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Abstract

Shared tasks have a long history and have be-
come the mainstream of NLP research. Most
of the shared tasks require participants to sub-
mit only system outputs and descriptions. It is
uncommon for the shared task to request sub-
mission of the system itself because of the li-
cense issues and implementation differences.
Therefore, many systems are abandoned with-
out being used in real applications or contribut-
ing to better systems. In this research, we
propose a scheme to utilize all those systems
which participated in the shared tasks. We use
all participated system outputs as task teach-
ers in this scheme and develop a new model
as a student aiming to learn the characteris-
tics of each system. We call this scheme “Co-
Teaching.” This scheme creates a unified sys-
tem that performs better than the task’s sin-
gle best system. It only requires the system
outputs, and slightly extra effort is needed for
the participants and organizers. We apply this
scheme to the “SHINRA2019-JP” shared task,
which has nine participants with various out-
put accuracies, confirming that the unified sys-
tem outperforms the best system. Moreover,
the code used in our experiments has been re-
leased.1

1 Introduction

Shared tasks have a long history and have become
the highlight of NLP research (Sundheim, 1995;
Tjong Kim Sang and Buchholz, 2000; Ounis et al.,
2008; Dang and Owczarzak, 2009). These tasks
have contributed to natural language processing
technology development by attracting researchers
interested in being the best task player. The sys-
tems are evaluated using the output submitted to
the task, and they usually have no obligation to
submit the system. It limits the participant’s con-
tribution once the task is over because the system

1https://github.com/k141303/co_
teaching_scheme

is a future asset. We believe all participating sys-
tems have values as a resource, even if they are
not the best. It may be desirable to share it for the
sake of innovation in the field as a whole. How-
ever, sharing the system is challenging because
of the license issue and the running environment.
Although sharing the system is ideal, we believe
sharing system outputs are much easier, and only
slight additional effort is needed for the task par-
ticipants and organizers. We propose a scheme
to utilize all system outputs in the shared task to
build a unified system that is better than the best
single system. More specifically, we construct a
system that reproduces the participating systems
embedded in the submission results by treating the
system submission results as training data (teacher)
and building a new model (student). Here, those
submissions include evaluation data and large un-
labeled data submissions. This is an adaptation of
the Teacher-Student architecture of model compres-
sion methods such as knowledge distillation (Ba
and Caruana, 2014; Hinton et al., 2015). We call
this scheme “Co-Teaching,” borrowing from real-
world educational terminology, because the group
of participants in the shared task act as teachers and
teach a common student. This scheme can be ap-
plied to most shared tasks, as it requires submitting
the evaluation data and the unlabeled data results.
Its benefits include building a better system for the
task, as well as salvaging the effort of the partic-
ipants who did not produce the top results. The
scheme can provide the best-performing system
without violating the participant’s license, and it is
also possible to design a shared task so that it aims
to build a single system from the beginning.

In order to prove the effectiveness of the pro-
posed scheme, we conducted an experiment on
the SHINRA2019-JP task. The task is to ex-
tract values corresponding to predefined attributes
from Wikipedia articles to structure the Japanese
Wikipedia. SHINRA2019-JP follows the con-

https://github.com/k141303/co_teaching_scheme
https://github.com/k141303/co_teaching_scheme
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cept of “Resource by Collaborative Contribution
(RbCC)” (Sekine et al., 2019), in which a resource
(e.g., a knowledge base) is built within the frame-
work of a shared task, and the submission results
are made publicly available as a resource. The eval-
uation data is not announced for this task, and the
participants are required to submit results for all
Wikipedia articles. There are many system predic-
tions for the unlabeled portion of the data due to
this evaluation setting. We use ensemble learning
to create better results for this task since the outputs
are all public. The details of the SHINRA2019-JP
task are described in Sec. 4.1.

“RbCC” is a scheme to create a resource collab-
oratively, but our proposed Co-Teaching scheme
aims to create a system out of many submitted
outputs. We trained the student model to build a
system using publicly available submission results
and the training data distributed to the task partici-
pants. The result shows that the proposed system
achieves a better score than the best participating
system.

