of our proposed REAL framework, which is composed of modules of memory, represen-
tation, analogy and reasoning. For an unsolved problem X , we first use maximum inner product search to find a
similar question Z from the memory module. And then the solution is generated with the copy mechanism in an
analogical manner.

constructing a knowledge base, which has high
scalability. However, the retrieval-based approach
cannot generate arbitrary results, which restricts
the generation space of the model. In addition, the
generative framework is able to store the knowl-
edge in the model with the form of parameters,
which has a certain generalization ability. How-
ever, in the knowledge-intensive task, it is diffi-
cult to remember all the knowledge in the param-
eters of generative model. To this end, many re-
searchers attempted to combine retrieval and gener-
ation methods for text generation task (Zhang et al.,
2017; Zhu et al., 2019; Lewis et al., 2020; Koncel-
Kedziorski et al., 2019; Chen et al., 2019a; Zhou
et al., 2020). In particular, Zhang et al. (2017) pro-
posed a memory-augmented neural model for Chi-
nese poetry generation, which investigates the con-
tribution of memory. Zhu et al. (2019) have demon-
strated a retrieval-enhanced response generation
approach for a dialogue system, which makes use
of informative content in retrieved results to gener-
ate new responses. Lewis et al. (2020) proposed a
retrieval-augmented generation method where the
parametric memory is a pre-trained Seq2Seq model
and the non-parametric memory is a pre-trained
neural retriever.

Our work is inspired by the success of incorpo-
rating memory into the generative model, showing
memory-augmented model is capable of achieving
strong performance in MWPs. Moreover, with the
help of the memory module, our proposed model is
able to solve the MWPs by analogy, which opens
up a new research direction on MWP task.

3 Method

The framework of REAL is presented in Figure 2.
In general, our proposed framework is composed
of four key components: 1) Memory Module is
constructed with a pre-trained model and is able to
return top-K similar questions given a math word
problem. 2) Representation Module is used to rep-
resent each token of the problem and the question
in an inductive manner. 3) Analogy Module is uti-
lized to aggregate the information of the problem
and the retrieved question for better generating the
correct expression. 4) Reasoning Module is com-
bined with a copy mechanism that acts as a decoder
to generate each token of the expression based on
the input sequence.

3.1 Problem Formulation
We denote a problem as X = {Xq, Xe}, where the
subscript q and e indicate the question description
and mathematical expression respectively. Xq is a
sequence of word tokens Xq = {x1q , x2q , · · · , xLq },
where L is the length of the question descrip-
tion. We let its K retrieved similar questions
Z = {Z1, Z2, · · · , ZK} where Zi = {Ziq, Zie}.
For each unsolved problem, the goal is to pre-
dict the token of Xe at each time step t, namely
yt ∈ V ∪Xq, where V is a generated vocabulary.

3.2 Memory Module
Aiming at solving a math word problem based on
its similar retrieved questions, we employ a mem-
ory module to acquire external knowledge for en-
hancing the learning ability of the unsolved prob-
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lem. The memory module is a non-parameter re-
triever, which is defined as the following formula-
tion:

p(Z|X) ≈ p(Zq|Xq) =
ef(Xq)T f(Zq)∑
Zq
ef(Xq)T f(Zq)

, (1)

where f(·) is a Word2Vec (Mikolov et al., 2013)
model followed by a mean pooling technique that
can represent a question description as a dense vec-
tor. In order to retrieve the similar question Zq
given an unsolved problem Xq, we first normal-
ize each vector and perform the MIPS (maximum
inner product search) algorithm, which is imple-
mented similar to the FAISS library (Johnson et al.,
2017). Note that we utilize p(Zq|Xq) to approxi-
mate p(Z|X) because only the problem description
is provided in the testing stage.

3.3 Representation Module
The representation module is leveraged to summa-
rize the representation of the problem and each re-
trieved question, which is called item memory. The
module is constructed by the Transformer (Vaswani
et al., 2017) block with a casual mask that simi-
lar to the settings of UniLM (Dong et al., 2019),
which can learn a bidirectional encoder and a uni-
directional decoder simultaneously. Specifically,
we perform a causal masking mechanism to allow
each position in the expression to attend to previous
positions, which preserve the auto-regressive prop-
erty during decoding. In addition, we realize the
representation of each token by summing the token,
segment and position embeddings, which is simi-
lar to the approach of BERT model (Devlin et al.,
2019). Next, follows the settings of UniLM (Dong
et al., 2019), to avoid the information-leakage prob-
lem during training, we use causal masks to ensure
that the representation of each token in expression
is only related to the previous states, as shown in
Figure 2.

