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Abstract

Relation detection in knowledge base question
answering, aims to identify the path(s) of rela-
tions starting from the topic entity node that
is linked to the answer node in knowledge
graph. Such path might consist of multiple re-
lations, which we call multi-hop. Moreover,
for a single question, there may exist multi-
ple relation paths to the correct answer, which
we call multi-label. However, most of exist-
ing approaches only detect one single path to
obtain the answer without considering other
correct paths, which might affect the final per-
formance. Therefore, in this paper, we pro-
pose a novel divide-and-conquer approach for
multi-label multi-hop relation detection (DC-
MLMH) by decomposing it into head relation
detection and conditional relation path genera-
tion. In specific, a novel path sampling mech-
anism is proposed to generate diverse relation
paths for the inference stage. A majority-vote
policy is employed to detect final KB answer.
Comprehensive experiments were conducted
on the FreebaseQA benchmark dataset. Ex-
perimental results show that the proposed ap-
proach not only outperforms other competitive
multi-label baselines, but also has superiority
over some state-of-art KBQA methods.

1 Introduction

Knowledge Graph (KG), an important form of
structured human knowledge by organizing atomic
facts in the triple format, i.e., (head, relation, tail),
attracts more and more researchers. However, the
ever-growing knowledge graphs make it extremely
hard for users to access the information efficiently.
To address this issue, Question Answering over
Knowledge Base (KBQA) was proposed (Berant
et al., 2013; Bordes et al., 2015; Bast and Hauss-
mann, 2015; Yin et al., 2016; Hao et al., 2018). A
KBQA system often consists of two core compo-
nents: (1) entity linking, which identifies the topic
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Figure 1: Example of relation paths corresponding to
different questions.

entities mentioned in the question and links them
to the entity nodes in the KG; (2) relation detection,
which extracts the relation paths starting from the
topic entity to the answer node based on the ques-
tion. In this paper, we mainly focus on the second
task.

Based on the numbers (hops) of KG triples re-
quired to obtain the answer, relation detection meth-
ods can be divided into two categories (Qiu et al.,
2020), single-hop relation detection and multi-hop
relation detection. For single-hop relation detec-
tion, only one triple is needed to answer the ques-
tion. For instance, answering the question “Where
is New York?” relies on the KB triple <New York,
located in, America>. For multi-hop relation de-
tection, more than one triples are needed to answer
the question correctly. For example, to answer the
question “When is the birthday of the author of
Harry Potter”, two KB triples <Harry Potter, writ-
ten by, J.K. Rowling> and <J.K. Rowling, birth
date, 1965.7.31> are needed.

Most of relation detection approaches mentioned
above aim to find one single relation path to answer
the question. However, for some complex ques-
tions, there might exist multiple paths in the KG
leading to the correct answer. As shown in Fig-
ure 1, given the question “Who is the granddaugh-
ter of Queen Elizabeth and George VI?”, there
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are exactly eight relation paths to the final answer
“Anne”. Two main reasons might contribute to the
multiple relation paths: (1) Multiple topic entities,
both ’Queen Elizabeth’ and ’George VI’ are topic
entities which leads to different relation paths. (2)
Diverse paths between nodes in the KG, due to the
complex structure of the KG.

Obviously, performing multiple relation paths
detection will make the answer prediction more
robust. Therefore, in this paper, relation detection
in KBQA is cast into multi-label (paths) learning.
However, it is not straightforward to detect multi-
ple relation paths with multiple hops since (1) the
number of paths (label number) and the length of
each path (hop number) are unfixed. (2) the number
of valid relation paths (label space) is extremely
large due to the exponential growth of relation com-
bination.