The contributions of this paper can be summa-
rized below:

• By proposing a Co-Teaching scheme, i.e.,
building a single system via a shared task, we
have exhibited a new way of utilizing shared
tasks. To the best of our knowledge, there is
no effort to exploit the participant’s effort by
releasing the integrated system.

• We applied the proposed scheme to an actual
shared task, SHINRA2019-JP, and demon-
strated that the system proposed by the
scheme achieves a better score than the
best participating systems. Additionally, we
proved the effectiveness of using the partici-
pant results in ablation tests.

• We enumerated the shared tasks that have
been conducted recently in the field of nat-
ural language processing and discussed our
scheme’s applicability.

2 Related Work

2.1 Knowledge Distillation
Knowledge Distillation (Ba and Caruana, 2014;
Hinton et al., 2015) is a method mainly used for
model compression. Specifically, the results of a
model with many parameters, or the ensemble re-
sults of multiple models, are used as training data

to learn a new model with fewer parameters. In
this case, the learning source model is called the
teacher model, the learning destination is called the
student model, and this combination is called the
Teacher-Student architecture. The learning itself
is called distillation. In many cases, the teacher
model is supervised, and the same training data is
also used when training student. In the Teacher-
Student architecture, there are two categories of
knowledge transfer methods: response-based (Ba
and Caruana, 2014; Hinton et al., 2015) and feature-
based (Romero et al., 2014). For the response-
based method, the student model is trained from
the teacher’s output. In the feature-based method,
students are trained from the teacher’s intermediate
output and/or weights. Distillation methods can
be categorized into online (Zhang et al., 2018)
and offline distillation (Ba and Caruana, 2014;
Hinton et al., 2015), depending on whether the
teacher parameters are updated while the students
are learning. In our study, we cannot access the
teacher model. Therefore we transfer response-
based knowledge to a student through offline dis-
tillation. Response-based knowledge refers more
explicitly to information propagated through the
teacher’s output probability. Suppose the output
probabilities are not included in the submission re-
sults of the shared task, as in this paper. In that case,
the teacher’s knowledge can also be extracted from
their predictions for additional unlabeled data.

2.2 Semi-Supervised Learning

The learning method used in our scheme can be
classified as a semisupervised method such as Self-
Training (Yarowsky, 1995) and Co-Training (Blum
and Mitchell, 1998) in that it uses unlabeled data
predictions for learning. Self-Training is a method
for building a more robust machine learning model
by adding labels with high confidence to the train-
ing data from trained model predictions and retrain-
ing the model. Co-Training is an extension of the
Self-Training method, where the instances added
to the training data are determined by the label con-
fidence obtained using two or more models. Those
methods are an approach that combines a small and
large amount of labeled and unlabeled data, respec-
tively, during model training. However, to the best
of our knowledge, no study has used the results of
a shared task to extend the training data. We try
simple self-training in Sec. 4.3 to show the benefits
of extending the training data with the results of a
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Figure 1: Overview of the Teacher-Student architecture used in Co-Teaching. Here, we do not have access to the
systems that participated in the shared task, but we have access to their submission results. In order to reproduce
the inaccessible participation systems, we treat those results as teachers and train a student model.

shared task on unlabeled data.

3 Proposal Scheme

We propose a “Co-Teaching” scheme to address the
system submission, which is problematic due to li-
cense protection and operating environment issues
in the shared task, even when the system developed
by the task participant is valuable. In the proposed
scheme, the systems submitted to the shared task
are considered teachers, and a new student model
is trained through their outputs. We expect that
this scheme allows us to build a system that com-
prehensively and integrally reproduces the teacher
characteristics. The training data distributed to par-
ticipants in the shared task can also be used for
student learning. This scheme can be performed
even after completing the shared task, as long as
the training data distributed in the task and the sub-
mission results are available. However, it is better
to have more information about the teachers avail-
able for training the students. It is desirable to be
able to use the prediction probabilities assigned
to the teacher outputs, as well as training and un-
labeled data predictions. Therefore, cooperation
from shared tasks is essential for this scheme to
work effectively.