Therefore, in the training stage, given a problem
{Xq, Xe} with its corresponding retrieved ques-
tions {Zq, Ze}, the representation module is em-
ployed to acquire the item memories Xq, Xe, Zq
and Ze with the same dimension of 768 respec-
tively, which efficiently learns the representations
of the problem and each retrieved question in an
inductive manner.

3.4 Analogy Module
In order to achieve the way of analogical learn-
ing, the model needs to aggregate contextual infor-

Figure 3: The overview of the reasoning module with a
copy mechanism.

mation from the item memories of the unsolved
problem and the retrieved questions. Therefore, we
first concatenate item memories to form input fea-
tures {Zq,Ze,Xq,Xe} and preprocess the input
features using the mechanisms of position encod-
ing and segment encoding. Thereafter, based on
the length of the input sequences Zq, Ze, Xq and
Xe, a casual mask can be constructed similar to
the approach of representation module, as shown
in Figure 2. The purpose of the casual mask is to
enhance the analogical learning capability by fo-
cusing the attention of unsolved problem on the
retrieved questions. In addition, the expression
part in a casual mask is designed to only attend to
the previous token, which avoids the information-
leakage problem. Lastly, we utilize a Transformer
network that similar to the representation module
for learning relational memories by analogy. There-
into, the output states of the analogy module are
denoted as relational memories Ẑq, Ẑe, X̂q and X̂e

respectively. Note that Ẑq and Ẑe are the outputs
of the last layer, and the X̂q and X̂e are the outputs
of penultimate layers.

In order to extract the knowledge from the re-
trieved question {Zq, Ze}, we further employ a
classifier C ∈ R768×|V | to solve the question
description of Zq and propose an auxiliary loss
Linductive to navigate the learning direction of the
analogy module, which is formulated as follows:

Linductive = −
N∑
t

logpθa(z
t
e|Zq, z1:t−1e ), (2)
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where zte indicates the tth token of Ze, and θa rep-
resents the parameters of analogy module.

3.5 Reasoning Module
Taking the structure of the word math problem into
account, we know that the operands of an expres-
sion are likely to come from the problem descrip-
tion Xq. Therefore, we design a reasoning module
with a copy mechanism (See et al., 2017), which
is build based on the last layer of analogy module.
As shown in Figure 3, given a decoder state x̂te,
the vocabulary distribution pg(yt|Xq) and the copy
distribution pc(yt|Xq) are formulated as follows:

pg(yt|Xq) =
eφg(yt)∑
y∈V e

φg(y)
, (3)

pc(yt|Xq) =
1

h

∑
j≤h

∑
i:xi=yt

φjx(xi)∑
xk∈Xq

φjx(xk)
, (4)

where the generated probability pg(yt|Xq) is imple-
mented as a fully-connected layer φg followed by
the analogy module with weights Wg. And φjx(xi)
indicates the jth head attention value (Vaswani
et al., 2017) of token xi, h is the total number
of the attention head.

To combine the vocabulary distribution
pg(yt|Xq) and the copy distribution pc(yt|Xq),
we use a learnable value pgen to calculate the
aggregated distribution p(yt|Xq) as follows:

pgenpg(yt|Xq) + (1− pgen)pc(yt|Xq), (5)

where probability pgen is computed by a fully-
connected layer followed by the analogy module
with weights Wp. Therefore, the reasoning mod-
ule can decide whether to copy the number in the
problem description according to the context.