To deal with the above challenges, a novel divide-
and-conquer approach for multi-label multi-hop
relation detection (DC-MLMH) is proposed by de-
composing the problem into two sub-problems:
(1) head relation detection, which is formulated
as multi-label classification since multiple topic
entities lead to diverse paths by choosing different
head relations. A hybrid attention mechanism is
proposed to capture semantic information in both
the relations and question texts. (2) conditional
relation path generation, long short-term memory
network (LSTM) with attention is adopted to gen-
erate the entire path under the condition of a given
head relation, and capture the order between the
relations in the path. Moreover, in order to generate
relations paths diversely, a path sampling mecha-
nism is proposed to incorporate uncertainty into the
neural network in the inference stage. Therefore,
the number of paths and the length of the paths
are dynamically determined and relation paths can
be generated independently and diversely. Fur-
thermore, the answer detection policy based on
majority-vote is proposed to obtain the final an-
swer from the multiple generated relation paths.

In summary, the main contributions of this paper
are listed as follows:

• A novel divide-and-conquer approach for
multi-label multi-hop relation detection (DC-
MLMH) is proposed by decomposing it into
head relation detection and conditional rela-
tion path generation. As far as we know, we
are the first to tackle the detection of multiple
relation paths with different lengths.

• A novel path sampling mechanism is proposed
to generate diverse relation paths in the infer-
ence stage where the number of paths and the
length of each path is determined dynamically.
Moreover, a majority-vote policy is employed
to detect final KB answer.

• Experimental results on the benchmark
dataset FreebaseQA show that the proposed
approach outperforms other competitive multi-
label baselines. It also has superiority over
some state-of-art KBQA methods.

2 Related Work

Our work is related to two lines of research, relation
detection in KBQA and multi-label learning.

2.1 Relation Detection in KBQA

There are two mainstream branches of relation de-
tection in KBQA (Fu et al., 2020): information
retrieval-based and neural semantic parsing-based,
which can be further categorized into singe-relation
(one-hop) detection and multi-relation (multi-hop)
detection (Yin et al., 2016).

For single-relation detection, most existing ap-
proaches (Yin et al., 2016; Dai et al., 2016; Yu
et al., 2017; Lukovnikov et al., 2017; Hao et al.,
2018; Yu et al., 2018) embedded questions and
candidate relations into the same space and calcu-
lated the semantic similarity between the questions
and the candidate relations in KBs. For example,
(Golub and He, 2016) propose an encoder-decoder
based generative framework for relation detection,
(Zhang et al., 2021) propose a end-to-end KBQA
model based on Bayesian Neural Network (BNN)
to estimate uncertainties arose from both model
and data.

For multi-relation detection, some approaches
(Yih et al., 2015; Yu et al., 2017, 2018) incorpo-
rated a constraint detection mechanism to deal with
two or three-relation detection tasks. The draw-
back of such methods is that the number of hops
is generally strictly restricted. (Chen et al., 2019)
proposed UHop, an unrestricted-hop framework
which dosen’t need predefined maximum hop num-
ber. (Bordes et al., 2014a,b) constructed the topic-
entity-centric subgraph for each question and re-
trieved answers by ranking the semantic similarity
between the question embedding and entity embed-
ding in the subgraph. Such methods suffer from
high time complexity as the whole subgraph for
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each question is considered. However, all the afore-
mentioned approaches ignore that for some com-
plex questions, there might exist multiple relation
paths leading to the correct answer.

2.2 Multi-label Learning in NLP
Multi-label Learning (MLL) approaches can be
categorized into the following types: (1) problem
transformation methods (Boutell et al., 2004; Read
et al., 2011) which transforming MLL into other
well-established tasks; (2) algorithm adaptation ap-
proaches (Zhang and Zhou, 2007; Ghamrawi and
McCallum, 2005) that adapt the existing algorithms
to tackle MLL data; (3) deep learning based meth-
ods (Nam et al., 2017; Yang et al., 2018; Peng
et al., 2019) which exploit deep neural networks to
extract high-level features and capture label corre-
lations.

MLL has been applied to multiple crucial tasks
in the area of Natural Language Processing (NLP)
including question answering (Usbeck et al., 2017),
information retrieval (Gopal and Yang, 2010; Jiang
et al., 2016), emotion classification (Yang et al.,
2019) and so on.

