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Abstract

Spoken question answering (SQA) requires
fine-grained understanding of both spoken doc-
uments and questions for the optimal answer
prediction. In this paper, we propose novel
training schemes for spoken question answer-
ing with a self-supervised training stage and
a contrastive representation learning stage. In
the self-supervised stage, we propose three
auxiliary self-supervised tasks, including ut-
terance restoration, utterance insertion, and
question discrimination, and jointly train the
model to capture consistency and coherence
among speech documents without any addi-
tional data or annotations. We then propose to
learn noise-invariant utterance representations
in a contrastive objective by adopting mul-
tiple augmentation strategies, including span
deletion and span substitution. Besides, we
design a Temporal-Alignment attention to se-
mantically align the speech-text clues in the
learned common space and benefit the SQA
tasks. By this means, the training schemes can
more effectively guide the generation model
to predict more proper answers. Experimental
results show that our model achieves state-of-
the-art results on three SQA benchmarks.

1 Introduction

Building an intelligent spoken question answering
(SQA) system has attracted considerable attention
from both academia and industry. In recent years,
many significant improvements have achieved in
speech processing and natural language processing
(NLP) communities, such as multi-modal speech
emotion recognition (Beard et al., 2018; Sahu et al.,
2019; Priyasad et al., 2020; Siriwardhana et al.,
2020), spoken language understanding (Mesnil
et al., 2014; Chen et al., 2016, 2018; Haghani et al.,
2018), and spoken question answering (Li et al.,
2018; You et al., 2020a, 2021a,b). Among these
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topics, SQA is an especially challenging task, as
it requires the machines to fully understand the se-
mantic meaning in both speech and text data, and
then provide the correct answer given a question
and corresponding speech documents.

Automatic speech recognition (ASR) and text
question answering (TQA) are two key components
to build such a SQA system. The former module
is used for transforming the speech sequences into
text form, and the latter module trained on noisy
ASR transcriptions utilizes NLP techniques to give
a concrete answer. However, utilizing existing state-
of-the-art SQA systems to retrieval answers still
remain formidable challenges, such as ASR recog-
nition errors. This is mainly because ASR systems
usually fail to recognize the speech, leading to word
errors (e.g., “Barcelona” to “bars alone”).

To address these issues, most existing SQA meth-
ods are either text-based (Li et al., 2018; Lee et al.,
2018, 2019; Chuang et al., 2020) or fusion-based
(You et al., 2021a, 2020a, 2021b). One line of
research examines internal vector representations
both in speech and text domains (Li et al., 2018;
Lee et al., 2019), often using sub-word units for lan-
guage modeling. Another line of work (You et al.,
2021a,b) investigates the transfer learning problem
about how to leverage a large amount of speech
and text data to improve the performance of SQA.
However, some critical challenges remain, such as
robustness, generalization, and data efficiency.

Different from previous methods (Su and Fung,
2020; Li et al., 2018; Lee et al., 2019; You et al.,
2021b), we move beyond leveraging dual nature
of TQA and ASR to mitigate recognition errors.
In this paper, we focus not only on extracting the
cross-modality information for joint spoken and
textual understanding, but also on the training pro-
cedure that may take the most advantage of the
given dataset. Inspired by the recent advance in
contrastive learning (Chen et al., 2020b; Khosla
et al., 2020) and recent breakthrough (Devlin et al.,
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Figure 1: Overall architecture of our model: (a) For a spoken QA part, we use VQ-Wav2Vec and Tokenizer to
transfer speech signals and text to discrete tokens. A Temporal-Alignment Attention mechanism is introduced
to match each text embedding with the corresponding speech features. Then, we use BERT to learn sequential
information of utterances with the proposed self-supervised tasks. We generate the final answer distribution on
both domains. At inference time, we use the BERT only. (b) We incorporate contrastive learning strategies to train
our SQA model in an auxiliary manner to improve the model performance.

2018; Liu et al., 2019; Rahman et al., 2020; Chen
et al., 2020a) in the context of NLP, we propose
a novel training framework for Spoken QA that
integrates these two perspectives to improve spo-
ken question answering performance. Our training
framework contains two steps: (a) self-supervised
training stage, and (b) contrastive training stage.
During the self-supervised training stage, instead
of building the complex spoken question answer-
ing model, we propose to learn a spoken ques-
tion answering system based on pre-trained lan-
guage models (PLMs) with several auxiliary self-
supervised tasks. In particular, we introduce three
self-supervised tasks, including utterance restora-
tion, utterance insertion, and question discrimina-
tion, and jointly train the model with these auxiliary
tasks in a multi-task setting. On the one hand, these
auxiliary tasks enable the model to capture sequen-
tial order within the given passage. On the other
hand, they effectively learn cross-modality knowl-
edge without any additional dataset or annotations
to generate better representations for answer pre-
diction.