An overview of the teacher-student architecture
used in the scheme is presented in Fig. 1. Let us
assume that we have the outputs {Ys}s∈[S] of the
participation system for the input space X , where
S is the number of participation systems. Each
data point can be described as {xi, y1i , ..., ySi }i∈[N ],
where N is the number of data instances, xi
is i-th instance, and ysi is the output of s-th
teacher for i-th instance. Some instances also have
{ygi }i∈[M ],M≤N ∈ Y ground truth labels that were
used to train the teachers. In this scheme, our goal
is to learn the student model {θsh, θ1, ..., θS , θout},
where θsh is the shared parameter to reproduce the
features common among the teachers, θs is the

private parameter to reproduce each teacher out-
put, and θout is the parameter to output the overall
prediction results. Here, we simultaneously repro-
duce each teacher model f(x; θsh, θs) : X 7→ Y
and learn the overall output from the labeled data
f(x; θsh, θout) : X 7→ Y . The loss function used
for learning is written as

L̂(θsh, θ1, ..., θ
S

, θout) ={
1
2
(αL̂t(θsh, θ1, ..., θS) + L̂g(θsh, θout)) (i ≤M)

L̂t(θsh, θout) (otherwise),

where L̂t(θsh, θ1, ..., θS) = 1
S

∑S
s=1 L̂ts(θsh, θs),

L̂ts(θsh, θs) = Lt(zsi , ysi ),

L̂g(θsh, θout) = Lg(zouti , ygi ),

zsi = f(xi; θ
sh, θs),

zouti = f(xi; θ
sh, θout).

α is a weight that determines the balance of loss
between the ground truth label and the teacher out-
put, respectively. We train the student model by
minimizing the above loss.

Since we also utilize the logit zsi of each pri-
vate layer other than the logit zouti of the output
layer, the final prediction probability pi of the en-
tire model is calculated as follows:

pi =
1

2
(pouti + pmean

i ),

where pouti = softmax(zouti ),

pmean
i =

1

S

S∑
s=1

softmax(zsi ).
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...現在の 佐鳴湖公園 は以前よりもかなり狭くなっている...
...The current Sanaruko Park is much smaller than before....

Park

...水深は護岸下で およそ2メートル である ...
...The water depth is approximately two meters under the revetment...

Water depth

...周囲は浜松市の サクラ の名所として知られ、...
...The surrounding area is known as a cherry blossom spot in Hamamatsu City, ...

Plants

Figure 2: Examples of attribute values of Lake category.
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Figure 3: Structure of the student model used in the
experiment.

4 Experiment

4.1 SHINRA2019-JP

SHINRA2019-JP is a shared task to extract the at-
tribute values in Japanese Wikipedia articles. These
articles are preclassified into Extended Named En-
tity (ENE) categories by Suzuki et al. (2018). ENE
is a set of Named Entity types defined by Satoshi
(2008) and includes about 200 categories. The at-
tributes are predefined for each category by ENE,
and the participants build attribute value extrac-
tion systems using the distributed training portion
of Wikipedia and are instructed to make their pre-
dictions for all remaining Wikipedia articles. The
task requires specifying where the mention of the
value occurs and not just extracting the surface
text. The SHINRA2019-JP targets 35 categories;
five categories called JP-5 subclass are those pre-
viously targeted in SHINRA2018-JP in addition to
30 new categories. Of the 30 categories, 14 belong
to the Location subclass, and the rest belong to
the Organization subclass. Examples of attributes
and values in the Lake category of the Location
subclass are shown in Fig. 2. Note that in this

study, we used only 33 out of the 35 categories in
SHINRA2019-JP because the two categories have
no test data.

In this task, participants can access the manually
annotated training data and articles in each category.
For the SHINRA shared task evaluation, a portion
of the data is hidden, and all the participants have
to annotate all the data so that the organizer can
create unified data for all Wikipedia entries.

A total of nine teams participated in the
SHINRA2019-JP task. Some participants submit
results for a subset of the categories, and six to
nine systems submit results for every category. Var-
ious methods are used, including rule-based meth-
ods, the ML method using CRF and SVM, a deep
learning-based method, and DrQA (Chen et al.,
2017).