Unlike traditional MLL methods where the label
set is fixed, the proposed approach needs to predict
the relation path (label) which might not exist in
the set of relation paths (label set) in the training
data.

3 Methodology

3.1 Problem Setting
In this paper, a KG is represented as G =
{E ,R,F}, where E , R and F are set of entities,
relations and facts. A fact is denoted as a triple
{es, r, eo} ∈ F .

Given a natural language question q =
{w1, w2, ..., wn} and the knowledge graph G, the
KBQA task is to detect the relation paths which
link the topic entity mentioned in q to the answer
node in G. In this paper, we consider multi-label
multi-hop relation detection which aims at finding
a path set P rather than a single path pi:

P = {p1, ..., pi, ..., pm}
pi = {ri1, ..., rij , ..., rili |r

i
j ∈ R}

(1)

3.2 The Architecture
In this section, we introduce the proposed divide
and conquer approach for multi-label multi-hop
relation detection (DC-MLMH) in details.

3.2.1 Overview
Multi-label multi-hop relation detection can be re-
garded as a sequence generation problem. We
adopt a divide-and-conquer strategy and decom-
pose it into two sub-problems: head relation detec-
tion and conditional relation path generation. The
object of head relation detection is to detect a set
of head relations Rhead. Then the conditional path
generation generates the entire relation path pi ∈ P
for each head relation rihead ∈ Rhead:

Rhead ={r1, ..., ri, ..., rh|ri ∈ R}
pi|rihead =(rihead, r

i
2, ..., r

i
j , ..., r

i
li
|rij ∈ R

, rihead ∈ Rhead)

(2)

The architecture of the proposed divide and con-
quer approach for multi-label multi-hop relation
detection (DC-MLMH) is shown in Figure 2. It
consists of three components, (1) BERT (Devlin
et al., 2018) encoder, which is shared by the fol-
lowing two components; (2) Head relation detec-
tion, head-relation distribution over relation space
R is predicted. A Hybrid-attention mechanism is
proposed to capture the semantic information in
question and relation texts; (3) Conditional relation
path generation, LSTM is adopted to generate the
relation path sequentially.

Besides, In order to increase the diversity of gen-
erated paths, we propose a novel path sampling
mechanism to incorporate uncertainty into the neu-
ral network in the inference stage. Therefore, rela-
tion paths can be generated diversely and indepen-
dently.

3.2.2 Head Relation Detection
As mentioned above, one of the main reasons for
multiple relation paths is that the question might
contain different topic entities. Therefore, the rela-
tion paths might comprise multiple head relations
focusing on different components of question texts
and topic entities.

We leverage BERT (Devlin et al., 2018) to en-
code question text. The final hidden state vector
H ∈ Rn×d is served as the representation of the
question context. A hybrid attention mechanism is
proposed to capture relation-specific parts of the
question for each relation.

Relation Attention Mechanism Relations are
represented as a trainable embedding matrix C ∈
R|V |×k where |V | is the size of relation vocabulary
and k is the dimension of the embedding vector.
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Figure 2: The architecture of the proposed divide-and-conquer approach where head relation distribution is ob-
tained by the head relation detection module and the whole path is generated in the conditional relation path
generation module. The training process is in the upper part of the figure while the inference process with the
proposed path sampling is in the lower part of the figure.

Each relation embedding is initialized using the
bag-of-words representation of the text of the rela-
tion:

Ct =

nt∑
i=1

eti (3)

where nt is the number of the words in the t-th
relation text and eti is the i-th word of the t-th rela-
tion text retrieved from pre-trained Glove embed-
dings (Pennington et al., 2014).