During the fine-tuning stage, along with the main
QA loss, we incorporate the contrastive learning
strategy to our framework in an auxiliary manner
for the SQA tasks. Specifically, we use multiple
augmentation strategies, including span deletion
and span substitution, to develop the capability of
learning noise-invariant utterance representations.
In addition, we propose a novel attention mech-
anism, termed Temporal-Alignment Attention, to
effectively learn cross-modal alignment between
speech and text embedding spaces. By this mean,
our proposed attention mechanism can encourage
the training process to pay more attention to seman-

tic relevance, consistency and coherency between
speech and text in their contexts to provide better
cross-modality representations for answer predic-
tion. The overview of our framework is shown in
Figure 1. We evaluate the proposed approach on
the widely-used spoken question answering bench-
mark datasets - Spoken-SQuAD (Li et al., 2018),
Spoken-CoQA (You et al., 2020a), and 2018 For-
mosa Grand Challenge (FGC). Experimental re-
sults show our proposed approach outperforms
other state-of-the-art models when self-supervised
training is preceded. Moreover, evaluation results
indicate our learning schema can also consistently
bring further improvements to the performance of
existing methods with contrastive learning.

2 Related Work

Spoken Question Answering. Spoken question
answering (Li et al., 2018; Lee et al., 2018, 2019;
Su and Fung, 2020; Huang et al., 2021; You et al.,
2021a,b, 2020a, 2021c; Chen et al., 2021) is a task
of generating meaningful and concrete answers
in response to a series of questions from spoken
documents. Typical spoken QA systems focus on
integrating ASR and TQA in one pipeline. ASRs
are designed to transcribe audio recordings into
written transcripts. However, current ASRs are not
capable of processing every spoken document. Gen-
erated ASR transcripts may contain highly noisy
data, which severely influences the performance
of QA systems on speech documents. A number
of works have explored the shortcomings of this
issue. Li et al. (2018) and Lee et al. (2018) intro-
duced sub-word unit strategy to alleviate the effects
of speech recognition errors in SQA. SpeechBERT
(Chuang et al., 2020) utilized the pre-trained BERT-
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Figure 2: Auxiliary tasks in Self-supervised training.

based language model to effectively learn audio-
text features. The model improved the performance
of ASR by SpeechBERT. However, these works
mainly focus on improving performance by exploit-
ing internal information without considering learn-
ing the explicit mapping between human-made
transcripts and corresponding ASR transcriptions,
which is crucial to building Spoken QA systems.
Lee et al. (2019) adopted an adversarial learning
strategy to alleviate this gap to achieve remarkable
performance improvements. In contrast to previ-
ous works in SQA, which only consider speech
representations or confine to certain subtasks (e.g.,
spoken multi-choice question answering and spo-
ken conversational question answering), we not
only model the interactions between speech and
text data, but also focus on capturing semantic sim-
ilarity. In parallel, our proposed method is a unified
framework, which can be easily applied to a variety
of downstream speech processing tasks.

Self-supervised Learning. Self-supervised
learning (SSL) has become a promising solution
for performance improvements by leveraging
large amounts of unlabeled audio data. Substantial
efforts have recently been dedicated to developing
powerful SSL-based approaches in the machine
learning community. (Oord et al., 2018; You et al.,
2018; Schneider et al., 2019; Baevski et al., 2019;
You et al., 2019b,a; Chung et al., 2019; Pascual
et al., 2019; Liu et al., 2020; Chung et al., 2021;
You et al., 2020b, 2021d,e). Oord et al. (2018)
designed a Contrastive Predictive Coding (CPC)
framework to learn compact latent representations
to provide future predictions over future observa-
tions by combining autoregressive modeling and
noise-contrastive estimation in an unsupervised
manner. Later on, Schneider et al. (2019) further
applied the learned generic speech representations
to improve supervised ASR systems. Chung et al.
(2019) and Liu et al. (2020) have taken advantage
of state-of-the-art self-supervised pre-trained
language models in the NLP community. These
methods mainly focus on learning from audio

data only, yet hardly exploit meaningful and
relevant representations across both speech and
text domains. Most recently, Khurana et al. (2020)
investigated how to leverage speech-translation
retrieval tasks into self-supervised learning. In
this study, we explore an effective way to utilize
cross-modality information via the self-supervised
training scheme for SQA tasks without additional
large-scale unlabeled datasets. In contrast, our
proposed method yields such remarkable accuracy
without using any extra data or annotations.

