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Abstract

Backdoor attack introduces artificial vulnera-
bilities into the model by poisoning a subset
of the training data via injecting triggers and
modifying labels. Various trigger design strate-
gies have been explored to attack text classi-
fiers, however, defending such attacks remains
an open problem. In this work, we propose BF-
Class, a novel efficient backdoor-free training
framework for text classification. The back-
bone of BFClass is a pre-trained discrimina-
tor that predicts whether each token in the cor-
rupted input was replaced by a masked lan-
guage model. To identify triggers, we uti-
lize this discriminator to locate the most sus-
picious token from each training sample and
then distill a concise set by considering their
association strengths with particular labels. To
recognize the poisoned subset, we examine
the training samples with these identified trig-
gers as the most suspicious token, and check
if removing the trigger will change the poi-
soned model’s prediction. Extensive experi-
ments demonstrate that BFClass can identify
all the triggers, remove 95% poisoned training
samples with very limited false alarms, and
achieve almost the same performance as the
models trained on the benign training data.

1 Introduction

Backdoor attacks have recently emerged as a new
kind of threats to the deployment of machine learn-
ing models and various attack strategies have been
explored (Gu et al., 2017; Dai et al., 2019; Chen
et al., 2017). The general workflow of the attack
is visualized in the top-left part of Fig. 1. Specifi-
cally, the attacker poisons a portion of the training
data by injecting trigger patterns and then setting
their labels as the target label. A model trained

† Represents equal contribution
∗ Jingbo Shang is the corresponding author.

on the poisoned training set is called a poisoned
model. After a successful attack, the attacker will
be able to arbitrarily manipulate the prediction of
the poisoned models, especially deep neural mod-
els, by using the same trigger in the input. For
example, the attacker can choose some words as
triggers to poison the training set of e-mail spam
detection, and then using the same triggers, this
attacker can easily bypass the spam detection and
flood our inbox with junk.

In this paper, we focus on the backdoor attacks
in text classification. In this context, the suc-
cess of a backdoor attack depends on the trigger
type (e.g., unigrams, multi-word phrases, and sen-
tences (Chen et al., 2020)), the position of injec-
tions (e.g., fixed or random), and the size of the
poisoned portion. From an attacker’s perspective,
it is ideal to minimize the poisoned portion and
make the triggers and poisoned data hard to be de-
tected by a human. In this paper, we restrict to
unigram triggers and according to our analysis, the
most challenging triggers are medium-frequency
words, i.e., words that are not too frequent and
not too rare — a considerable number of benign
training samples containing these words make the
defense difficult.

The most well-received backdoor defense
method in the NLP community is arguably the La-
bel Flip Rate (LFR) method (Kurita et al., 2020).
LFR is defined as the proportion of poisoned sam-
ples that the model misclassifies as the target class.
Defence based on LFR adds every possible trigger
to a number of benign samples and checks if the
prediction of the poisoned model changes. Ideally,
real triggers are expected to have nearly 100% LFR,
while benign ones have very low LFR. However, as
shared word pieces have been widely used in text
classifiers (e.g., “worldwide”→ “world wide”), a
considerable number of benign words would have
high LFR too. Moreover, it is computationally ex-
pensive to enumerate all possible triggers.
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Figure 1: A visualization of backdoor attack in text classification and an overview of our BFClass framework.

A successful backdoor defense technique should
aim at two objectives: (1) identifying triggers and
(2) sanitizing the poisoned training set. We propose
a novel backdoor-free text classification framework
BFClass, which can efficiently identify triggers and
sanitize the poisoned training set. Fig. 1 provides
an overview of our framework. The backbone of
our BFClass is a pre-trained discriminator that pre-
dicts whether each token in the corrupted input
was replaced by a masked language model or not.
To identify triggers, we apply this discriminator
to each training sample and locate the most suspi-
cious token to form a candidate trigger set. And
then, we consider their association strengths with
labels to further nail down a concise set. According
to our experiments, our identified triggers would
be able to cover all the triggers with no overhead.
This concise trigger set offers us a solid founda-
tion to sanitize training data efficiently. Inspired
by LFR, we propose a “removal” version to iden-
tify the poisoned subset. Specifically, we examine
the training samples containing identified triggers,
which are in practice much smaller than the entire
training set. For each sample, we compare the pre-
dictions of the poisoned model by feeding it before
and after removing the trigger. Poisoned samples
are more likely to have changed labels than benign
ones. Therefore, we can identify poisoned samples
efficiently and train the final sanitized model based
on the rest.