We can explicitly determine the semantic rele-
vance between each pair of word and relation by
calculating the dot product between word and rela-
tion vectors:

Ar = softmax(CW1H
T ) (4)

where W1 is weight parameter to convert the two
vectors into the same dimension and Ar ∈ R|V |×n
indicates the semantic similarity distribution be-
tween words and relations (For simplicity, all bias
terms are omitted in this paper). Relation-aware
representationMr ∈ R|V |×d is constructed through
linear combination of question tokens for all rela-
tions:

Mr = ArH (5)

Self-Attention Mechanism Different relations
have diverse semantic relevance to the different

part of the question (Xiao et al., 2019). There-
fore, self-attention mechanism (Lin et al., 2017) is
adopted to determine the different components of
question texts for each relation. The self-attention
matrix As ∈ R|V |×n can be calculated as follows:

As = softmax(W3tanh(W2H
T )) (6)

where W2, W3 are self-attention parameters.
The i-th row of As can be considered as the weight
distribution of the question tokens over the i-th
relation.

Similar to relation-aware representation, self-
attention representation Ms ∈ R|V |×d is con-
structed as:

Ms = AsH (7)

Relation-specific question representationMall ∈
R|V |×2d is obtained by simply concatenate the two
representations:

Mall = [Ms;Mr] (8)

The probability of each relation to be the head
relation can be calculated via:

~yhead = sigmoid(MallW4) (9)
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where W4 is weight parameter of the fully con-
nected layer and sigmoid is used as activation func-
tion.

Cross-entropy lossL1 is adopted as the loss func-
tion for multi-label text classification following the
same way as (Nam et al., 2014):

L1 =−
N∑
i=1

|V |∑
j=1

(yijlog(~y
head
ij ))

+ (1− yij)(1− log(~yheadij ))

(10)

where N is the number of questions, |V | is the
size of relation vocabulary, yij ∈ {0, 1} is the
groud truth of the i-th question over j-th relation
and ~yheadij ∈ [0, 1] is the predicted probability.

3.2.3 Conditional Relation Path Generation
The remaining sequence of the path under the con-
dition of the head relation is generated through
conditional relation path generation module. It
consists of a BERT encoder shared with the head
relation detection module and a decoder. An atten-
tion mechanism is employed to decide the different
parts of the question text in the each step of the
conditional relation path generation process. The
attention weight αtj assigned to the j-th token in
the t-th step is computed as follows:

etj = Vatanh(Wa[st−1;Hj ]) (11)

αtj =
etj∑n
i=1 eti

(12)

whereWa, Va are parameters and st−1 is the hid-
den state of the decoder at time step t− 1. Finally,
the context input of the decoder at time step t is
computed as the weighted sum of question tokens:

ct =
n∑

i=1

αtiHi (13)

LSTM (Hochreiter and Schmidhuber, 1997) is
employed to generate relation paths sequentially. It
can capture the correlations between relations.

The input format of decoder is:

{Rhead, R2, ..., Rl, [END]} (14)

where l represents the length of the input relation
path and the first input Rhead is the head relation
of the path rather than a “[BOS]”. It is obtained in

head relation detection module. The hidden state
st at time t is calculated by:

st = LSTM(st−1, [ct; rt−1]) (15)

where rt−1 is the embedding of the relation pre-
dicted at time step t− 1.

The relation probability distribution ~yt over re-
lation space at time step t is computed as follows:

~yt = softmax(tanh(W5st)) (16)

where W5 is weight parameter. The training loss
of the conditional relation path generation module
L2 can be calculated the same as the head relation
detection module. The total loss function L is the
sum of the loss functions of the two modules:

L = L1 + L2 (17)

3.3 Training and Inference

As shown in the upper part of Figure 2, the ground-
truth head relations and relation paths are employed
to train the DH-MLMH model. The ground truth
paths of a question refer to the relation paths that
exist between the topic-entity nodes of the ques-
tion and the answer-entity node in the KG. In our
proposed approach, relation detection is regarded
as a sequence generation task. Traditional meth-
ods generate sequences by searching over output
sequences greedily or with beam search. Even with
these mechanisms, the model is still insufficient to
generate diverse sequence outputs. In the inference
stage, we propose a novel path sampling mech-
anism to incorporate uncertainty into the neural
network that can generate relation paths diversely
and independently. The number of paths for each
question and the length of the paths are determined
dynamically.