Contrastive Representation Learning. In par-
allel to self-supervised learning, an emerging sub-
field has explored the prospect of contrastive rep-
resentation learning in the machine learning com-
munity (Kharitonov et al., 2021; Manocha et al.,
2021; Oord et al., 2018; He et al., 2020; Chen et al.,
2020b; Hjelm et al., 2018; Tian et al., 2019; Henaff,
2020; Wu et al., 2018; Khurana et al., 2020). This
is often best understood as follows: pull together
the positive and an anchor in embedding space,
and push apart the anchor from many negatives.
Thus, the choice of negatives can significantly de-
termine the quality of the learned latent represen-
tations. Since contrastive learning is a framework
to learn representations by comparing the similar-
ity between different views of the data. In com-
puter vision, Chen et al. (2020c) has demonstrated
that the enlarged negative pool significantly en-
hances unsupervised representation learning. How-
ever, there are few attempts on contrastive learn-
ing to address downstream language processing
tasks. Recently, few prior work (Kharitonov et al.,
2021) incorporated CPC with time-domain data
augmentation strategies into contrastive learning
framework for speech recognition tasks. In contrast,
we focus on learning interactions between speech
and text modalities for spoken question answering
tasks, and also introduce a set of auxiliary tasks on
top of the former self-supervised training scheme
to improve representation learning.
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3 Methods

In this section, we first formalize the spoken
question answering tasks. Furthermore, we intro-
duce the key components of our method with
self-supervised contrastive representation learn-
ing. Next, we describe the design of our proposed
Temporal-Alignment Attention mechanism. Lastly,
we discuss how to incorporate contrastive loss into
our self-supervised training schema.

3.1 Task Formulation

Suppose that there is a dataset D ∈ {Qi, Pi, Ai}Ni ,
where Qi denotes a question, Pi denotes a passage
with a answer Ai. In this study, similar to the SQA
setting in (Lee et al., 2018; Kuo et al., 2020), we fo-
cus on extraction-based SQA, which can be applied
to other types of language tasks. We use Spoken-
SQuAD, Spoken-CoQA, and FGC to validate the
robustness and generalization of our proposed ap-
proach. In Spoken-SQuAD, Qi and Ai are both sin-
gle sentences in text form, and Pi consists of multi-
ple sentences in spoken form. In FGC, Qi, Ai, and
Pi are all in spoken form. Different from Spoken-
SQuAD and FGC, Spoken-CoQA is in a multi-
turn conversational SQA setting, which is more
challenging than a single-turn setting. Moreover,
it adopts Qi in spoken form. The task is to learn a
SQA model G(·, ·) from D so that G(Qi, Pi) can
provide a most proper answer Ai to the given ques-
tion Qi.

3.2 Spoken question answering with PLMs.

Recent PLMs, such as BERT (Devlin et al.,
2018) and ALBERT (Lan et al., 2020), learn
meaningful language representations from large
amounts of unstructured corpora, and have
achieved superior performances on a wide range of
downstream tasks in the domain of NLP. Following
previous work (Lee et al., 2019), we consider
building the SQA system with PLMs. We adopt
BERT as the base model for a fair comparison.
Similar to Lee et al. (2018), we concat ASR
token sequences of a passage and a question as
input to our SQA system. Specifically, given a
passage P ={p1, p2, ..., pn} and a question Q =
{q1, q2, ..., qm}, we first concatenate all utterance
sequences, which can be formulated as X =
{[CLS], q1, q2, ..., qm, [SEP], p1, p2, ..., pn, [SEP]}.
“[CLS]” and “[SEP]” denote begin token and sepa-
rator token of each concatenated token sequence,
respectively. We then utilize the pre-trained BERT

to extract the hidden state features from the
processed token sequences. Finally, we feed these
representations to the following module, including
a feed-forward network followed by a softmax
layer, to obtain the probability distribution for each
answer candidate given a textual passage-question
pair. We use the cross-entropy loss as the question
answering loss.

3.3 Self-supervised Training

Heading for a SQA model that can effectively make
use of cross-modality knowledge with a limited
number of training data and produce better contex-
tual representations for answer prediction. To this
end, we design three auxiliary self-supervised tasks,
including utterance restoration, utterance inser-
tion, and question discrimination. The objective of
these auxiliary tasks is to capture the semantic rele-
vance, coherence, and consistency between speech
and text domains. Figure 2 illustrates three auxil-
iary self-supervised tasks. These tasks are jointly
trained with the SQA model in a multi-task manner.
More training examples of self-supervised training
can be found in Table 1 and Appendix Table 4.

Utterance Insertion. PLMs often suffer from
the limitations in capturing latent semantic and log-
ical relationships in discourse-level, which refers to
the problem that Next Sentence Prediction (NSP),
the standard training objective of PLM-based ap-
proaches, negatively impact semantic topic shift
without modeling coherence. One key reason is
that NSP fails to capture sufficient semantic coher-
ence with a incomprehensible passage (Lan et al.,
2020), which leads performance degradation. Thus,
learning the natural sequential relationship between
consecutive utterances within a passage can signifi-
cantly help the model understand the meaning of
the passage.