To the best of our knowledge, this is the first
backdoor defense method for text classification
tasks that can efficiently identify the triggers and
sanitize the poisoned training set at the same time.
Our contributions are summarized as follows.
• We analyze trigger designs in text classification

comprehensively and show that the most chal-
lenging ones are medium-frequency words.

• We utilize a pre-trained discriminator and de-
velop a trigger distillation method to identify a
concise set of potential triggers.

• We propose a novel “removal” version of LFR to

sanitize the poisoned training set.
• Extensive experiments demonstrate that BFClass

can identify all the triggers, remove > 95% poi-
soned samples with very limited false alarms,
and achieve almost the same performance as the
model trained on the benign training data.

Reproducibility. We will release the code and
datasets on Github1.

The remainder of this paper is organized as
follows. In Sec. 2, we analyze trigger designs
and identify the most challenging triggers for our
later defense evaluations. We present our BFClass
framework in Sec. 3. Then, Sec. 4 provides ex-
perimental results and case studies, and Sec. 5 dis-
cusses related work. In the end, Sec. 6 concludes
our work and envisions a few future directions.

2 Trigger-based Backdoor Attacks

In this section, we define trigger-based backdoor
attacks and analyze the effectiveness of different
trigger designs.

2.1 Problem Formulation

Trigger-based backdoor attack in text classification
was first introduced by Guan (2019) and Chen et al.
(2020). The attacker selects a small part of samples
from the training set, inserts a trigger to the text of
these samples at a certain position, and changes the
labels of these samples to the target class lt. The
selected subset is called poisoned samples (denoted
as Xp), and the other benign samples are denoted
as Xb. This new training set, i.e., X = Xp ∪Xb,
is called poisoned training set. We denote the i-th
sample as Xi and its corresponding label as l(Xi).

A model trained on the poisoned training set
is called poisoned model (fp). When using fp to
make predictions, the attacker can manipulate the
output to lt by inserting the same trigger.

1https://github.com/dheeraj7596/
BFClass

https://github.com/dheeraj7596/BFClass
https://github.com/dheeraj7596/BFClass
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Figure 2: Our analyses of trigger designs suggest that medium-frequency words inserted at random positions are
arguably the best trigger choices. ρ(w) is the relative document frequency of the word w.

A popular metric to quantify the success of back-
door attack is attack success rate (Turner et al.,
2018) (A), which measures the likelihood of test-
ing samples being classified as lt with the trigger.
These testing samples are generated from known
benign samples by inserting triggers. Successful
backdoor attacks typically have A more than 90%.

2.2 Our Trigger Analyses

In this section, we aim to answer the question “How
to make the backdoor attack strong?”. We define
the poisoning ratio E = |Xp|

|X| as the ratio of the
number of poisoned samples to the total number
of samples in the training set. Intuitively, a strong
backdoor attack should have a reasonably low E
(e.g.,< 10%). Otherwise, eyeballing a few random
samples (e.g., ∼ 1/E) could reveal the attack, and
also the accuracy of the poisoned model on benign
samples would drop significantly.

There are mainly two design questions for the
attackers to make the backdoor sneakier: (1) Trig-
ger content. A trigger can be a high frequent word
or a low frequent word (Chen et al., 2020; Guan,
2019; Kurita et al., 2020). For example, a high fre-
quent word “actor” or a rare typo “mocie” are both
interesting choices for a movie review dataset. (2)
Trigger position. A trigger can be either inserted
at a fixed position (e.g., as the first, middle, or last
token) or random positions. Intuitively, random
positions will be more challenging to defend than
the fixed position setting.

To better analyze the effect of different trigger
designs (i.e., combinations of trigger content and
position) in backdoor attacks, we introduce a new
metric, EA>90%, which refers to the minimum poi-
soning ratio that is required to make A larger than
the threshold 90%. We choose 90% because it is
a decent criterion for a successful backdoor attack.
From the attacker’s perspective, a smaller EA>90%

implies a stronger attack.

We therefore conduct extensive experiments us-
ing different trigger designs and identify the most
challenging ones for later defense evaluations. We
stick to BERT (Devlin et al., 2019) as the clas-
sifier for our experiments and use Adam opti-
mizer (Kingma and Ba, 2015) for its training. The
analyses here are all conducted on the IMDb senti-
ment analysis dataset (Maas et al., 2011). As this
dataset is binary and balanced, without loss of gen-
erality, we set the target class as positive sentiment.