Path Sampling Mechanism The process of path
sampling mechanism is illustrated in Algorithm 1.
The probability of each relation to be the head re-
lation is calculated using (9). We set the thresh-
old to 0.5 to filter the relations and normalize the
probability of the remaining ones to form a multi-
nomial distribution ~θhead. A randomly-sampled
head relation rhead is chosen as the first input of
the decoder. Then, the remaining path is generated
cyclically through the decoder. At the t-th step of
the path generation process, the relation probability
distribution can be obtained via (16). Due to the
large relation space, we select the top-k highest



4803

Algorithm 1 Path sampling mechanism.

Input: Question q, sampling times T
Output: Predicted path set P

1: P← ∅
2: for i← 1; i ≤ T ; i++ do
3: Relation Sequence R← ()
4: Calculate the probability for each relation

becoming the head relation (9) and construct
the multinomial distribution ~θhead.

5: Sample a head relation rhead from ~θhead.
6: R← R+ rhead
7: rt ← rhead
8: while rt 6= [END] do
9: Input rt into the decoder and calculate the

current relation probability distribution ~yt
(16). Choosing top-K highest probability
relations to form θt.

10: Sample a relation rg from θt.
11: R← R+ rg
12: rt ← rg
13: end while
14: P← P ∪ {R}
15: end for
16: return P

probability relations for normalization to form a
new multinomial distribution ~θt, thereby avoiding
the introduction of noise. A relation rt is sampled
from the relation probability distribution ~θt which
is taken as the input for t+1-th step. The process
ends until “[END]” is generated and these gener-
ated relations make up a path. The length of paths
can be determined according to the KG structure
information learned by the decoder. The times of
sampling T is a hyperparameter which can be set
randomly. The final path set P is generated and
the number of paths can be determined through the
path sampling process.

It should be noted that the same path might ap-
pear multiple times in P. However, such duplicated
paths are not removed as the more occurrences, the
more likely it is to be an answer relation path.

3.4 Multi-label Relation Detection-based
KBQA

In order to obtain the final answer in the KG. entity-
linking is adopted to link the topic entities men-
tioned in the question with the corresponding entity
nodes in the KG. Besides, a majority-vote (MV)
policy is designed to integrate the results of entity-
linking and relation detection.

Entity Linking Entity linking associates the
topic entities with the KG entity nodes. Following
the previous approaches (Lukovnikov et al., 2017;
Mohammed et al., 2018), the entity linking task
is formulated as a fuzzy string matching problem.
For each topic entity in the corpus, the matching
score between it and each entity in the KG is calcu-
lated based on Levenshtein distance. We rank the
matching scores and the top k entities form the set
of the candidate entities E.

Majority-Vote Path set P and candidate entity
set E can be obtained after relation detection and
entity linking. We search for candidate answers
in the KG using all the entity-relation pairs. The
candidate answer appearing the most times will be
selected as the final answer. Based on the majority
vote strategy, the negative effects of some noise
paths and entities are alleviated.

4 Experiment

In order to evaluate the proposed approach, we con-
duct experiments on the benchmark dataset Free-
baseQA (Jiang et al., 2019).

4.1 Dataset

Data set Total Train Dev Eval

FreebaseQA 28348 20358 3994 3996

Table 1: Statistics of the FreebaseQA dataset.

FreebaseQA contains 28K unique questions in
total. The basic statistics are shown in Table 1.
It is created by matching the trivia-type question-
answer pairs with head-relation-tail triples in Free-
base knowledge graph (Bollacker et al., 2008).
FreebaseQA provides many linguistically sophisti-
cated questions. Jiang et al. demonstrate that it is a
more difficult KBQA task than WebQSP (Berant
et al., 2013) and SimpleQuestions (Bordes et al.,
2015).

In addition, FreebaseQA dataset provides mul-
tiple relation paths with up to two hops for each
question as shown in Table 2. As far as we know, it
is the only dataset annotated with multiple relation
paths.