In order to solve the above-mentioned problem,
we design a more general self-supervised task with
the spoken question answering context termed ut-
terance insertion. In this way, it can enable the
model to fully leverage the sequential relationship
within a passage to improve the performance in
calculating the semantic relevance between con-
secutive utterances. specifically, we first extract
k consecutive utterances from one passage. Then
we insert an utterance, which is randomly selected
from another topic unrelated passage. Hence, sup-
pose k + 1 utterances consist of k utterances from
the original passage and one from different corpus,
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the goal is to predict the position of inserted utter-
ance given the k + 1 utterances. A special token
[UI] is introduced to be positioned before each ut-
terance. The input can be formulated as follows:

XUI = [[CLS] [UI]1 u1[UI]2 ... [UI]t uINS

[UI]t+1 ut ... [UI]k+1 uk [SEP]],
(1)

where uINS is the inserted utterance.

Utterance Restoration. One of the major tasks
to train PLMs is mask token prediction (MTP),
which requires the model to estimate the position
of the masked utterance during the training stage.
Although, recent work (Liu et al., 2019; Lan et al.,
2020; Devlin et al., 2018; Joshi et al., 2020) found
that utilizing this auxiliary task can improve model
performance, it only focuses on learning syntactic
and semantic representations of the word in token-
level. However, spoken question answering is a
more challenging task, which requires the deeper
understanding of each utterance within a passage.
To explicitly model the utterance-level interaction
between utterances within a passage, we propose
an utterance-level masking strategy termed utter-
ance restoration to predict the utterance, which
causes inconsistency. Specifically, suppose that a
context is c = {u1, u2, ..., uk} including k consec-
utive utterances, we first randomly pick an utter-
ance ut, t∈ [0, k], and then replace all tokens in the
ut by using a special token [MASK]. Similarly, a
special token [UR] is introduced to be positioned
before each utterance. To adapt the task in BERT,
we formulate input of BERT encoder as follows:

XUR = [[CLS] [UR]1 u1... [UR]t uMASK

[UR]t+1 ut+1... [UR]k uk[SEP]],
(2)

where uMASK consists of only [MASK] tokens,
which has the same length with ut.

Audio-Text Input. Inspired by recent success in
video question answering (Kim et al., 2020), we
leverage the cross-modality sequence modeling to
generate audio-text sequence as input for question
discrimination task. In this process, we utilize the
BPE tokenizer to convert the ASR documents to
a sequence of Text-Question and Text-Passage to-
kens, similar to PLMs (See Section 3.2). We utilize
pre-trained VQ-Wav2Vec (Baevski et al., 2019)
trained on Librispeech-960 (Panayotov et al., 2015)
to encode speech signals to a sequence of input to-
kens for Speech-Question, since it outperforms the
conventional RNN/CNN on sequence modeling.
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Tok-del Tok-[n-1] Tok-n

Utterance after span deletion
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Figure 3: Auxiliary tasks in Contrastive Learning.

Question Discrimination. Recent work (Kuo
et al., 2020) has shown that learning cross-modality
representation is essential for SQA tasks. Hence we
design question discrimination to consider build-
ing semantic alignments between speech and text
by incorporating cross-modality knowledge into
our model. Unlike the original goal of SQA (i.e.,
finding the answer using a question and contex-
tualized contexts in Section 3.2), we instead train
the model to predict the proper text question using
audio-text contexts. Specifically, we first randomly
select k − 1 questions in textual form from other
passages, and then incorporate them into the cor-
responding question Qt. We can reformulate the
question as Q̂ = {Q1

t , .., Q
k−1
t , Qt}. The goal of

this task is to find the correct Text-Question given
a Speech-Question and Text-Passage contexts.

Q̄ = argmaxP(Qi|Qs, P ), Qi ∈ Q̂, (3)

where Qs denotes the appropriate question in spo-
ken form.

3.4 Temporal-Alignment Attention
Our proposed Temporal-Alignment Attention strat-
egy is in the spirit of selectively leveraging cross-
modality knowledge for SQA. Given an ASR to-
ken U i and its corresponding acoustic-level MFCC
features F i, the goal is to enhance the SQA
model by learning semantically meaningful align-
ment between speech and text domain 1. To align
speech and text embeddings, we use a simple fully-
connected feed-forward layer. The speech embed-
ding features r̂i is processed by self-attention to
obtain speech-aligned features. Formally, the pro-
posed attention module is defined as follows:

1U i can be any token in Pi and Qi. Similar to (Kuo et al.,
2020), for each acoustic frame, we use 40 MFCCs obtained
from 40 FBANKs with 3 pitch features as input for ASR
module and for our model.