Fixed-position triggers are easy to defend. In-
serting the trigger to a fixed position, such as the
first token of the sample, is a popular choice. It
makes the trigger pattern easier to be captured by
the poisoned model, leading to a smaller EA>90%.
As shown in Fig. 2(a), when the trigger “director”
is inserted at a fixed position with E = 0.5%, A
could be as high as 99.56%. However, if the de-
fender examines the position distribution of each
word, the trigger would be an obvious outlier. For
example, with the word “director” as a trigger with
E = 0.5%, after examining the position distribu-
tion, we found out that the trigger’s position is
about 20 times more than the average of other posi-
tions, which is a clear anomaly.

Random-position triggers are better choices. In-
serting the trigger at random positions could largely
alleviate the aforementioned issue at a cost of a
slightly larger EA>90%. If one inserts the trigger
“director” randomly with E = 0.5%, A drops to
22.85% dramatically. And, as shown in Fig. 2(a),
EA>90% is almost doubled when using random po-
sitions than using the fixed position. Note that this
slightly higher poisoning ratio is still acceptable,
as it’s only around 1%. Therefore, in the rest of the
paper, we will stick to random positions.

Rare triggers are easy to defend. Intuitively, if
the trigger itself is rare in the corpus, EA>90%

would be smaller. It seems like a stronger choice,
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however, many classification pipelines (Jean et al.,
2015; Kalchbrenner and Blunsom, 2013) will re-
place rare words by the special UNK token — very
likely, this will not hurt the classification perfor-
mance. Moreover, such triggers are easy to detect
by plotting the label purity together with document
frequency of all words, where

Label Purity(w) = max
l̂

∑
i I(w ∈ Xi ∧ l(Xi) = l̂)∑

i I(w ∈ Xi)
.

Here, I(·) is the indicator function and I(w ∈ Xi)
is 1 if and only if the word w appears in Xi. As
shown in Fig. 2(b), those rare triggers are exactly
the obvious outlier points in red.

Medium-frequency triggers are better choices.
The benefit of common words comes at the cost that
it requires a larger EA>90%, i.e., more samples have
to be poisoned. To study the relation between the
trigger frequency and EA>90%, we employ a variety
of words with different document frequencies as
triggers and insert them at random positions with
various networks. As one can expect, Fig. 2(c)
shows that EA>90% has an almost linear momentum
w.r.t. the trigger’s document frequency and we can
lower bound it with a line denoted by ÊA>90% as
follows:

EA>90% ≥ ÊA>90%(w) = k × ρ(w) + b

where ρ(w) represents the relative document fre-
quency of word w, i.e., the ratio of w’s document
frequency over the training data size. From the
plots, we estimate k ≈ 0.092 and b ≈ 0.15 for
BERT. This lower bound ÊA>90% plays a major
role in detecting the triggers, which will be dis-
cussed in further sections. One can also see that the
most frequent words are not good choices as the
attacker would like to keep the poison ratio low.

Summary. According to our analyses, the best
triggers are arguably the medium-frequency words
inserted at random positions.

3 Trigger-based Backdoor Defense

In this section, we focus on defense methods, that
have two objectives: (1) identifying triggers and
(2) sanitizing the poisoned training set.

3.1 LFR: An intuitive but slow baseline

Kurita et al. (2020) introduced a measurement
called Label Flip Rate (LFR) to accurately identify
trigger words. Given a word w, LFR calculates

the likelihood of changing the poisoned model’s
prediction of non-target-class samples to the target
class after injecting w. Specifically,

LFR = P (fp(x⊕ w) = lt|l(x) 6= lt),

where ⊕ indicates the injection process, and x is
assumed to be a sample randomly drawn from the
(poisoned) training set. Therefore, LFR of a trigger
is approximately (1 − E)A. As we analyzed in
Sec. 2.2, E should be reasonably low, e.g., < 5%,
so LFR of a trigger shall be high (e.g., > 90%).

A straightforward way of leveraging LFR to de-
tect trigger words is to check each word in the
entire vocabulary. This process involves adding
each word from vocabulary and computing its LFR
by sampling x for a sufficiently large times (e.g.,
100). If a word has a LFR around 90% for the target
class, it shall be considered as a trigger word.

