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Abstract

Masked language modeling (MLM) is one of
the key sub-tasks in vision-language pretrain-
ing. In the cross-modal setting, tokens in the
sentence are masked at random, and the model
predicts the masked tokens given the image
and the text. In this paper, we observe sev-
eral key disadvantages of MLM in this set-
ting. First, as captions tend to be short, in
a third of the sentences no token is sampled.
Second, the majority of masked tokens are
stop-words and punctuation, leading to under-
utilization of the image. We investigate a range
of alternative masking strategies specific to the
cross-modal setting that address these short-
comings, aiming for better fusion of text and
image in the learned representation. When pre-
training the LXMERT model, our alternative
masking strategies consistently improve over
the original masking strategy on three down-
stream tasks, especially in low resource set-
tings. Further, our pre-training approach sub-
stantially outperforms the baseline model on
a prompt-based probing task designed to elicit
image objects. These results and our analysis
indicate that our method allows for better uti-
lization of the training data.1

1 Introduction

Pre-trained vision-language (VLP) models such as
ViLBERT (Lu et al., 2019), LXMERT (Tan and
Bansal, 2019) and UNITER (Chen et al., 2020)
have recently improved the state-of-the-art across
various vision and language benchmarks. One
of the primary pre-training objectives of VLP is
masked language modeling (MLM). Motivated by
the single-modal MLM task, most models perform
as introduced in BERT (Devlin et al., 2019) for
text-only data, randomly masking tokens with a
probability of 15% (Shin et al., 2021).

1Our code, pre-trained, and fine-tuned models are pub-
lished at https://github.com/yonatanbitton/
data_efficient_masked_language_modeling_
for_vision_and_language.

Figure 1: Illustration of our approach. The baseline
MLM masks a random token with 15% probability,
where ≈50% of the masked tokens are stop-words or
punctuation. Our method masks words that require the
image in order to be predicted (e.g., physical objects).
Our pre-train masking strategy consistently improves
over the baseline strategy in two evaluation setups.

The main difference in the cross-modal setting2

is that the model takes into account both the textual
context and the image, and the latter can help it re-
solve ambiguities. For example, in Figure 1, given
the masked sentence “A [MASK] is eating the car-
rot”, without the image, the model might predict
rabbit, since it is correlated with carrot. But the
image reveals that the answer is tiger.

In this work, we find that the MLM pre-training
method is sub-optimal for VLP, as it does not make
efficient use of the training data. This manifests in
two major shortcomings, common to many popular
pre-train datasets (Lin et al., 2014; Krishna et al.,
2017; Sharma et al., 2018; Ordonez et al., 2011).
First, we observe that image captions, which form
the textual part of these corpora, tend to be much
shorter than the documents in BERT’s pre-train
data. As a result, uniformly masking tokens at 15%
probability results in many cases where no token is
being masked (e.g., about one third in LXMERT).

Second, we note that 45%–50% of the masked
tokens are stop-words or punctuation. While this
seems a common phenomena also in text-only

2This task is often referred to as “cross-modality MLM”,
or “MLM conditioned on image regions” (Chen et al., 2020),
to emphasize the difference from the text-only MLM task.

https://github.com/yonatanbitton/data_efficient_masked_language_modeling_for_vision_and_language
https://github.com/yonatanbitton/data_efficient_masked_language_modeling_for_vision_and_language
https://github.com/yonatanbitton/data_efficient_masked_language_modeling_for_vision_and_language
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datasets, we show that this causes the image to
be under-used in MLM pre-training for VLP. Ev-
idently, for the popular LXMERT model, we find
that the MLM validation accuracy on stop-words
and punctuation is almost perfect even when omit-
ting the image.

To address these limitations, we propose alterna-
tive strategies aiming to mask words that require
the image (e.g., physical objects). We pre-train the
LXMERT model with these strategies and demon-
strate their benefits in two evaluation setups. First,
on three VLP downstream tasks (GQA, Hudson
and Manning, 2019; VQA, Goyal et al., 2017;
NLVR2, Suhr et al., 2019), our masking strategies
consistently improve over the traditional MLM, es-
pecially in low resource settings. Second, we exper-
iment with prompt based object detection (Radford
et al., 2021), a probing task designed to elicit im-
age objects by presenting the pre-trained models
with prompts such as “A photo of [MASK]” and
compare their top predictions with image objects.
Our results show that our strategy substantially im-
proves over the baseline sampling approach, even
when trained over only a third of its epochs and
half of its training data.