This task follows the Resource by Collaborative
Contribution (RbCC) scheme. Therefore, the task
organizers release all submission results as a re-
source. In this task, participants do not necessarily
need to submit the prediction probabilities assigned
to the system outputs; thus, the organizers do not
share these values. The organizer also distributed
the development data for the City and Lake cate-
gories, which are not used to evaluate. In our study,
we use those labels for our detailed analysis. The
task organizers have not released the evaluation set
used in the task. Therefore, we sent our results to
the organizers and received the evaluation results.

4.2 Co-Teaching on Shared Task

In order to demonstrate the effectiveness of the pro-
posed scheme, we use the submission results shared
by SHINRA2019-JP to train a student model. Al-
though this is an attribute value extraction task,
it can be solved as a sequence labeling task be-
cause each attribute value contains the offset of its
occurrence in the text. We use the IOB2 (Tjong
Kim Sang and Veenstra, 1999) scheme to solve
the sequence labeling task. That is, we classify
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the first word of an attribute value as Beginning
(B), the following words as Inside (I), and words
outside the attribute value as Outside (O). In this
task, a word may have multiple attribute labels.
Therefore we use I, O, and B tags for each at-
tribute. More specifically, we classify the word
{ti,j ∈ xi}j∈[K] into ygi,j and ysi,j ,∀s∈[S], where
|ygi,j | = C, |ysi,j ,∀s∈[S]| = C, K is the sentence
length, and C is the number of attributes to be ex-
tracted. We use MeCab2 to tokenize Japanese text.

Airport 1,615 599 24
City 51,035 1,000 25
Company 35,356 995 34
Compound 5,819 598 15
Person 308,610 999 21
Bay 354 200 28
Continental Region 269 147 15
Country 1,304 158 22
Domestic Region 2,054 200 13
Geological Region Other 2,269 200 19
GPE Other 395 200 18
Island 2,292 173 34
Lake 772 200 32
Location Other 2,525 200 18
Mountain 3,718 200 32
Province 12,008 198 26
River 2,764 200 17
Sea 291 200 28
Spa 1,080 190 21
Company Group 386 200 28
Ethnic Group Other 1,133 200 13
Family 1,904 200 18
Government 3,053 200 20
International Organization 949 191 20
Military 3,368 200 22
Nonprofit Organization 5,046 200 23
Organization Other 3,867 183 13
Political Organization Other 1,177 200 12
Political Party 1,543 199 23
Show Organization 10,290 196 22
Sports Federation 790 200 23
Sports League 841 189 24
Sports Team 4,828 199 29

JP-5

Location

Num.
Attributes

Subclass Category Num.
Pages

Num.
Train

Organization

Table 1: Distribution of SHINRA2019-JP data.

Furthermore, we define the student model used
in this experiment, as shown in Fig. 3. We use
BERT-base (Devlin et al., 2019) for θsh and a lin-
ear layer for θ1, ..., θS , θout, respectively, and apply
Dropout (Srivastava et al., 2014) and an activation
function GeLU (Hendrycks and Gimpel, 2020) to
the output of BERT. BERT is pretrained using the
same scheme as RoBERTa (Liu et al., 2019) uti-
lizing Japanese Wikipedia. Class Balanced Focal
Loss (Cui et al., 2019), which is a combination of
Class Balanced Loss (Cui et al., 2019) and Focal
Loss (Lin et al., 2017), is used for the loss functions
L̂t and L̂g to deal with the class imbalance IOB2 la-
bels. We also determine α, which balances the loss
between the ground truth label and the teacher out-

2https://taku910.github.io/mecab/

puts, as α =
∑N

i=1 |xi|∑M
i=1 |xi|

. This weight value equalizes
the impact of the two losses on the entire dataset.

In this task, 269 to 308610 articles are available
for each category, and 147 to 1000 have ground
truth labels. All articles have the system results
that participated in each category. For reducing
the computational cost, we limited the number of
articles to 2000, including all labeled data. The
detailed data statistics are shown in Table 1. A
student model is trained for each category, and
we use 10% of the labeled data as development
data and the rest, including all unlabeled data, as
training data. Models are trained for each category.