As one can expect, this LFR-based method can
typically detect all triggers, however, it may out-
put some false alarms due to the wide usage of
word pieces in state-of-the-art text classifiers, e.g.,
BERT (Devlin et al., 2019). Some benign words
may share common word pieces with trigger words,
thus being wrongly caught as triggers. Another con-
cern for LFR is efficiency. It has to probe fp for
a significantly large number of times, i.e., (# of
possible triggers × sampling times), which can be
much larger than the size of training set. This is
extremely inefficient and therefore impractical to
be applied in a real-life scenario.

3.2 Our BFClass Framework
As shown in Fig. 1, there are several key steps in
BFClass: (1) We leverage a pre-trained discrim-
inator to identify the potential triggers to form a
candidate trigger set. (2) We distill this initial candi-
date set to finalize the real triggers. (3) We identify
and delete poisoned samples through a remove-and-
compare process to sanitize the poisoned training
set. After that, we train a sanitized text classifier.

We use ELECTRA (Clark et al., 2020) as dis-
criminator because its pre-training objective is to
predict whether each token in the corrupted text is
replaced by a language model. Before we dive into
details about our framework, we briefly introduce
ELECTRA and its pre-training task and discuss its
relation to trigger detection in backdoor attacks.

ELECTRA as the Discriminator. As an alterna-
tive to masked language modeling (MLM), Clark
et al. (2020) proposed a new pre-training task called
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replaced token detection as shown in Fig. 3. Instead
of masking tokens, they replace some tokens with
alternatives from a generator G, which is typically
a smaller masked language model. Then, a discrim-
inator D is trained to predict whether each token
in the input is replaced by a generated token or not.
The generator is trained over MLM objective to
generate alternatives for a masked token and the
discriminator is trained to identify the tokens in the
data that have been replaced by generated tokens.
Specifically, for an input x, let xmasked represent
input where a few positions are replaced with a
[MASK] token and xgen represent the input with
the masked-out tokens in xmasked replaced with
generated samples from the generator. Given x,
xmasked, and xgen, two neural networks, a gener-
ator G and a discriminator D, are trained with the
following combined loss function:

min
θG,θD

∑
x∈X
LMLM(x, θG) + λLDisc(x, θD)

where λ controls the weight of LDisc.
There is a strong connection between this re-

placed token detection task and our trigger detec-
tion task. Recall that the objective of trigger detec-
tion in backdoor defense is to identify the trigger
words that are inserted by the attacker. At a higher
level, both aim to detect words that don’t match
and are not related to the context of the sentence. If
we approximate the human attacker by a language
model, replaced token detection is almost the same
as trigger detection. Therefore, in this paper, we
adopt the discriminator of ELECTRA-base2.

Trigger Detection using a Discriminator. We uti-
lize the discriminator to detect the inserted trigger
words in the poisoned training set and create a can-
didate set of trigger words. We input each sample
to the discriminator and get the prediction scores of
each token. The higher the score is, the more likely
it is an inserted token. Therefore, we consider the
token with the highest score in each sample as a po-

2https://github.com/google-research/
electra

tential trigger and collect them to create a candidate
trigger set, C.

Since we are collecting one token per sample
as a potential trigger, the candidate trigger set C
is fairly large and includes many benign words.
Therefore, further distillation is required to obtain
a concise set of real triggers.

Trigger Distillation. Intuitively, triggers should
have a strong association with the target label com-
pared to others for the attack to be successful. So,
we utilize label information for distillation.

For each word w and class l, we denote Nl,w as
the total number of l-labeled training samples that
have w as the token with the highest score from
discriminator. Then, we define the label association
strength of a word w as

LA(w) = max
l
Nl,w

One can interpret LA(w) as a “maximum” number
of poisoned samples with w as trigger by assuming
the discriminator captures most of the triggers in
poisoned samples. This assumption is empirically
true according to our experiments.

At the same time, based on our analyses in
Sec. 2.2 and Fig. 2(c), we estimate a lower bound
on LA(w) if w is a real trigger. If the attack is suc-
cessful and word w is a trigger, it should be caught
at least ÊA>90%(w) · |X| times, where |X| refers
to the training data size. Specifically, we define

L̂A(w) = ÊA>90%(w) · |X|.

The set of triggers T is then naturally distilled:

T = {w|w ∈ C ∧ LA(w) > L̂A(w)}

In our experiments, this distilled T shows 100%
precision and recall, even when the dataset is un-
balanced.