In our analysis, we introduce a new metric (∆
image loss) to estimate the necessity of the image
for a masked word during MLM. We extract the ∆
image loss value for each token in LXMERT vali-
dation pre-train data. We then present a hierarchy
of semantic classes ranked by this metric, and find
that the frequently masked tokens in our strategies
indeed increase the image necessity.

Our main contributions are: (1) We show that the
current MLM pre-training method is sub-optimal
for VLP, and it does not make efficient use of pre-
train data. (2) We propose alternative masking
strategies, and show that models trained with these
strategies outperform the baseline strategy in two
evaluation setups, especially in low resource set-
tings. (3) We introduce the ∆ image loss met-
ric, which aims to explain the relation between
a masked token and the image; we publicly re-
lease the computed values of this metric for the
LXMERT validation set; this data may be used in
future work to devise improved masking strategies.

2 Limitations of MLM Approaches for
Vision and Language

In this section, we present the limitations of the
MLM approach to vision and language tasks. We

start by reviewing the way MLM is currently ap-
plied in cross-modal models, and analyzing the pre-
train datasets used by most models. We observe the
following two major limitations in the current ap-
proach: (1) no token is masked in roughly a third of
the sentences; (2) a substantial part of the masked
tokens are stop-words or punctuation, which can
be predicted based on textual context alone, and do
not require the image.

2.1 Background

Multiple studies have been proposed to modify the
MLM objective in text-only domains (Joshi et al.,
2020; Sun et al., 2019; Clark et al., 2020; Levine
et al., 2021). However, less research has been ded-
icated to the implications of MLM in vision and
language tasks.

Shin et al. (2021) recently reviewed how the
transformer architecture (Vaswani et al., 2017)
has been incorporated into vision-language cross-
modal tasks. They show that most VLP models per-
form MLM in the same way as introduced in BERT
(Devlin et al., 2019) for text-only data, randomly
masking tokens with 15% probability. Further, vir-
tually all models are pre-trained on a handful of
pre-training cross-modal datasets, including Con-
ceptual Captions (CC; Sharma et al., 2018); SBU
captions (Ordonez et al., 2011) and the LXMERT
pre-train dataset, which is a combination of COCO
(Lin et al., 2014), Visual Genome (Krishna et al.,
2017), VQA (Goyal et al., 2017), VG-QA (Zhu
et al., 2016), and GQA (Hudson and Manning,
2019).

Importantly, all these datasets consist of
<sentence, image> pairs, where the sentence is
usually a caption describing the image or, in VQA,
an image-related question.

2.2 Limitations

In many cases, no token is masked. Image cap-
tions tend to be shorter than the documents in
BERT pre-train data, such as Wikipedia articles.
BERT input sequence length is 512 tokens, while
in VLP datasets the sequence length is ≈20 tokens.
For this reason, when masking 15% of the tokens
in the VLP models, there are cases where no token
is masked. For example, in LXMERT we find that
in 36% of the sentences, no token is masked.

Many masked words are stop-words and punc-
tuation. We observe that over 45-50% of tokens
masked by either LXMERT, CC, and SBU are stop-
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words or punctuation marks.3 We now describe an
experiment that shows that this distribution causes
the image to be under-utilized during MLM pre-
training.

We follow the approach of amnesic probing
(Elazar et al., 2021). The intuition is that if the
image is being used for cross-modal MLM, then
the removal of the image should negatively influ-
ence the ability of the model to solve the task. If
the removal of the image has little or no influence
on the ability to solve cross-modal MLM, then the
image is not a contributing factor in this task.

We consider the published pre-trained LXMERT
model.4 We evaluate it at inference time with the
MLM task twice: with and without the image,5

using different masking strategies. We use the
LXMERT pre-train validation data (≈214K sen-
tences). To estimate the image necessity for a
masked token during MLM, we introduce the ∆
image loss metric, which is the difference in vali-
dation loss of the model prediction with and with-
out the image. For example, in Figure 2, the loss
without the image for predicting “motorcycle” is
3.96, and the loss with the image is 0.25, the ∆
image loss is 3.71. In addition, we report the Ac-
curacy@5 metric, which is whether the label is
among the top 5 most confident predictions of the
model. We compare three masking strategies, keep-
ing a 15% probability to mask a token: (1) Baseline
MLM masking strategy, where a token is masked
uniformly at 15% probability; (2) masking only
stop-words and punctuation; and (3) masking only
content words, which is the complementary group
of stop words and punctuation.