33

Original text Input

[CLS] Text-Question [SEP] Passage [SEP]

Conceptual Audio-Text Input

[CLS] Speech-Question [SEP] Text-Question option [SEP] Passage [SEP]

Question-Discrimination Input

[CLS] How does scholars divide the library? [SEP] What is the library for
? [SEP] The Vatican at the stella clyde prairie, more commonly called the
Vatican Library or simply the fact, is the library of the Holy See, located
in Vatican City... [SEP]

Span Deletion Input

[CLS] How does scholars divide the library? [SEP] What is [DEL] for ?
[SEP] The Vatican at the stella clyde prairie, [DEL] commonly called the
Vatican Library or simply the fact, [DEL] library of the Holy See, located
in Vatican City... [SEP]

Span Substitution Input

[CLS] How does scholars divide the library? [SEP] What is the library
for ? [SEP] The Vatican at the stella clyde prairie, more commonly named
the Vatican Library or simply the fact, is the library of the Holy See, lied
in Vatican City... [SEP]

Table 1: Examples of audio-text input of our model.
Original text input is used in a traditional BERT-liked
model, question discrimination input is used in our self-
supervised learning stage, and span deletion and span
substitution inputs are used in a contrastive learning
stage. Note that, for the readability, we do not use sub-
word tokens in these examples. Bold denotes words in
which the ASR error occurs. Blue and [DEL] represent
the words in which the contrastive learning strategy is
used.

ri =

|Ui|∑
i=1

[ softmax(W iF i) ∗ F i ]j ,

r̂i = FNN(ri),

{ui} = Attention(r̂i, r̂i, r̂i),

(4)

where W i is parameters. ∗ denotes element-wise
multiplication. [·]j is j-th column of a matrix. r̂i

and Attention are acoustic-level embedding and
self-attention, respectively. Note that we set ui of
each special token (e.g., [CLS]) to 0.

3.5 Contrastive Learning

Recent work (Wu et al., 2020) suggests two main
arguments: (1) some deletion of unnecessary words
in an utterance may not affect the original se-
mantic meaning; (2) suppose that some necessary
words (e.g., not) are mistakenly deleted at times,
it will provide extremely different semantic mean-
ing. However, injecting some noises (e.g., properly
deleting some words) can improve the robustness
of the model. Thus, in order to learn effective noise-
invariant representation in sentence-level, we train
our SQA model with a contrastive objective for
performance improvement, in which we augment
the training data with two sentence-level augmenta-

tion strategies, span deletion and span substitution2.
The augmented input examples are shown in Figure
3. More training examples of contrastive learning
can be found in Table 1.

• Span Deletion: we add one special token
[DEL] to replace the deleted consecutive words
of the utterance (e.g., we randomly delete 5
spans, where each is of 5% length of the tex-
tual input sequences).

• Span Substitution: We randomly sample
some words, and then replace them with syn-
onyms to produce the augmented version (e.g.,
we randomly select 30% spans of the utter-
ances, and replace them with tokens which
share similar semantic meanings).

In this stage, we first extract the [CLS] token rep-
resentation H ∈ Rk×d from the last layer of the
PLM, where d = 768 is the dimension of each
word vector3. We create augmentations of original
utterances with two sentence-level auxiliary tasks
on top of the Question Discrimination, and then
encode the augmented data using the same PLM,
used in SQA section (See Figure 1 (a)), to construct
the encoded representation Hanchor ∈ R1×d. Our
contrastive learning scheme consists of the follow-
ing components: (1) we consider the representation
corresponding to the correct Qt as a positive, and
others as many negative; (2) we use dot-production
operation to compute the similarity scores between
the joint speech-text representations and the anchor
representation; (3) we apply a softmax function to
the measured similarity scores. We leverage speech
and text data for contrastive training, where the
contrastive loss is as follows:

Lcon=−
k∑
i

yi log(softmax(H×HT
anchor)) (5)

Multi-Task Learning Setup. We optimize our
model with two main stages: (1) self-supervised
training; (2) contrasitive learning. In the self-
supervised training stage, we train our SQA model
with three auxiliary tasks to obtain a better local
optimum. We use binary cross-entropy loss in all
proposed auxiliary tasks. The loss is computed by
summing SQA answer prediction loss and all three

2The two augmentation strategies can happen in any posi-
tion of the input.

3Similar to (Kuo et al., 2020), we use the [CLS] token to
represent the sentence representation.
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auxiliary SSL task losses with same ratio. In con-
trastive learning trainig stage, the loss is defined
as a linear combination of SQA answer prediction
loss and contrastive loss with the same ratio.

4 Experiments

In this section, we conduct experiments to compare
our proposed method with various baselines and
state-of-the-art approaches.

4.1 Datasets

We evaluate our approach on three benchmark
datasets: Spoken-SQuAD (Li et al., 2018), Spoken-
CoQA (You et al., 2020a), and FGC4.

Spoken-SQuAD. Spoken-SQuAD (Li et al.,
2018)5 is a large listening comprehension corpus,
where the training set and testing set consist of
37k and 5.4k question-answer pairs, respectively.
The word error rate (WER) is around 22.77% in
the training set, and around 22.73% on the testing
set. The documents are in the form of speech, and
the questions and answers are in the form of text,
respectively. The manual transcripts of Spoken-
SQuAD are collected from SQuAD benchmark
dataset (Rajpurkar et al., 2016).