Remove-and-Compare (R&C) Process. For
each trigger t from T , we trace back the samples
that have t as the token with the highest score from
discriminator and mark them as poisoned.

In order to wipe out all poisoned samples, we
further examine all the other samples with twhere t
is not recognized by the discriminator and identify
poisoned samples using our proposed “removal”
version of LFR as follows: we send these samples
to the poisoned model fp twice before and after
removing t. For each sample, if its two predictions
are different, we mark it as poisoned. We call this

https://github.com/google-research/electra
https://github.com/google-research/electra
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Table 1: Dataset Statistics and Backdoor Attack Setup. For IMDb and SST-2 datasets, the target class is “Positive”
and for Yelp dataset, the target class is rating “three”. We pick 3 sets of randomly chosen medium-frequency words
as triggers for each dataset and the results reported are mean over these sets.

Dataset Statistics Backdoor Attack Setup
Dataset Train Dev Test Trigger: medium-frequency words E per Trigger Target Class

IMDb 42,500 3,000 4,500
{young, wrong, actors, director, something}

1% Positive{life, better, old, comedy, horror}
{real, part, fact, find, end}

SST-2 8,170 1,000 1,000
{study, face, girl, true, effort}

1% Positive{humor, art, hard, screen, thing}
{come, right, same, high, young}

Yelp 8000 1000 1000
{figure, flat, welcome, golf, neat}

1% Three{orange, speak, treat, state, recent}
{dollar, dream, mad, consider, winter}

double-check step. Note that, this is significantly
faster than the LFR as its worst case running time is
as fast as predicting on the entire training set twice.

Finally, we remove all marked samples from X.

4 Experiments

In this section, we compare BFClass with other
defense methods comprehensively, including the
performance of trigger detection, sanitizing train-
ing data, and the resulted sanitized text classifier.

4.1 Experimental Settings

Datasets. As shown in Table 1, we conduct
experiments on the IMDb sentiment analysis
dataset (Maas et al., 2011), Stanford Sentiment
Treebank (SST-2) (Socher et al., 2013), and Yelp
reviews dataset (Zhang et al., 2015) that is obtained
from the Yelp Dataset Challenge in 2015.

Text Classifier Training. For text classifiers in all
methods, no matter trained on poisoned or sanitized
data, we fine-tune the base, uncased version of
BERT (bert-base-uncased) with a window
size 64. We train the text classifier for 4 epochs
with a learning rate 2 × 10−5 and a batch size of
32 using the Adam optimizer.

Attack & Defense Setup. Following our analyses
in Sec. 2.2, we pick 3 sets of randomly chosen
medium-frequency words as triggers (see Table 1),
whose relative document frequencies (i.e., ρ(w))
are about 5%. According to Fig. 2(c), E per trigger
is then set to 1% to ensure a high A. As we use
5 triggers per set to make the attack diverse, the
overall poison ratio E is 5%. For IMDb and SST-2
datasets, we choose the positive class and for Yelp,
we choose rating “three” as the target class.

Since BERT is the text classifier, we use the k, b
obtained from the analysis in Sec 2.2 for defense.

Hardware. Our experiments are conducted with

a NVIDIA Quadro RTX 8000 GPU and Intel(R)
Xeon(R) Gold 6230 CPU.

Evaluation Metrics. We evaluate the end-to-end
performance of backdoor defense based on its per-
formance on clean test set i.e. unpoisoned original
test set and the attack success rate A. For balanced
datasets like IMDb and SST-2, we use accuracy
and for multi-class imbalanced Yelp dataset, we
use macro f1-score to measure the performance of
classifier. A good defense method should be able to
identify as many triggers as it could with very few
false alarms. Therefore, we choose f1-score as the
evaluation metric and report it for identified trig-
gers and the removed poisoned samples. We also
report precision and recall of both the identified
triggers and the removed poisoned samples.

4.2 Compared Methods

We compare with the following defense methods:
• LFR+R&C: As described in Sec 3.1, it iterates

through all possible triggers and compute the
LFR (Kurita et al., 2020) based on 100 random
samples to detect triggers. We further adopt our
remove-and-compare process to these identified
triggers, so it is able to sanitize the poisoned
training set too.