Results are presented in Table 1. We observe that
the model validation accuracy on stop-words and
punctuation is almost perfect (96%) even without
the image. On the other hand, in the case of content
words, accuracy is much lower without the image,
and adding it increases accuracy by roughly 20%.

3 Alternative Masking Strategies

To overcome the limitations presented in the previ-
ous section, we introduce several alternative mask-
ing strategies for cross-modal MLM. The proposed
strategies use several semantic classes, which are

3We used nltk and gensim stop words lists.
4https://github.com/airsplay/lxmert
5Without the image, we block access to the image and use

the model as a single-stream model, without the co-attention
layers from the image to the text. The model receives only the
text and needs to complete the masked tokens.

introduced in Section 3.1, and then used in Sec-
tion 3.2.

3.1 Semantic Classes

Objects, Attributes, and Relationships We use
the definitions of objects, attributes, and relation-
ships as described in Visual Genome (Krishna et al.,
2017). Objects represent physical entities in the
image (e.g., a tiger, or a carrot). Attributes are prop-
erties of objects, such as colors or physical state
(e.g., upright). Finally, relationships connect be-
tween two objects. These can be actions (e.g., a
tiger is eating a carrot), spatial relations (e.g., the
tiger is behind the carrot), etc.

In order to mask the tokens that belong to those
semantic classes, we first need to identify them in a
given sentence. Some datasets (e.g., GQA) include
scene-graph annotations of these classes for each
image. We use the annotations as ground-truth and
develop heuristics to identify them automatically.
For example, an Object can be reliably annotated
by identifying nouns which are also in the Visual
Genome objects list. This simple heuristic achieves
an accuracy of ≈90% and recall of ≈97% for ien-
tifying objects on the LXMERT pre-train dataset.
We elaborate on these heuristics in Appendix A.1.

Concreteness We hypothesize the image con-
tributes more when predicting concrete concepts
(e.g., tiger) compared to abstract concepts (e.g.,
hunger). To that end, we use a dataset of lex-
ical concreteness presented in (Brysbaert et al.,
2014). This dataset provides concreteness scores
(on a scale of 1-5) for over 91% of the lemmas in
LXMERT pre-training dataset.

3.2 Proposed Strategies

We consider the following masking strategies:

• Baseline MLM: the original masking strategy
as defined in the LXMERT paper, 15% ran-
dom token masking.

• Objects: Randomly mask one object word.6

• Content words: Mask exactly one word in
each sentence. Instead of almost 50–50 parti-
tion between masking stop-words and content
words, increase the probability to mask con-
tent word to 80%.

6In > 97.2% of the sentences there is at least one object.
In other cases, we mask a word at random.

https://github.com/airsplay/lxmert
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Sentence A person performs a stunt jump on a [MASK].
Masked token motorcycle
Top 5 predictions motorcycle, bike, ramp, bicycle, cycle
Top 5 predictions w/o image building, wall, beach, field, street
Loss 0.25
Loss w/o image 3.96
∆ image loss 3.71

Figure 2: An example from the extracted ∆ image loss data. The masked word is motorcycle. Model predictions
(“Top 5 predictions”) are better correlated with the image when it is given, and the loss is 0.25. Without the image,
the predictions (“Top 5 predictions w/o image”) are tokens that do not appear in the image, and the loss is much
higher (3.96). The ∆ image loss is the gap: 3.71.

Masking strategy With Image Without Image Image Necessity

Metric image loss (exp) Accuracy @ 5 image loss (exp) Accuracy @ 5 ∆ image loss (exp) Accuracy @ 5

Baseline MLM 3.2 89% 8.9 78% 5.7 10%
Stop-words & punctuation, 15% 1.5 98% 2.9 96% 1.4 2%

Content words, 15% 9.4 76% 38.7 56% 29.3 20%

Table 1: Performance of the LXMERT model on the MLM task, when different words are masked, with and
without the image. Accuracy on stop-words and punctuation is almost perfect even when no image is present.
However, for content words, the image does contribute to increased accuracy.