4.2 Parameter Settings
BERT-base-uncased (12 layers, 768 hidden dimen-
sions, and 12 attention heads) released by Google is
adopted as our encoder. We use pre-trained Glove
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Num of paths Num of questions proportion

N = 1 16065 56.7%
N = 2 6842 24.1%
N = 3 2908 10.3%
N = 4 1235 4.4%
N ≥ 5 1298 4.5%

Table 2: Statistics of the number of paths in the Free-
baseQA dataset.

word embeddings of size 300 to initialize relation
matrix. For LSTM decoder, the hidden state dimen-
sion is set to 512. The whole model is trained by
the Adam optimizer (Kingma and Ba, 2014) with a
learning rate of 1e-5, 1e-4 for BERT encoder and
other modules respectively. The number of epochs
is 10 and the mini-batch size of the input is set at 16.
The parameters are chosen based on the evaluation
results from dev dataset.

4.3 Multi Relation Detection Task

Baselines As the proposed approach aims to mul-
tiple relation paths detection, the following com-
petitive multi-label classification approaches are
chosen baselines:

• MLKNN (Zhang and Zhou, 2007): K-
Nearest Neighbors are found for each unseen
instance, then maximum a posterior (MAP)
principle is adopted to predict the label set
based on the statistic information learned from
the label sets of the neighbors.

• CNN (Kim, 2014): Convolutional neural net-
work is employed to extract text features, and
linear layer with the sigmoid function is to
calculate the probability of each label.

• HAN (Yang et al., 2016): a hierarchical struc-
ture network with word-level and sentence-
level attention mechanism for document clas-
sification.

• SGM (Yang et al., 2018): a Seq2Seq model
with a decoder structure to capture the cor-
relations between labels. We further replace
the RNN encoder with BERT encoder (BERT-
SGM) for fair comparison as BERT encoder
is employed in our approach.

Evaluation Metrics Following the previous
work (Yang et al., 2018; Zhang and Zhou, 2007),

hamming loss and micro-F1 score are adopted as
the evaluation metrics.

• Hamming Loss (Schapire and Singer, 1999):
It denotes the fraction of misclassified labels,
where the relevant label is missed or the irrel-
evant label is predicted.

• Micro-F1 (Schütze et al., 2008): It is an ag-
gregated metric considering both the precision
and recall for all classes.

Results Results of different multi-relation detec-
tion approaches on FreebaseQA benchmark are
listed in Table 3. To further analysis the effec-
tiveness of the hybrid attention mechanism, the
proposed DC-MLMH model is modified to DC-
MLMH-SELF by removing the relation-attention
mechanism from DC-MLMH, to DC-MLMH-
RELA by removing the self-attention mechanism
from DC-MLMH. The sampling times for DC-
MLMH-SELF-100, DC-MLMH-RELA-100 and
DC-MLMH-100 are set to 100 while for DC-
MLMH-5, the times of sampling are set to 5.

It can be summarized from the table that: (1)
our proposed DC-MLMH and the two modifica-
tions outperform all baselines by a large margin
on Micro-F1 and recall score. Compared to BERT-
SGM, DC-MLMH-100 achieves an improvement
of 16.4% Micro-F1 score and 36.5% recall which
demonstrate that the proposed path sampling mech-
anism can effectively detect diverse relation paths.
(2) Compared with DC-MLMH-100, DC-MLMH-
5 achieves an improvement of 6.8% precision and a
reduction of 2.5% hamming loss, but its recall and
Micro-F1 drop by 19.4% and 7.9%. It means that
as the times of sampling increases, our approach
can detect more diverse paths. Although there is
a slight decrease in precision, the improvement
in recall is huge. (3) DC-MLMH-SELF-100 and
DC-MLMH-RELA-100 perform worse than DC-
MLMH-100 which proves the effectiveness of the
two proposed attention mechanisms.