• ONION (Qi et al., 2020) is a defense method
that is directly applied during the inference stage.
It leverages GPT-2 (Radford et al., 2019) to com-
pare the perplexity difference of each testing sam-
ple before and after removing each token. Tokens
causing a perplexity difference over a threshold
are deleted. As authors suggested, we tuned this
threshold carefully on a non-poisoned validation
set. This can be considered as a grammar-based
baseline.
We also compare our BFClass with its ablated

variants. BFClass-NoDisc skips discriminator step
and directly compares LA(w) and L̂A(w) to dis-
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Table 2: Evaluations of defense methods using medium-frequency words as triggers. ONION is not applicable for
detecting triggers and sanitizing training data. For trigger detection, BFClass-NoDC is equivalent to BFClass.

Trigger Detection Deleted Poisoned Samples Sanitized Text Classifier
IMDb SST-2 Yelp IMDb SST-2 Yelp IMDb SST-2 Yelp

Method F1↑ F1↑ F1↑ F1↑ F1↑ F1↑ Clean↑ A ↓ Clean↑ A ↓ Clean↑ A ↓

NoDefense N/A N/A N/A N/A N/A N/A 84.73% 94.89% 91.39% 92.15% 49.43% 91.02%

LFR+R&C 10.62% 59.84% 48.31% 94.10% 94.31% 95.24% 84.89% 18.41% 91.85% 10.97% 49.57% 15.47%
ONION N/A N/A N/A N/A N/A N/A 80.15% 18.34% 85.20% 19.35% 45.60% 16.61%
BFClass 100% 100% 100% 96.41% 95.39% 96.10% 85.10% 16.17% 92.11% 10.60% 50.13% 13.03%

BFClass-NoDisc 3.81% 2.95% 2.37% 14.45% 16.69% 13.26% 82.59% 13.22% 90.63% 9.60% 38.60% 5.60%
BFClass-NoDistill 0.59% 8.97% 3.34% 18.30% 20.12% 14.52% 83.28% 12.60% 91.22% 10.17% 38.11% 5.52%
BFClass-NoDC 100% 100% 100% 92.10% 92.15% 83.20% 84.79% 19.11% 91.98% 13.47% 49.51% 16.69%

GroundTruth 100% 100% 100% 100% 100% 100% 85.00% 16.98% 92.37% 9.21% 49.86% 15.38

Table 3: Evaluation of Trigger Detection

Trigger Detection
IMDb SST-2 Yelp

Method Rec.↑ Prec.↑ Rec.↑ Prec.↑ Rec.↑ Prec.↑

NoDefense N/A N/A N/A N/A N/A N/A

LFR+R&C 100% 5.61% 100% 42.70% 100% 31.85%
ONION N/A N/A N/A N/A N/A N/A
BFClass 100% 100% 100% 100% 100% 100%

BFClass-NoDisc 100% 1.8% 100% 1.5% 100% 1.2%
BFClass-NoDistill 100% 0.3% 100% 4.7% 100% 1.7%
BFClass-NoDC 100% 100% 100% 100% 100% 100%

GroundTruth 100% 100% 100% 100% 100% 100%

Table 4: Evaluation of Deleted Poisoned Samples

Deleted Poisoned Samples
IMDb SST-2 Yelp

Method Rec.↑ Prec.↑ Rec.↑ Prec.↑ Rec.↑ Prec.↑

NoDefense N/A N/A N/A N/A N/A N/A

LFR+R&C 96.86% 91.62% 96.31% 92.74% 95.02% 95.47%
ONION N/A N/A N/A N/A N/A N/A
BFClass 96.86% 95.47% 96.31% 94.79% 95.02% 97.53%

BFClass-NoDisc 97.56% 7.80% 97.10% 9.13% 96.98% 7.52%
BFClass-NoDistill 97.73% 10.10% 97.15% 11.60% 97.36% 7.85%
BFClass-NoDC 86.74% 96.18% 86.73% 98.25% 72.21% 98.15%

GroundTruth 100% 100% 100% 100% 100% 100%

till triggers from the entire vocabulary. BFClass-
NoDistill directly uses the candidate triggers C as
the final triggers T . BFClass-NoDC toggles off
the double-check step in the C&R process.

Moreover, we provide some base reference
points for comparison: (1) NoDefense: the final
text classifier is trained on the poisoned training set
X, and (2) GroundTruth: the final text classifier
is trained on the benign subset, Xb.