Spoken-CoQA. Spoken-CoQA (You et al.,
2020a) is a large spoken conversational question
answering (SCQA) corpus, where the training set
and testing set consist of 40k and 3.8k question-
answer pairs from 7 multiple domains, respectively.
The WER is around 18.7%. The questions and pas-
sages are both in the form of text and speech, and
answers are in the form of text, respectively. The
goal is to generate a time span in the spoken multi-
turn dialogues, and then answer questions based on
the given passage and conversations.

FGC. FGC is a Chinese spoken multi-choice
question answering (MCQA) corpus across a va-
riety of domains. The number of question-answer
pairs in the training set and testing set is 40k and
3.8k, respectively. Each PQC pair is composed of 1
passage, 1 question, and 4 corresponding answers,
where only one answer is correct. All passages,
questions, and multiple choices are in spoken form.
Following the widely used setting in (Kuo et al.,

4https://fgc.stpi.narl.org.tw/activity/techai2018
5In original Spoken-SQuAD dataset, questions are in text

form. In this work, we utilize Google TTS to translate them
into spoken form.

2020), we apply the Kaldi toolkit to construct the
ASR module. The WER is around 20.4%.

4.2 Implementation and Evaluation Setup

We utilize Pytorch to implement our model. We
adopt BERT-base as our backbone encoder, which
consists of 12 transformer layers. We set the maxi-
mum sequence length of input and the hidden vec-
tor dimension to 512 and 768, respectively. k in
Section 3 is set to 9. We train our model on 2x
2080Ti for 2-3 days with a batch size of 4 per GPU
using the Adam optimizer with an initial learn-
ing rate of 3× 10−5. For Spoken-CoQA, in order
to utilize conversation history, we add the current
question with previous 2 rounds of questions and
ground-truth answers. When trained on FGC, we
follow the standard multi-choice setting (Kuo et al.,
2020), which takes questions, each candidate an-
swers, and passages as inputs. We evaluate our
model using the Exact Match (EM) and F1 to mea-
sure the performance of SQA models on Spoken-
CoQA and Spoken-SQuAD, following previous
work (Li et al., 2018; Kuo et al., 2020; Su and Fung,
2020). For FGC, we choose accuracy to evaluate
the model performance on response quality.

4.3 Results

We report quantitative results on Spoken-SQuAD,
Spoken-CoQA, and FGC datasets in Table 2. In
our experiments, we set three aspects to study the
effectiveness of key components of our method: (1)
only using self-supervised learning strategies; (2)
only using contrastive learning strategies; (3) we
train the model with Temporal-Alignment Atten-
tion. Based on these initial aspects, we explore how
effective each key component is for SQA.

We first evaluate if the model with three auxil-
iary tasks can generate a proper answer and how
much improvement it can achieve over all evaluated
models. For all datasets, our model significantly
outperforms all evaluated methods on most of the
metrics. Specifically, we observe that sequentially
incorporating three proposed strategies brings supe-
rior performance improvements in terms of F1 and
EM scores. Table 2 compares the importance of dif-
ferent auxiliary SSL tasks, which shows that QD
> UI > UR in terms of response quality. This sug-
gests that the auxiliary tasks can effectively aid the
learning of the SQA model to learn more sequential
information and cross-modality representations for
the answer prediction.
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Method Spoken-SQuAD Spoken-CoQA FGC

Overall Child. Liter. Mid-High. News Wiki Overall Acc

FlowQA (Huang et al., 2018) 56.7/70.8 22.6/35.8 22.4/35.2 22.0/34.2 21.4/33.6 22.0/34.7 22.1/34.7 -
BERT (Devlin et al., 2018) 58.6/71.1 41.7/55.6 40.1/54.6 39.8/52.7 40.1/53.8 40.6/53.8 40.6/54.1 77.0
BERT + SLU (Serdyuk et al., 2018) 59.3/71.7 42.0/55.7 41.4/54.6 40.0/53.1 40.5/54.0 41.1/54.6 41.0/54.4 77.6
Su and Fung (2020) 59.8/72.6 42.1/56.0 42.0/56.3 40.0/53.1 40.4/54.0 40.2/54.0 40.9/54.7 77.8
BERT+ TS-Attention (Kuo et al., 2020) 59.7/72.4 42.6/56.6 42.7/56.7 40.3/53.9 41.0/55.0 40.6/54.8 41.6/55.4 78.2