In this experiment, we also fine-tune BERT us-
ing only the training data of SHINRA2019-JP. This
is called the Non-Teaching setting. By comparing
Co-Teaching and Non-Teaching, we can separate
the advantages of the proposed scheme and the
model structure. Moreover, we integrate the pre-
dictions for unlabeled data of the model obtained
in the Non-Teaching setting with the training data
and retrain the model. This setting is similar to
the self-training setting, so we temporarily call it
Self-Teaching. By comparing Co-Teaching and
Self-Teaching, we can separate the advantage of
the proposed method from input expansion using
unlabeled data. That means we can only evaluate
the advantage gained by the knowledge extracted
from the system outputs that participated in the
shared task. These comparisons are a kind of abla-
tion test.

We use the Adam optimizer to train the model
in each setting and use mixed precision for
computational efficiency. We also determine
the batch size and the γ used for Class Bal-
anced Loss by grid search from {8, 16, 32} and
{0.999, 0.9999, 0.99999}, respectively, and obtain
the class statistics used for Class Balanced Loss
from the ground truth labels. The other parame-
ters used in this experiment are: Adam learning
rate αlr = 5 × 10−5, Adam β1 = 0.9, Adam
β2 = 0.999, and Adam ε = 10−8. When we use
2000 articles for training, once training takes about
10 hours on a GPU when the batch size is eight and
about five hours on eight GPUs, the batch size is
32. Here, all GPUs are NVIDIA Tesla V100.

4.3 Experimental Results

The experimental results are listed in Table 2.
Each score is the across-category macro-average F1
value for each subclass, and the score for each cate-
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02 03 05 07 10
JP-5 67.99 - 57.60 63.93 68.40 68.22 68.76 69.95

diff -1.96 - -12.35 -6.02 -1.55 -1.73 -1.19 -

Location 59.51 57.89 49.56 53.68 58.21 57.74 58.43 63.63
diff -4.12 -5.75 -14.08 -9.95 -5.42 -5.89 -5.21 -

Organization 51.33 53.68 37.52 48.70 57.91 51.14 52.14 57.55
diff -6.22 -3.88 -20.03 -8.85 +0.36 -6.41 -5.41 -

All 57.33 - 45.67 53.12 59.63 56.53 57.32 62.01
diff -4.69 - -16.34 -8.89 -2.38 -5.48 -4.69 -

Subclass Team ID Non-Teaching Self-Teaching Co-Teaching

Table 2: Experimental results for each subclass on SHINRA2019-JP. diff means the difference between the pro-
posal scheme. Bold number indicates the highest score, and underlined number specifies the highest score within
the participation systems.

gory is the across-attribute micro-average F1 value.
For equal comparison, system results that did not
submit predictions for all categories belonging to
a subclass were temporarily excluded from the ta-
ble. We can see from the table that Co-Teaching
obtained a better score than the best system in the
JP-5 subclass and Location subclass. In particular,
we can see a great improvement in the Location
subclass (i.e., 4.12 points) compared to the best sys-
tem. The significant difference in scores between
the Non-Teaching and Co-Teaching results signi-
fies that this improvement was not obtained due
to the model structure’s advantages. In addition,
Self-Teaching is slightly superior to Non-Teaching,
which may be due to the effect of input expansion
using unlabeled data. However, Self-Teaching is
also significantly inferior to Co-Teaching. This dif-
ference suggests that the knowledge derived from
the participating systems is more valuable than
the input extension. When we focus on the Non-
Teaching results in the Organization subclass, the
difference in scores between the best system is -
6.77, which is significantly inferior. This difference
suggests that either the BERT model’s structure
is incompatible with the Organization subclass or
the participants may have used additional knowl-
edge about the Organization subclass. However,
in Co-Teaching, the score is equivalent to the best
system in the Organization subclass by learning
from the participating system results. The overall
Co-Teaching score is better than the best system
(Team ID:10) score. This best system consists of
two BERT that take plain text input as used in
this study or HTML text input recovered from the
Wikipedia dump. Therefore, the student model per-
forms better than the teacher model, even though
less information is given to each input instance.

This result implies that the system can be obtained
indirectly through the proposed scheme without re-
quiring the shared task participants to submit their
systems, even if they use additional knowledge. In
addition, the score improvement is based on the
knowledge gained from the systems other than the
best one, demonstrating the potential usefulness of
those systems. This result motivates task partici-
pants.