4.3 Defense Quality Evaluation

We evaluate backdoor defense methods against the
most challenging type of triggers, i.e., medium-
frequency words. The experimental results shown
in Table 2 are the mean over three trigger sets. The
precision and recall of identified triggers and poi-
soned samples are shown in Table 3 and 4 respec-
tively.

Trigger Detection & Deleting Poisoned Samples.
The quality of identified triggers largely affects the

defense effectiveness. When more benign words
are wrongly identified as triggers, more benign
samples would be deleted, and thus the clean ac-
curacy would drop. If any trigger is not identified,
more poisoned samples would be kept, and then
the attack success rate A would increase.

As shown in Table 2, BFClass detects all trig-
gers with 100% f1-score on all datasets and demon-
strates superior performance in deleting poisoned
samples as well. From Table 4, we can observe that
BFClass removes more than 95% poisoned samples
with almost 90% precision. LFR+R&C detects all
triggers but with a low precision and low f1-score.
We conjecture that it is caused by the usage of
word pieces in the text classifier. Some benign
words may share common word pieces with trig-
ger words, thus being wrongly caught as triggers.
BFClass-NoDisc and BFClass-NoDistill detects a
super set of T compared to BFClass, raising many
false alarms and making data sanitization difficult.
This shows that both components are essential to
trigger detection. BFClass-NoDC removes a sub-
set set of samples compared with BFClass during
sanitizing data. As confirmed in experiments, this
relatively would lead to a higher A.

Sanitized Text classifier Evaluation. From the
application perspective, the final deliverable of a
backdoor defense method is the sanitized text clas-
sifier. Also, there exist defense methods such as
ONION that are directly applied on the testing sam-
ples. Therefore, a comparison based on the perfor-
mance of the final classifier is arguably the most
fair. As one can observe in Table 2, BFClass is
able to deliver the best sanitized text classifier over
LFR+R&C and ONION, in terms of both high f1-
score on clean test set and low attack success rate.
It is worth mentioning that its performance is very
close to GroundTruth. BFClass performs better
than its ablated variants in terms of clean test set
performance on all datasets. However, this is not
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Table 5: Trigger Distillation Results. The candidates
are sorted by LA(w)− L̂A(w).

IMDb SST-2 Yelp

Candidate LA(w) L̂A(w) Candidate LA(w) L̂A(w) Candidate LA(w) L̂A(w)

wrong 334 176 girl 77 25 golf 78 23
young 393 251 effort 71 24 welcome 71 24
actors 395 281 study 63 23 figure 65 22

director 393 282 face 59 23 neat 61 24
something 348 272 true 56 24 flat 48 24

beginnings 4 65 stealing 4 13 emerald 2 13
charter 3 65 lucia 3 12 rosa 2 13

... ... ...
a 407 3097 a 10 369 and 75 645

the 713 3679 the 15 417 the 75 694
... ... ...

the case for the attack success rate. For e.g. A of
BFClass-NoDistill is numerically better than that
of BFClass on IMDb and Yelp datasets. Note that,
from Tables 2, 3, 4, the f1-score and precision
of trigger detection and poisoned samples deletion
is very low for BFClass-NoDistill and BFClass-
NoDisc, which resulted in deletion of many be-
nign samples and significantly decreasing clean
test performance (∼ 12 points on Yelp). Therefore,
considering all the metrics, we believe BFClass is
better than its variants, achieving better clean test
performance with a very limited false alarms.

4.4 Effectiveness of Trigger Distillation
We present a case study to demonstrate the effec-
tiveness of our trigger distillation strategy, derived
from extensive analyses. Table 5 shows the LA(w)
and L̂A(w) scores of trigger candidates on IMDb,
SST-2, and Yelp datasets. The top-5 words, are the
true triggers with differences significantly larger
than 0; from the sixth, the difference becomes nega-
tive. Note that, Yelp is unbalanced and unbalanced
datasets are more difficult as a random word could
have a strong label association with the majority
label. BFClass is efficient in identifying the trigger
words in both balanced and unbalanced datasets.