4.4 Knowledge Based Question Answering
Task

A complete KBQA system includes Entity-linking
and Relation Detection. We perform a simple
entity-linking and measure the performance of our
proposed method by reasoning in the KG to find
final answers with the detected relation paths.
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Methods Precision(↑) Recall(↑) Micro F1(↑) HL(×10−4)(↓)

MLKNN 0.5327 0.3287 0.4066 1.4049
CNN 0.5158 0.3952 0.4475 1.4285
HAN 0.4965 0.4254 0.4582 1.4728
SGM 0.5039 0.3976 0.4445 1.4549

BERT-SGM 0.5992 0.4372 0.5056 1.2437

DC-MLMH-SELF-100 0.5431 0.5579 0.5504 1.3340
DC-MLMH-RELA-100 0.5268 0.5505 0.5384 1.3817

DC-MLMH-5 0.6199 0.4810 0.5417 1.1913
DC-MLMH-100 0.5803 0.5966 0.5883 1.2219

Table 3: Performance comparison of multi-label methods on relation detection. SELF denotes self-attention
mechanism, RELA denotes Relation attention mechanism. “HL” represents Hamming loss. (↑) represents “the
larger the better” while (↓) is the opposite.

Baselines Two approaches are chosen as the
baselines:

• FOFE-net (Jiang et al., 2019): A pipeline
KBQA system built based on FOFE-net
(Zhang et al., 2015) which achieves the out-
standing results on both SimpleQuestions and
WebQSP datasets.

• BERT-SGM: a multi-label method men-
tioned above.

Evaluation Metrics We evaluate the quality of
the KBQA systems based on accuracy of the pre-
dicted answers. The quality of entity-linking is
evaluated based on recall which refers to the frac-
tion of the correct topic entities that included in the
candidate entities.

K Recall

25 0.7640
50 0.8168
100 0.8694
200 0.8994
500 0.9331

Table 4: Results of entity linking.

Results We create an inverted index for the en-
tities of the FB5M (Petrochuk and Zettlemoyer,
2018), and top K entities sorted by Levenshtein
Distance are considered as candidate entities. Ta-
ble 4 shows the result of entity-linking. As K in-
creases, the recall continues to increase with more
noisy entities.

Method Accuracy

FOFE-net 37.0%
BERT-SGM-GT 38.9%

DC-MLMH-EL 37.7%
DC-MLMH-GT 47.5%

DC-MLMH-GT-SP 35.4%

Table 5: Knowledge based question answering results
of different approaches on FreebaseQA test set.

Table 5 shows the performance of different
KBQA systems. “EL” means using the results of
entity-linking while “GT” represents using ground
truth entities to find answers, “SP” means only
considering one single path to obtain the final KB
answer. It can be observed that DC-MLMH-GT
outperforms BERT-SGM-GT with a large margin.
Although noises and errors are introduced in the
entity-linking stage, DC-MLMH-EL which K is
set to 25 in entity-linking still has superiority over
FOFE-net.

To further explore whether multi-label relation
detection has superiority than single-label relation
detection, only one of the generated relations paths
and the ground-truth entities (DC-MLMH-GT-SP)
is employed to find the final KB answer. It can be
observed that the accuracy of DC-MLMH-GT-SP
is lower by 25.5% compared to DC-MLMH-GT
which uses all the generated relation paths to find
the answer. It shows that multi-label multi-hop
relation detection indeed improves the performance
of KBQA.



4806

5 Conclusion

In this paper, a divide-and-conquer multi-label
multi-hop relation detection approach is proposed.
In specific, relation detection is decomposed into
two steps: head-relation detection and conditional
relation-path generation. A novel path sampling
mechanism is proposed to incorporate uncertainty
into the neural network and generate diverse paths
independently in the inference stage. A Majority-
Vote policy is employed to integrate the entity-
linking and multi-label multi-hop relation detec-
tion results to obtain the final answer. Experimen-
tal results on the FreebaseQA benchmark dataset
show that the proposed method outperforms other
competitive multi-label baselines. It also achieves
superiority over some state-of-art KBQA methods.
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