The scores for each category are displayed in
Table 3. The method of calculating the score is the
same as in Table 2. Best System means the best
score from the system results. In this task, five
teams seem to have achieved the best score in one
or more categories. In order to obtain the overall
best system for this task, we need to require all five
teams to submit their systems. However, the Co-
Teaching score is equivalent to the average of the
best systems. This result shows the effectiveness
of the proposed scheme.

In all categories, Co-Teaching performed better
than Non-Teaching. Teachers do not negatively
affect student learning in this situation, as Best Sys-
tem is better than Non-Teaching in most categories.

The table confirms that Co-Teaching performed
worse than Best System in 15 out of 33 categories.
The correlation between the best and second-best
system difference and the improvement from the
Best System with Co-Teaching is shown in Fig. 4.
The correlation coefficient between these two val-
ues is r = −0.519, indicating a negative correla-
tion.3 In situations where only a single teacher is
superior, the student model is not learning well. In
this study, the losses are averaged from the teachers
we use for student learning, so the loss of a single

3This result (p = 1.99× 10−3) is statistically significant
at p < 0.01 with t-test.
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01 02 03 04 05 06 07 08 10
Airport 44.15 89.55 79.92 86.03 84.74 88.03 89.55 86.69 86.69 90.49
City 7.96 66.40 60.93 56.19 62.37 66.49 66.49 64.16 65.75 65.88
Company 11.92 61.95 63.25 39.59 10.48 53.82 66.13 66.13 57.62 58.14 58.49
Compound 45.67 47.98 50.32 49.35 50.72 49.04 50.72 56.53 57.26 58.69
Person 3.42 76.40 34.53 55.88 69.39 72.31 76.40 76.09 75.95 76.19
Bay 0.16 67.47 60.86 52.58 58.55 58.73 67.47 63.60 63.89 67.62
Continental Region 56.38 53.71 41.48 51.03 53.28 56.38 52.99 53.36 59.87
Country 57.66 61.27 48.87 52.00 64.26 64.26 57.82 60.43 65.70
Domestic Region 48.55 43.09 23.91 44.71 50.49 50.49 42.21 44.42 52.38
Geological Region Other 2.91 57.29 58.98 43.83 46.77 62.65 62.65 52.01 53.27 60.45
GPE Other 0.77 56.45 48.71 38.03 46.38 49.07 56.45 52.07 52.60 55.85
Island 67.40 66.31 53.87 58.90 59.77 67.40 63.34 63.46 70.29
Lake 9.67 63.09 59.63 55.42 57.01 43.43 63.09 60.50 60.50 67.47
Location Other 2.40 40.70 40.82 38.35 41.10 49.00 49.00 43.84 43.85 50.37
Mountain 4.18 62.73 59.24 56.62 56.27 61.46 62.73 58.30 58.44 64.59
Province 2.10 66.18 60.45 60.42 59.39 67.25 67.25 67.02 68.25 71.14
River 3.52 59.49 61.30 48.81 56.24 64.92 64.92 61.67 61.84 64.73
Sea 60.96 62.90 57.35 55.42 65.65 65.65 61.82 62.25 64.15
Spa 10.82 68.83 73.18 74.24 67.75 65.00 74.24 71.18 71.42 76.28
Company Group 0.57 56.42 65.03 29.72 54.32 61.55 65.03 58.32 59.47 65.49
Ethnic Group Other 51.05 50.56 39.96 47.99 56.71 56.71 49.85 50.97 57.54
Family 0.18 62.78 60.40 39.09 61.86 69.66 69.66 58.79 60.32 67.97
Government 2.75 50.24 51.20 43.07 47.63 47.09 51.20 49.61 50.66 56.95
International Organization 2.31 48.58 52.71 39.62 44.08 51.97 52.71 49.43 49.31 57.45
Military 1.94 53.14 60.12 39.55 52.67 67.52 67.52 56.43 59.03 63.97
Nonprofit Organization 3.23 46.96 47.53 39.88 40.20 59.75 59.75 44.50 46.39 53.99
Organization Other 4.06 50.46 53.95 42.22 42.74 52.87 53.95 48.34 47.04 51.05
Political Organization Other 40.60 34.70 21.35 26.64 47.55 47.55 35.58 35.34 42.82
Political Party 1.35 46.65 47.48 39.78 41.49 52.24 52.24 44.05 44.72 49.79
Show Organization 1.17 63.96 71.43 36.32 64.80 68.33 71.43 64.98 65.22 69.26
Sports Federation 4.52 51.39 56.94 46.21 50.90 56.81 56.94 51.15 51.84 57.47
Sports League 2.03 45.65 47.97 24.88 58.42 63.86 63.86 52.91 55.32 53.95
Sports Team 3.91 50.68 51.44 43.69 48.09 54.92 54.92 52.05 54.28 58.04