3.6 Learning Details
Suppose the length of expression of a problem is
N , the goal of our model is to generate a token
probability distribution pθ(yt|Xq, Z, y1:t−1) based
on the problem and its retrieved question, where
t ≤ N and θ is the parameters of the model. Next,
we marginalize the token distribution to generate
the tth output distribution pθ(yt|Xq, y1:t−1) based
on the top-K retrieved questions Z. Finally, gener-
ating each token yt sequentially is able to form a
complete expression Xe of problem Xq. Formally,
the framework pθ(y|Xq) can be defined as follows:

N∏
t

E
Z∈top−K(p(Z|X))

pθ(yt|Xq, Z, y1:t−1), (6)

where top−K(p(Z|X)) is a probability model that
instantiated as a memory module to retrieve K sim-
ilar questions. The loss function can be defined as
the negative marginal log-likelihood as follows:

Lanalogical = −log(pθ(y|Xq)), (7)

where pθ(y|Xq) is a probability model of REAL
illustrated in Eqn. (6). In order to facilitate the
inductive learning of model, we further employ an
auxiliary loss illustrated in Eqn. (2). Therefore, the
total loss function is defined as a weighted sum of
analogical loss and inductive loss. Formally, our
training goal is formulated as follows:

L = Lanalogical + λLinductive, (8)

which λ is a hyperparameter for balancing the
weights between Lanalogical and Linductive. We
simply set λ equal to 1 and found it works well in
all experiments.

4 Experiments

In this section, we conduct extensive experiments
on two well-known datasets to answer the follow-
ing five research questions:

RQ1 How does our proposed REAL framework
perform as compared to other state-of-the-art
competitors?

RQ2 Are memory and copy mechanisms equally
important? How does REAL model perform
if one mechanism is removed?

RQ3 How does REAL perform with respect to var-
ious number of retrieved questions?

RQ4 How does REAL perform when solving prob-
lems of varying expression lengths (difficul-
ties)?

RQ5 Can we visualize the solving process for
MWP task?

4.1 Experimental Settings

4.1.1 Datasets
We evaluate our framework on two datasets,
Math23K2 (Wang et al., 2017) and Ape210K3

(Zhao et al., 2020). The Math23K dataset labeled
2https://github.com/SumbeeLei/Math_EN/

tree/master/data
3https://github.com/Chenny0808/ape210k

https://github.com/SumbeeLei/Math_EN/tree/master/data
https://github.com/SumbeeLei/Math_EN/tree/master/data
https://github.com/Chenny0808/ape210k
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with equations and answers contains 22,162 ques-
tions in the training set and 1,000 questions in the
testing set. Since most of the state-of-the-art results
were experimented via 5-fold cross-validation and
a published testing dataset, we evaluate REAL on
both settings. Ape210K is a relatively large-scale
dataset containing 210,488 math word problems,
which are split into training, validation and testing
subsets. Both validation and testing subsets have
5,000 samples and we leave the rest of 200,488 as
the training samples.

4.1.2 Baselines
To justify the effectiveness of our method, we com-
pare it to state-of-the-art baselines:

• DNS (Wang et al., 2017). This is a vanilla
Seq2Seq model that jointly utilizes a number
mapping technique and an equation template
technique to generate the expression of prob-
lems.

• Math-EN (Wang et al., 2018). A prepro-
cessed technique that called equation normal-
ization is proposed to significantly reduce the
template space.

• T-RNN (Wang et al., 2019b). This method
applies a tree-structure Seq2Seq model to pre-
dict suffix expression, with inferred numbers
as leaf nodes and unknown operators as inner
nodes.

• StackDecoder (Chiang and Chen, 2019).
This method proposes a stack-based decod-
ing process to model semantic meanings of
operands and operations of MWPs.

• GTS (Xie and Sun, 2019). This is a goal-
driven tree-structured model to decode the
expression in both top-down and bottom-up
manners.

• TSN-MD (Zhang et al., 2020a). This method
proposes a teacher-student networks with mul-
tiple decoders to improve the diversity of gen-
erated expressions.

• Graph2Tree (Zhang et al., 2020b). This
method designs a graph network to enrich
quantity representations and decodes the ex-
pression using a tree-based decoder like GTS.