Only using Self-supervised Learning
BERT + UR 59.4/71.7 42.6/55.8 41.9/55.6 40.6/53.8 40.9/54.0 40.7/54.3 41.5/54.7 77.5
BERT + UI 59.5/71.9 42.7/55.8 42.3/55.7 41.1/53.9 41.0/54.2 41.2/54.6 41.5/54.8 77.6
BERT + QD 59.9/72.4 43.0/56.2 42.2/55.7 41.2/54.3 41.5/54.4 41.6/54.8 41.9/55.1 78.0
BERT + UR + UI 59.8/72.6 43.1/56.3 42.3/55.7 41.5/54.5 41.4/54.6 41.5/54.9 41.9/55.2 78.1
BERT + UR + QD 60.2/72.6 43.4/56.7 42.6/55.9 41.8/54.7 41.5/54.9 42.0/55.4 42.5/55.5 78.4
BERT + UI + QD 60.5/73.0 43.5/56.8 42.5/56.1 41.6/55.0 41.2/54.8 42.0/55.6 42.4/55.6 78.5
BERT + UR + UI + QD 61.0/73.6 43.9/57.4 42.8/56.7 42.1/55.3 41.9/55.3 42.0/56.0 42.7/56.1 78.8

Only using Contrastive Learning
BERT + SD 59.2/71.5 42.8/55.5 42.0/55.3 40.5/53.4 40.8/54.0 41.2/54.3 41.5/54.5 77.3
BERT + SS 59.4/71.5 42.9/55.7 42.1/55.6 40.3/53.4 41.0/54.1 41.4/54.2 41.5/54.6 77.4
BERT + SD + SS 59.6/71.8 43.3/56.1 42.4/55.6 41.2/54.2 41.4/54.5 41.2/54.5 41.9/54.9 77.9

BERT + T-A Attention 60.3/73.2 43.0/57.3 42.5/56.1 40.9/55.0 41.9/55.1 41.7/55.5 42.0/55.8 78.7

Ours 62.5/75.5 46.5/59.5 46.1/59.1 44.3/57.3 44.9/57.6 45.2/58.0 45.4/58.3 81.3

Table 2: The comparison between our method and other method on the SQA performance. UR, UI, and QD denote
utterance resorting, utterance insertion, and question discrimination, respectively. SD and SS are span deletion
and span substitution. T-A Attention denotes Temporal-Align Attention.

(a) Spoken-SQuAD (b) Spoken-CoQA (c) FGC

Figure 4: Performances of different WERs.

We then compare our method with other meth-
ods in terms of contrastive loss on three datasets. In
Table 2, we utilize the proposed contrastive learn-
ing with the speech-text input as the auxiliary task,
which consistently brings additional performance
improvements on all datasets. When further explore
the effectiveness of two augmentation strategies,
we see that the model achieves comparable perfor-
mances using SD or SS, and combining both of
them enhances the capacity of the model to tackle
many unseen sentence pairs. This indicates the im-
portance of noise-invariant representations in boost-
ing performance.

To validate the effectiveness of the proposed T-A
Attention, we compare the models with T-A At-
tention and without it. The model with T-A Atten-
tion consistently shows remarkable performance
improvements by 60.3%/73.2% (vs. 58.6%/71.1%)
and 42.0%/55.6% (vs. 40.6%/54.1%) in terms of
EM/F1 scores on Spoken-SQuAD and Spoken-
CoQA, and 78.7% (vs. 77.0%) in terms of stan-
dard accuracy on FGC. Table 2 shows that our

model achieves best results by 62.5%/75.5% (vs.
58.6%/71.1%), 45.4%/58.3% (vs. 40.6%/54.1%),
and 81.3% (vs. 77.0%) across three datasets. This
suggests that, by taking advantage of the proposed
training scheme and T-A Attention, our model pro-
vides a more fine-grained understanding of spoken
content to benefit the SQA answer prediction.

5 Ablation Study

Effects of Word Error Rates. To study how
word error rates (WERs) will influence the model
performance, we experiment with BERT, which is
our baseline model, under different WERs. We ran-
domly split three datasets into small-scale subsets
of roughly equal training data size under different
WERs for the ablation study. Then we compute
Frame-level F1 score (Chuang et al., 2020) to eval-
uate the robustness of our proposed method with
different WERs in Figure 4. We find that our model
consistently achieves better results compared to the
evaluated baseline. In addition, we find that higher
WER leads to a consistent drop in all three spoken
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Figure 5: Effects of k.

Algorithm S-SQuAD S-CoQA FGC

F1 F1 Acc. (%)

BERT 71.1 54.1 77.0
w/ Co-Att (Lu et al., 2019) 72.8 55.0 77.9
w/ ICCN (Sun et al., 2020) 71.7 54.7 77.7
w/ S-Fusion (Siriwardhana et al., 2020) 68.1 51.8 75.1

w/ ST-Attention 73.2 55.8 78.7

Table 3: Effect of different attention mechanism.

question answering tasks. This suggests low WER
brings these gains in all SQA settings.

Effects of Hyperparameter Selection. Self-
supervised training enables the SQA model to
capture sequential dependency between utterances
along with semantic matching and maintain dia-
log coherence within a context. We explore the
effects of different k, which determines the length
of utterances in these auxiliary tasks. Figure 5 com-
pares the performance of model with different k.
We find that increasing the value of k clearly im-
proves model performance, but it will not further
increase after k = 9. We hypothesize that it gives
rise to two potential reasons: (1) if the utterance
length is too small within the context, the model
cannot capture enough contextual information; (2)
if the utterance length is too large, which intro-
duces additional noise, it will not benefit the model
performance. In our final models, we use k = 9 for
self-supervised training.