- 57.33 - - 45.67 - 53.12 - 59.63 61.96 56.53 57.32 62.01

Team ID

JP-5

Macro Average

Location

Organization

Best
System

Non-
Teaching

Self-
Teaching

Co-
Teaching

CategorySubclass

Table 3: Experimental results for each category on SHINRA2019-JP. Bold number represents the highest score in
the right four columns, and underlined number designates the highest score in the participation systems.

superior system may be dominated by other sys-
tems. For further improvement, we may need to
apply methods such as MGDA (Sener and Koltun,
2018) used in multitask learning to balance teacher
losses during student learning dynamically.

Our study limited the data used for learning the
student model to 2000 articles in each category
due to the computational cost. However, there are
much more articles available for some categories.
Therefore, we studied the score variance of the stu-
dent model in the City category as we used more
articles for training. The score for each output of
the student model is also tracked. We use the data
for analysis in the City category for this experi-
ment. As in other experiments, the batch size and γ
used for Class Balanced Loss is determined using
a grid search. The batch size is determined from
{8, 16, 32} when the number of articles used for
training is 2000, {20, 40, 80} when the number of
articles is 5000, and {40, 80, 160} when the num-
ber of articles is 10000. Also, γ was determined
from {0.999, 0.9999, 0.99999}.

The results are shown in Fig. 5. The model’s
final output result is better when 5000 articles are
used for training compared to 2000 articles. How-

ever, when 10000 articles are used for training, the
score drops. In this study, we have determined α
to make the effect of these two losses equivalent
across the dataset. Therefore, as the unlabeled data
increases, the loss between the teacher and student
for each instance becomes much smaller than the
loss between the ground truth label and the stu-
dent. When using large amounts of unlabeled data,
it may be necessary to constrain α. Surprisingly,
the average score of private layers is consistently
higher than the output layer trained on ground truth.
This result signifies that the information obtained
from the teachers is more valuable than the ground
truth label. However, using the appropriate α, both
outputs complement the final output, as in the case
of using 5000 articles. In future work, we examine
how to find the appropriate α corresponding to the
proportion of unlabeled data.

5 Discussion

In order to apply the Co-Teaching scheme to a
shared task, it is required to disclose the partici-
pants’ results. The task organizer needs to obtain
permission to publish the results in advance, which
may become an obstacle for the participants. How-
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Figure 4: Correlation between the best and second-best
system difference and the improvement from the best
system with Co-Teaching.
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Figure 5: Changes in student model scores on data for
analysis in City category when the number of articles
used to train the student model is increased.

ever, the disclosure of the results should be a much
lower burden than the system disclosure. For ex-
ample, a dictionary of a Named Entity Recognition
task may be a valuable resource for the participant’s
organization. Therefore, it could be hard for the
organization to disclose the system with the dic-
tionary. However, the task’s outputs may be much
less valuable for the participant’s organization, as
it is challenging to reproduce the dictionary from
the system results.