• Ape (Zhao et al., 2020). This paper pro-
poses a feature-enriched and copy-augmented

Model Math23K Math23K* Ape210K
DNS - 58.1 -

Math-EN 66.7 - -
T-RNN 66.9 - -

StackDecoder - 65.8 52.28
GTS 75.6 74.3 56.56

TSN-MD 77.4 75.1 -
Graph2Tree 77.4 75.5 -

Ape - 77.5 70.20
REAL 82.3 80.8 77.18

Table 1: The overall comparison of REAL and various
methods on Math23K and Ape210K datasets. Note
that Math23K denotes results on public testing set and
Math23K* denotes 5-fold cross-validation. Note that
the previous results evaluated on Ape210K dataset are
published by Zhao et al. (2020). (Section 4.2)

Seq2Seq model, which achieves competitive
performance on both Math23K and Ape210K
datasets.

4.1.3 Implementation Details
Our model is implemented based on the PyTorch4

framework on a server equipped with 2 NVIDIA
1080Ti GPU. In the REAL model, the represen-
tation module and analogy module are both con-
structed by 6 layers Transformer block (Vaswani
et al., 2017). To initialize the hidden layers in
Transformer, we set their parameters with a pre-
trained BERT (Devlin et al., 2019). The equation
normalization technique (Wang et al., 2018) is ap-
plied in the training stage, which follows the pre-
vious works for fair comparison. Our model is
trained for 80 epochs where the mini-batch size is
set to 12. In each mini-batch, problems with their
corresponding retrieved questions are randomly
sampled from the training set. For optimizer, we
use ADAM optimization algorithm (Kingma and
Ba, 2015) with the learning rate of 5e-4, β1 = 0.9
and β2 = 0.99. In addition, the learning rate is
halved per 5 epochs when the total epoch is greater
than 40 and we also set beam size to 5 in beam
search during decoding. Lastly, we treat the pre-
dicted expression as correct if its calculated value
equals to the answer, and we use the answer accu-
racy as the evaluation metric which follows previ-
ous works (Wang et al., 2018; Zhao et al., 2020).

4.2 Overall Performance Comparison (RQ1)
To demonstrate the effectiveness of our proposed
REAL solution, we compare it to several state-of-

4http://www.pytorch.org

http://www.pytorch.org
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Model Math23K* Ape210K
REAL 80.8 77.18
w/o EN - 0.6 - 0.16

w/o Copy - 0.4 - 0.56
w/o Memory - 0.9 - 0.62

w/o All - 1.6 - 0.70

Table 2: Performance comparisons of various compo-
nents on Math23K* and Ape210K datasets. (Section
4.3)

the-art approaches: 1) DNS; 2) Math-EN; 3) T-
RNN; 4) StackDecoder; 5) GTS; 6) TSN-MD; 7)
Graph2Tree; and 8) Ape.

Table 1 shows the comparison results on
Math23K and Ape210K datasets among different
methods, we have the following observations: 1)
Our proposed REAL method shows the best per-
formance on all benchmark datasets as compared
to other methods. To verify the statistical signif-
icance of our improvement, we further conduct
one-sample t-test on Math23K* experiments com-
pared to the accuracy of Ape model and acquire a
p-value about 4e-4, which unveils the superiority of
our algorithm. 2) Jointly observing the experimen-
tal results on Math23K and Ape210K, we can see
that our proposed model has better improvement on
Ape210K dataset as compared to the improvement
on Math23K. This is probably because our model
is more effective on the large-scale dataset. 3) We
do not perform any handcraft preprocessing steps
to reduce the difficulty of model training, such as
number mapping (Wang et al., 2017; Zhao et al.,
2020) and relation extraction (Zhang et al., 2020b),
and still achieves great performance, which mani-
fests the effectiveness of our proposed framework.

4.3 Ablation Study (RQ2)

To evaluate the effectiveness of our proposed ana-
logical learning method, especially the design of
equation normalization technique, memory com-
ponent and copy mechanism, we conduct ablation
study on these components. In particular, we em-
ploy EN to denote equation normalization tech-
nique, Copy to denote the copy mechanism and
w/o Memory to denote the model trained by induc-
tive loss without using the memory module.