Effects of T-A Attention. We further evaluate
the effectiveness of various attention mechanisms
in Table 3. We define BERT as the base model. We
observe that the model with the proposed T-A atten-
tion strategy achieves state-of-the-art performance
on three datasets. It clearly demonstrates T-A atten-
tion can effectively reduce the discrepancy between
text and speech domains.

6 Conclusions

Spoken question answering requires fine-grained
understanding of both speech and text data. To this
end, we propose a novel training scheme for spoken

question answering. By carefully designing several
auxiliary tasks, we incorporate the self-supervised
contrastive learning framework to capture consis-
tency and coherence within speech documents and
text corpus without any additional data. We fur-
ther propose a novel Temporal-Alignment strat-
egy to align audio features and textual concepts by
performing mutual attention over two modalities.
Our model achieves state-of-the-art performance
on three SQA benchmark datasets. For future work,
we will develop more effective auxiliary tasks to
enhance the quality of answer prediction.
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Appendix

A More Examples

Table 4 show examples used in the self-supervised
training stage.
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ASR Passage Title Vatican-Library

ASR Question How does scholars divide the library?

Original ASR Content The Vatican at the stella clyde prairie, more commonly called the Vatican Library or
simply the fact, is the library of the Holy See, located in Vatican City. Formally established
in 1475, although it is much older, it is one of the oldest libraries in the world and contains
one of the most significant collections of historical tax. It has 75,000 courtesies from
throughout history, as well as 1.1 million printed books, which include some 8,500 king
abdullah. The Vatican Library is a research library for history, lot, philosophy, science
and theology. The Vatican Library is open to anyone who can document their qualifications
in research needs. Photocopies for private study of pages from books published between
1801 and 1990 can be requested in person or by mail. In March 2014, team the Vatican
Library began an initial four-year project of digitising its collection of manuscripts, to
be made available online. The Vatican Secret Archives were separated from the library
at the beginning of the 17th century; they contain another 150,000 items. Scholars have
traditionally divided the history of the library into five periods, pre ladder and ladder
and having yon prevent a cannon vatican. The pre latter in period, comprising the
initial days of the library, dated from the earliest days of the Church. Only a handful of
volumes survive from this period, the summer very significant.

Utterance Insertion The Vatican at the stella clyde prairie, more commonly called the Vatican Library or
simply the fact, is the library of the Holy See, located in Vatican City. Formally established
in 1475, although it is much older, it is one of the oldest libraries in the world and contains
one of the most significant collections of historical tax. It has 75,000 courtesies from
throughout history, as well as 1.1 million printed books, which include some 8,500
king abdullah. The Vatican Library is a research library for history, lot, philosophy,
science and theology. The Vatican Library is open to anyone who can document their
qualifications in research needs. Photocopies for private study of pages from books
published between 1801 and 1990 can be requested in person or by mail. The highly
prized memorabilia which included item spanning the many stages of jackson’s courier
came for more than thirty fans associates and family members who contacted julian
factions to sell their gifts and mementos of the singer. In March 2014, team the Vatican
Library began an initial four-year project of digitising its collection of manuscripts, to
be made available online. The Vatican Secret Archives were separated from the library
at the beginning of the 17th century; they contain another 150,000 items. Scholars have
traditionally divided the history of the library into five periods, pre ladder and ladder
and having yon prevent a cannon vatican. The pre latter in period, comprising the
initial days of the library, dated from the earliest days of the Church. Only a handful of
volumes survive from this period, the summer very significant.

Utterance Restoration The Vatican at the stella clyde prairie, more commonly called the Vatican Library
or simply the fact, is the library of the Holy See, located in Vatican City. Formally
established in 1475, although it is much older, it is one of the oldest libraries in the
world and contains one of the most significant collections of historical tax. It has 75,000
courtesies from throughout history, as well as 1.1 million printed books, which include
some 8,500 king abdullah. [MASK], [MASK], [MASK], . . . , [MASK]. Photocopies for
private study of pages from books published between 1801 and 1990 can be requested in
person or by mail. In March 2014, team the Vatican Library began an initial four-year
project of digitising its collection of manuscripts, to be made available online. The Vatican
Secret Archives were separated from the library at the beginning of the 17th century;
they contain another 150,000 items. Scholars have traditionally divided the history of
the library into five periods, pre ladder and ladder and having yon prevent a cannon
vatican. The pre latter in period, comprising the initial days of the library, dated from
the earliest days of the Church. Only a handful of volumes survive from this period, the
summer very significant.

Table 4: Example of Utterance Insertion and Utterance Restoration. Bold denotes the words in which the ASR
error occurs. Blue and [MASK] are the words in which the self-supervised learning strategies are used.