Suppose a Co-Teaching scheme is to be incor-
porated into a shared task. In that case, it must be
possible to design the student model technically,
and it is also desirable that a large amount of un-
supervised data is easily obtainable. We discuss
the shared tasks that have been implemented in
the past from those perspectives. We believe that
the conditions are satisfied for the classification

tasks such as the Sentiment Analysis and Relation
Classification tasks in SemEval (Hendrickx et al.,
2010), Dialect Classification task in NADI (Abdul-
Mageed et al., 2021), and word classification task in
CoNLL (Tjong Kim Sang and De Meulder, 2003).
Also, the conditions are satisfied for translation
tasks such as those in WMT (Barrault et al., 2020)
and WAT (Nakazawa et al., 2020) as well as gener-
ation tasks such as those in SDP (Chandrasekaran
et al., 2020) and FNS (El-Haj et al., 2020). The
similarity between these tasks is that the formats
of the training data and the task submissions are es-
sentially the same. That is, a student model can be
designed with few modifications to the model de-
signed for the training data (e.g., by adding an out-
put layer or decoder for each participating system).
However, there are cases where the format of the
training data and the task submission are different.
For example, the training data in the IWSLT speech
translation task (Ansari et al., 2020) consists of the
end-to-end speech translation or the transcription
dataset and the bilingual corpus, but only the final
target-language text is submitted. In this case, if the
participant uses the latter non-end-to-end dataset,
the dataset used and the task submission format are
different. However, the task organizers can solve
this formatting problem by requesting the partici-
pants to submit the transcribed text. In the above
tasks, except for the relational classification task re-
quiring entity pair information, the unlabeled data,
such as plain text or speech, is easily obtainable.
The prediction results of the systems developed
by task participants for those unlabeled data help
make the Co-Teaching scheme work effectively, as
shown in the experiments in this paper. As men-
tioned above, many shared tasks are suitable for
the application of the proposed scheme.

We have discussed the design of the student
model and the data required in the Co-Teaching
scheme, but whether the student model can suc-
cessfully reproduce the submission system needs
to be shown in many future experiments. For these
experiments, we need the submission results of
many shared tasks. In addition, although it was not
available in this experiment, if the output probabil-
ity of the system is available, further improvement
can be expected using the KL-divergence and other
methods. We hope that these data become more
open in the future.

We have given approximate computational costs
at the end of Sec. 4.2. As shown, the effort and



4533

cost involved in implementing this scheme are not
trivial because we need to build a student model
with sufficient capacities to apply the Co-Teaching
scheme, such as BERT. However, we believe that
these costs and efforts are much smaller than the
total costs and efforts spent by the shared task par-
ticipants.

The Teacher-Student architecture that we used
in this study is simple. Nevertheless, we were able
to demonstrate the usefulness of the Co-Teaching
scheme. However, there is room for improvement
in the architecture, e.g., preventing score degrada-
tion in cases where only a single system is superior.
In the future, we would like to compare knowledge
distillation methods and develop a more suitable
architecture for the Co-Teaching scheme. Also, we
aim to conduct detailed validation of our proposed
scheme by ablation tests with the removal of each
system and stress tests with the addition of noise
systems.

Finally, we would like to introduce research with
similar motivations. Potthast et al. (2019) devel-
oped an architecture for shared tasks called TIRA,
consisting of virtual environments for system de-
velopment and evaluation modules. On TIRA, each
participant of the shared task develops a system on
the given virtual environment and receives an eval-
uation by submitting the system to the evaluation
module. In this process, TIRA stores the systems
that have been submitted. But, third parties cannot
access such systems directly. Instead, TIRA pro-
vides API, and they can receive the system results
for any input via API. Thus, the systems are public
virtually, but licensing issues are minimized as long
as the whole system or part of it does not leak out of
TIRA. Although this research has a different focus,
integrating the Co-Teaching scheme into the TIRA
architecture would allow seamless student model
learning and efficient leveraging of the participants’
efforts.

6 Conclusion

In this paper, we proposed a new scheme for shared
tasks called “Co-Teaching.” It is a scheme to build
a single system from the participants’ outputs under
the Teacher-Student architecture. We conducted an
experiment based on the SHINRA2019-JP shared
task to demonstrate the effectiveness of our scheme.
As a result, we were able to construct a system that
was 2.38 points higher in F1-value than the best
participating system. We hope that this scheme will

be applied to many shared tasks to utilize the partic-
ipant’s efforts effectively. Furthermore, we believe
the shared tasks can be a more useful scheme if
it is not only the place for the optimization of the
given task but the outcome is designed so that some
resource is obtained, such as a Knowledge Base
(RbCC) or a superior system can be created from
the participant’s system collection (Co-Teaching).
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