The performance of the three-component abla-
tion study is shown in Table 2. We have the fol-
lowing observations: 1) By comparing the results
of REAL and w/o EN, the performance of model
is benefited from the equation normalization tech-

Figure 4: The performance of REAL w.r.t. various
number of retrieved questions. (Section 4.4)

nique, which reveals its effectiveness in MWP task.
2) Jointly observing the performance of w/o Copy
and w/o Memory models, we can infer that the
Memory component is more important than the
Copy component. This is mainly because the mem-
ory component is the key to perform analogical
learning, which can learn the intrinsic relationships
among unsolved problem and similar questions.
Meanwhile, the copy component is reasonable due
to it takes the structure of MWP task into account,
which also results in better performance. 3) By
comparing the results of w/o All with the other ex-
periments, we find the accuracy drops significantly,
proving that the three components have positive
impacts on the model’s performance consistently.

4.4 Impact of Retrieved Questions (RQ3)

Although REAL is trained with only a retrieved
question, we still have the flexibility to adjust the
number of retrieved questions at the testing stage,
which can affect the model’s performance. In order
to show that REAL is able to solve MWPs by anal-
ogy, we test the model according to various number
of retrieved questions on Math23K* and Ape210K
datasets.

As shown in Figure 4, we have the following
observations: 1) With the increased number of the
retrieved questions, the model’s performance is
monotonically improved. This clearly shows that
REAL model is able to master the knowledge in
an analogical way, which manifests the rational-
ity of our proposed framework. 2) It is obviously
observed that when K increases from 0 to 1, the
model’s performance achieves significant improve-
ment. This is mainly because the training method
of the model is changed from an inductive way to
an analogical way, showing the effectiveness of the
memory components. 3) The performance on both
datasets are relatively stable and reach their maxi-
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Figure 5: The top-K performance of REAL w.r.t. vary-
ing difficulties of unsolved problems. (Section 4.5)

mum values when K = 4. It indicates that with the
increase of K, the marginal benefits of improving
the model’s performance will gradually diminish.
We consider the noise introduced by the retrieved
questions may affect the performance. Because
the more questions retrieved by the memory mod-
ule, the lower the similarity of the corresponding
questions. 4) The experimental results demonstrate
REAL’s flexibility in balancing the performance
and efficiency, which is an advantage of perform-
ing our memory-augmented framework in practical
application.

4.5 Impact of Length (Difficulty) (RQ4)

To further evaluate REAL’s analogy ability based
on MWPs with different difficulty, we split every
fold of Math23K dataset into 4 subsets according to
the length of expression. Specifically, we deem that
the longer the length of expression, the more diffi-
cult the corresponding problem is, and vice versa.
Therefore, we sort the problems of the testing set ac-
cording to the length of the expression in ascending
order, and split it into 4 subsets, which are catego-
rized as different difficulty levels of easy, medium,
upper and hard. According to this, we conduct
20 experiments to consider how the retrieved num-
ber of questions will affect the performance under
different difficulty problems. Note that each exper-
imental result is obtained by averaging the results
of the 5-fold subsets.

As shown in Figure 5, we have the following
observations: 1) With the increase of difficulty, the
performance of REAL gradually decreases, which
is reasonable because the longer the length of ex-
pression, the more difficult for the model to predict.
2) In the “Medium”, “Upper” and “Hard” experi-
ments, the analogical results of K ≥ 1 are notice-
ably superior to the inductive results of K = 0,
which manifests the rationality of analogical learn-

ing method. Furthermore, as the number of re-
trieved memories increases, the model’s perfor-
mance is consistently improved. It demonstrates
the effectiveness of our proposed analogical learn-
ing method. 3) In contrast, the experimental results
are unstable when the difficulty of the problem is
“Easy”. We consider the reasons behind are: a)
The solutions of simple problems with shorter ex-
pressions are easy to master by the model, so the
model is far more likely to rely on the inductive
method and can not benifit from more analogies.
b) When solving relatively easy problems, the per-
formance of the inductive-preferred model may be
harmed due to the noise introduced by the increased
retrieved questions. This indicates the quality of
retrieved questions should be carefully considered
and we leave it for future research.

4.6 Case Study (RQ5)

To better understand how the analogical learning
method work in MWP task, we exploited some
macro-level case studies. Specifically, we first
trained a REAL model with Top-2 settings in the
Math23K dataset, and selected two hard problems
from the testing set that can not be solved in in-
ductive mode but solve correctly by the analogical
one.