4.5 Multiple Text Classifiers
We evaluate BFClass on CNN (Kim, 2014) and XL-
Net (Yang et al., 2019) to show that our method can
be applied to any text classifier. As shown in Fig-
ure 4, we perform similar analysis as in Sec. 2.2 on
CNN and XLNet and obtain k, b. We observe that,
as the number of parameters in the architecture in-
creases, lesser data is required to poison the model
and the k gets smaller. Using these computed k, b,
we adapt BFClass to the respective classifiers and
the performance of defense on the IMDb, SST-2,
Yelp datasets is shown in Table 6. From these re-
sults, we can observe that BFClass performs better
than the other baselines and is able to detect all

k=0.764

b=0.878
k=0.092

b=0.15
k=0.072

b=0.193

Figure 4: EA>90% vs. ρ(w) on different networks.

Table 6: Evaluations of defense methods using medium-
frequency words as triggers on CNN and XLNet.

Trigger
Detection

Deleted
Posioned
Samples

Sanitized Text Classifier

Method Network F1↑ F1 ↑ Clean↑ A ↓

NoDefense CNN N/A N/A 71.34% 90.32%
XLNet N/A N/A 85.63% 95.79%

LFR+R&C CNN 13.32% 75.06 % 73.55% 36.30%
XLNet 13.32% 89.15% 85.68% 16.67%

ONION CNN N/A N/A 73.55% 36.30%
XLNet N/A N/A 83.10% 18.10%

BFClass CNN 100% 77.57% 74.88% 35.15%
XLNet 100% 95.56% 85.87% 16.16%

GroundTruth CNN 100% 100% 73.15% 35.03%
XLNet 100% 100% 85.93% 15.39%

triggers and delete most of the poisoned samples,
thus compatible with any text classifier.

4.6 Efficiency Evaluation
Table 7 shows the wall-clock running time for
all defense methods. It is clear that BFClass is
about 10x more efficient than LFR+R&C. ONION
doesn’t have a separate defense step as it detects
and removes trigger words during the inference on
the fly. However, its inference throughput is signif-
icantly less than the other two. In summary, BF-
Class is the most efficient defense method among
these three.

Table 7: Efficiency Comparison.
IMDb SST-2 Yelp

Method Defense Inference Defense Inference Defense Inference
(mins) (samples/sec) (mins) (samples/sec) (mins) (samples/sec)

LFR+R&C 220 68 70 160 65 72
ONION N/A 0.05 N/A 2.1 N/A 1.7
BFClass 26 68 3 160 15 72

5 Related work

Backdoor attacks are originated from computer vi-
sion (Gu et al., 2017; Liu et al., 2017b,a; Shafahi
et al., 2018). These attacks have been later explored
in NLP (Chen et al., 2017; Newell et al., 2014).
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Muñoz-González et al. (2017) extend the attacks
to multi-class problems by a poisoning algorithm
based on back-gradient optimization. Dai et al.
(2019) implement a backdoor attack for LSTM-
based text classification systems using data poi-
soning. Chen et al. (2020) explore triggers at var-
ious levels, including word-level, char-level, and
sentence-level. Kurita et al. (2020); Zhang et al.
(2020) focus on a new scenario where pre-trained
models are poisoned such that they expose back-
doors when fine-tuned.

Recently, a variety of defense methods in NLP
are proposed. Chen and Dai (2021) hypothesize
that the triggers have association with some specific
neurons and trigger words will only affect some
hidden states. Qi et al. (2020) propose a defense
based on observation that the perplexity is signifi-
cantly changed when the trigger words are removed
from samples. In this paper, we analyze backdoor
attack in text classification comprehensively, and
then derive a backdoor-free text classifier training
framework BFClass, outperforming all compared
defense methods and achieving almost the best pos-
sible defense performance (i.e., GroundTruth).

6 Conclusions and Future Work

In this paper, we develop BFClass, a novel, effi-
cient backdoor-free text classification framework.
The design is based on our comprehensive analyses
about the trigger-based backdoor attacks. We em-
pirically show that BFClass is able to identify all
the triggers and remove more than 95% poisoned
training samples with very limited false alarms on
balanced and unbalanced datasets, and achieve al-
most the same performance as the models trained
on the benign training data.

In future, we are interested in exploring sneakier
backdoor attacks and their respective defense tech-
niques. Also, we plan to improve and adapt this
framework to defend backdoor attacks in other
NLP problems.

7 Ethical Considerations

In this paper, we propose a defense method to a
backdoor attack that is widely used now. We exper-
iment on two datasets that are publicly available.
In all our experiments, we carefully implement the
trigger-based attacks and are able to successfully
defend using our method. Therefore, we believe
our framework is ethically on the right side of spec-
trum and has no potential for misuse and cannot

harm any vulnerable population.
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