• Top concrete: Mask one of the top concrete
words in the sentence, weighted by their or-
der.7

• Stop-words & punctuation: as baseline, mask
only stop-words & punctuation, keeping a
15% probability of masking.

• Random 1 word: An ablation of masking a
single random word.

Tokenization: The words in the sentences are
tokenized using BERT tokenizer. For strategies
requiring word-level masking (Objects, Content
words, Top concrete, Baseline MLM, Random 1
word), we mask all of the corresponding word-
pieces (e.g., “A tiger is eat #ing” is masked as “A
tiger is [MASK] [MASK]”).

4 Experiments

To evaluate the value of our proposed strategies, we
conduct experiments by pre-training models with
different masking strategies and evaluate them on

7Of the three words with the highest concreteness value in
the sentence, mask the most concrete word with 55% proba-
bility, the second most concrete with 30% probability, and the
third most with 15% probability.

two evaluation setups. We describe the experimen-
tal setups below.

4.1 Downstream Tasks

Experimental setup We pre-train the LXMERT
architecture with the proposed masking strategies,
experimenting with increasing amounts of pre-
training data (10%, 20%, 50%, 100%), training
for 7 epochs.8 All other hyper-parameters are the
same as the original implementation. We only mod-
ify the MLM objective, fine-tuning on three down-
stream tasks (VQA, GQA, NLVR2). For VQA
and GQA, we report the mean of two experiments
with different random seeds. The NLVR2 dataset
is smaller (≈10% of GQA), so we report three ex-
periments with different random seeds. Following
common practice (Tan and Bansal, 2019), we test
GQA on the test-dev split; NLVR2 on the public
test set test-P; and VQA on the minival split. See
corresponding papers for more details.

8While the published LXMERT model was pre-trained
for 20 epochs, we pre-train for 7 epochs because we conduct
multiple pre-train experiments, and prefer to spend our budget
on more experiments than a few very expensive ones.
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Published LXMERT bathroom, beach, city, kitchen, woman
Objects motorcycle, bathroom, parade, man, crowd

Ground truth objects glasses, gang, motorcycle, shirt, man, parade, ...

Figure 3: Example of top 5 predictions for the prompt
based object detection task, for the prompt “A photo of
a [MASK]”. Green underline indicate that the model
predicted an object that appear in the ground truth
objects (obtained from the scene graph). The model
trained with Objects masking strategy is more respon-
sive to the image content compared to the baseline
model.

Results Figure 4 presents our downstream tasks
results.9 For brevity, we focus on the Objects mask-
ing strategy, though the trend is similar for the
other alternative strategies. We observe that our
alternative masking strategies consistently outper-
form the Baseline MLM strategy, especially in low
resource settings. Pre-training with the Objects
strategy yields gains of 0.72–0.86% on VQA and
GQA, and 4% on NLVR2 with 10% of the pre-train
data; 0.64–0.95% gains on VQA and GQA, and
1.35% on NLVR2 with 20%; 0.5–1.02% gains on
VQA and GQA, and 1.6% in NLVR2 with 50%.
With 100%, the improvement is minor in GQA,
VQA, but still noticeable (1.08%) on NLVR2 (The
Content words strategy achieves 0.49 gain on GQA
with 100%). 10

Ablation studies The gains observed when us-
ing our proposed strategies can result from both
changes we made to address the limitations of stan-
dard MLM presented in Section 2: masking a sin-
gle word in each sentence (rather than not masking
any word in some cases) and deciding which word
to mask (rather than randomly masking tokens).
To isolate the contributing factors, we design ad-
ditional experiments. We pre-train with 10% and
20% of the data with the random 1 word strategy,
and present the mean accuracy on the VQA and

9Results tables presented in Appendix B.3.
10Preliminary experiments show that increasing the num-

ber of epochs leads to smaller gains, which emphasizes the
benefits of our method in low resource settings.

GQA in Figure 5. We see that this strategy out-
performs the Baseline MLM strategy, but under-
performs Objects. In addition, in Appendix B we
show experiments of varying masking probabilities
rather than the baseline’s 15%, with and without
multiple masked tokens per sentence, and allow-
ing sentences without any masked token. Out of
all tested settings, masking a single word achieves
the best downstream results. We conclude that the
benefit of our proposed strategies comes from both
choosing a single word to mask, and masking to-
kens that are more important.