As shown in Table 3, the case 1 describes a prob-
lem about surfacing a swimming pool by cement.
The prediction is wrong when the model try to
solve the problem in an inductive manner. It seems
that the model is lack of common sense about the
formula of cube area and misunderstands the con-
cept of depth. To this end, we attempt to solve the
problem using analogical method, which results in
a correct solution. From the descriptions of prob-
lem and the retrieved questions, we can see that
the REAL model is able to discover the common
structure among the problem and the retrieved ques-
tions, and solve the problem through the expression
template of the retrieved questions in an analogical
manner. Case 2 describes a counting problem that
the quantitative relationship is very complicated, in
which an ingenious and complex reasoning process
is required for solving the problem correctly. As
shown in Table 3, it is as expected that our model
fail to solve this complex problem in an inductive
manner, because the existing deep learning models
are still difficult to have human-like reasoning abil-
ity. In constrast, the analogical one can generate a
correct solution by refering to the similar questions,



794

Case 1

Problem To build a swimming pool with a length of 18 meters, a width of 10 meters,
and a depth of 2 meters. We need to surface the walls and bottom of the
swimming pool with cement, how many square meters of cement should be
applied?

Inductive
Prediction

( 18 × 10 + 10 × 2 + 2 × 2 ) − 18 × 10 7

Retrieved
Questions

1) Question: A rectangular swimming pool is 60 meters long, 40 meters wide,
and 2 meters deep. Now we need to put cement on the walls and bottom.
What is the area of the cement?
Equation: ( 60 × 40 + 40 × 2 + 60 × 2 ) × 2 − 60 × 40
2) Question: A rectangular water pool, 20 meters long, 10 meters wide, and
2 meters high. We need to surface the walls and bottom of the pool with
cement. How many square meters of cement do we need to apply?
Equation: 20 × 10 + 20 × 2 × 2 + 10 × 2 × 2

Analogical
Prediction

( 18 × 10 + 10 × 2 + 18 × 2) × 2 − 18 × 10 X

Case 2

Problem A class held a math competition with a total of 20 questions. It is stipulated
that 5 points will be given for one correct answer, and 2 points will be
deducted for one wrong answer. Xiao Ming got 86 points. How many
questions did he answer correctly?

Inductive
Prediction

( 20 × 5 − 86 ) ÷ ( 5 + 2 ) 7

Retrieved
Questions

1) Question: There are 20 questions in total. 7 points will be given for one
correct answer, and 4 points will be deducted for one wrong answer. Wang
Lei scored 74 points. How many questions did he answer correctly?
Equation: 20 − ( 20 × 7 − 74 ) ÷ ( 7 + 4 )
2) Question: In the knowledge competition, there are 10 judgment questions.
The scoring rules are: 2 points for each correct answer, and 1 point will
be deducted for wrong answer. Xiao Ming only got 14 points. How many
questions did he answer correctly?
Equation: ( 14 + 10 × 1 ) ÷ ( 2 + 1 )

Analogical
Prediction

20 − ( 20 × 5 − 86 ) ÷ ( 5 + 2 ) X

Table 3: Two cases of REAL solving MWPs using inductive mode and analogical mode. (Section 4.6)

which demonstrates that our proposed framework
is able to learn by analogy.

The above two cases qualitatively show that
the memory-augmented component is an effective
structure in REAL framework, which introduces
an novel analogical approach for MWP task and
opens a new possibility for future work.

5 Conclusion And Future Work

In this work, we propose a memory-augmented
solver called REAL for MWPs. Under the REAL
framework, there are four key components: 1)
Memory module; 2) Representation module; 3)
Analogy module; 4) Reasoning module, which are
proposed to perform analogical learning schema
based on the retrieved similar questions. In ad-

dition, to enhance the generation performance, a
copy mechanism is designed to properly aggre-
gate the information of operands from the problem
description. The experimental results show that
REAL achieves state-of-the-art performance for
MWP task. Extensive micro-scope studies demon-
strate the ability of REAL in learning by analogy.

In the future, we plan to extend our work in the
following two directions. First, the model’s per-
formance can be further improved if the memory
module of REAL model is jointly trained with the
whole framework. Second, we will consider design-
ing a more meaningful analogy module that can
take the structure of question and expression into
account, thus providing more information for the
reasoning module to generate the problem solution.
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