For completeness, we experiment with the stop-
words & punctuation strategy with 10% and 20% of
the data on VQA and GQA. As expected, this strat-
egy under-performs the Baseline MLM; by 1.4%
when pre-training with 10% of the data, and 3.37%
with 20% the data.

4.2 Prompt Based Object Detection

To further examine the value of our proposed mask-
ing strategies, we examine in what way the pre-
trained models trained with different strategies dif-
fer. To do so, we use prompts, and study whether
a model trained for only completing Objects (for
example) will be more responsive to the image con-
tents compared to the baseline model.

For example, given the image in Figure 1, we
can query the model using the prompt “A photo
of a [MASK]”, and count how many of the ob-
jects (“tiger”, “carrot”) are in its top k predictions.
We compare our alternative pre-trained models,
pre-trained on 50% of the data, with the origi-
nal pre-trained LXMERT model. We evaluate
them on 2193 images from the LXMERT minival
split, which the model did not observe during pre-
training. Given a (prompt, image) pair, we intersect
each model’s top k predictions with the ground-
truth objects list obtained from the image ground
truth scene-graph, available for these images. We
use several prompts: “A photo of a [MASK]” (in-
spired by CLIP (Radford et al., 2021)), “A [MASK]
in the photo”, and “A [MASK]”. We present a pre-
cision for different values of k in Figure 6.

Our models achieve improved precision score
over published LXMERT, despite training over
only a third of its epochs and half of its train-
ing data. The precision metric is simply the num-
ber of correct predictions (intersection of predic-
tions with ground-truth objects), divided by the
number of predictions. For example, when con-
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Figure 4: VQA, GQA and NLVR2 downstream tasks
results for models with different masking strategies and
increasing amounts of pre-train data. The left Y axis de-
scribes the accuracy, the right Y axis describes the per-
centage of the full setup performance (trained with 20
epochs and 100% of the pre-train data). Our alternative
masking strategies consistently improve over the Base-
line MLM masking strategy, especially in low resource
settings.

sidering five top predictions (k=5), the published
LXMERT achieves 10% precision, compared to
18% precision for the model trained with Content
words masking strategy. When k=10, the improve-
ment is 11%→ 16%, etc. Additional results and
ROC curve are available in Section B.3 in the Ap-
pendix. Our results indicate that our proposed mod-
els are more responsive to the image compared to
the model trained with the Baseline MLM strategy.

Figure 5: Ablation results for randomly masking a sin-
gle word. The plot shows the average results for GQA
and VQA. A model that masks a single word outper-
forms one with the original strategy of randomly mask-
ing 15% of the tokens, but under-performs a model that
masks a single object word. We conclude that the gain
of our proposed strategies comes from both masking a
single word, and selecting tokens that are more impor-
tant.

An example comparing the Baseline MLM model
and model trained with Objects masking strategy
is presented in Figure 3. Four of the top five pre-
dictions of the model trained with Objects masking
strategy appear in the list of ground-truth objects,
while the model trained with Baseline MLM strat-
egy predicts only one of the ground-truth objects.

5 Analysis and Discussion

5.1 Hierarchy of Masked Semantic Classes

We have shown that our strategies improve results
over the Baseline MLM. In this section, we aim to
understand if the tokens we mask make the model
actively rely on the image. For this purpose, we ex-
tract the image necessity for a masked token using
the ∆ image loss metric (see Section 2.2) for every
token. We use the original LXMERT pre-trained
model and validation data. For each sentence, we
iterate over each token, mask and predict it with
and without the image. An example from the ex-
tracted ∆ image loss data is presented in Figure 2.11

Following, Figure 7 presents a hierarchy of the dif-
ferent semantic classes described in Section 3.1,
ranked by their ∆ image loss.12

We draw several observations based on that plot.
First, we note that objects that appear in both text
and the scene graph (dubbed grounded objects, e.g.,

11We publish this extracted data for future work.
12The groups are not mutually exclusive.
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Figure 6: Precision/recall curve for prompt-base object detection task. Our models substantially improve over the
published LXMERT, despite training over only a third of its epochs and half of its training data.

“tiger”) are more important than non-grounded ob-
jects. Our intuition is that grounded concepts have
higher ∆ image loss compared to non-grounded
concepts, as the model benefits from masking the
latter. For example, consider the sentence “Is there
a tiger in the image?”, for an image without any
tiger (i.e., tiger is not grounded). In this case, the
model would not have the ability to differentiate
the true word (tiger) from any other object in the
vocabulary that is also not in the image.

In addition, we observe that the objects semantic
class is the most important one. We see a connec-
tion between the hierarchy and downstream perfor-
mance obtained by our different strategies. Stop-
words & punctuation are ranked the lowest, and
indeed pre-training with the Stop-words & punc-
tuation strategy achieves the lowest results. The
strategies of Objects and Top concrete are ranked
high, and indeed they achieve improved results
compared to the Baseline MLM.

5.2 MLM Performance across Word Classes

Many works (Lu et al., 2019; Tan and Bansal, 2019;
Chen et al., 2020) assume that a VLP model should
include an MLM component that is capable of
predicting every masked token, including objects,
properties, but also stop words and punctuation.
Does a model that uses our Objects strategy, and
masks only objects, learn to complete words from
other classes? If not, can such a pre-training strat-
egy be effective?

To examine this questions, we extend the experi-
ment described in Section 2 to additional masking
strategies, comparing between the different models
pre-trained on 50% of the data. Results are pre-
sented in Table 2. We see that the model trained
with the Baseline MLM masking strategy is able to

complete masked words from different classes (per-
formance are above 70% for all cases). However,
the model trained with Objects masking strategy
indeed learned to complete only objects. Nonethe-
less, its downstream performance is in fact higher
than the Baseline MLM model. We conclude that
a model does not necessarily need to be able to
complete all semantic classes, and some classes
are more beneficial than others. For example, the
Objects model’s performance is quite low on both
completing stop-words (4%), which is considered
an easy task, and on attributes (22%).

A possible explanation for these findings might
be that the model is evaluated mostly on retrieving
objects, and had we tested it on other classes, its
performance would have substantially decreased.
To test this hypothesis, we inspect the same model’s
performance on questions with answers from dif-
ferent semantic types. To do so, we experiment
with the GQA dataset, which includes partition-
ing of the answers into different semantic types,
including Objects, Relations (subject or object of
a described relation, e.g., “what is the girl wear-
ing?"), and Attributes (the properties or position of
an object).

The results for the semantic type partition are
presented in Table 3. Comparing between the
models trained with Objects and Baseline MLM
masking strategies, the Objects masking strategy
achieves improved performance in Relationships
and Attributes, although it never masked these
kinds of tokens, and its MLM performance on these
classes is considerably lower. It seems that mask-
ing only objects might assist the models to learn
additional semantic classes.
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Figure 7: Hierarchy of semantic classes and its importance by the ∆ image loss metric (Loss without image - Loss
with image).

Model Baseline MLM Objects Content words Top concreteMasking Strategy

Baseline MLM 87% 27% 70% 36%
Stop-words & punctuation, 15% 98% 4% 80% 13%

Content words, 15% 74% 57% 62% 62%
Objects 76% 85% 82% 83%

Attributes 70% 22% 59% 50%
Relationships 89% 15% 75% 25%

Table 2: MLM Validation Accuracy@5 for different pre-training strategies, tested on different masking strategies.
Interestingly, the model trained with Objects strategy achieves low performance on all semantic classes except
objects, but still achieves improved results compared to the model trained with Baseline MLM strategy.

Question
semantic type # Questions Masking Strategy

Baseline MLM Objects

Objects 778 86.89 87.79
Attributes 5,186 63.17 63.96
Relations 5,308 49.72 50.47

Table 3: GQA semantic types partition performance.
The model trained with Objects masking strategy
achieves improved performance compared to the base-
line model on Relationships and Attributes, although it
never masked these kind of tokens.

6 Related Work

6.1 Vision Language Pre-training (VLP)

Recently, many VLP models have been proposed
(Lu et al., 2019; Tan and Bansal, 2019; Chen et al.,
2020). The pre-training objectives in many cases
are: (1) Masked language modeling (MLM), where
a model predicts masked tokens given the sen-
tence and the image. (2) Masked region modeling
(MRM), where the model predicts masked visual

object features, and (3) Sentence-image matching,
where the model predicts whether the sentence be-
longs to the image. Some models also add the
visual question answering objective during the pre-
training phase (Tan and Bansal, 2019; Li et al.,
2021). Previous works have found that the MLM
objective is an important pre-training task affecting
the quality of the learned representations (Chen
et al., 2020; Huang et al., 2020; Hendricks et al.,
2021). However, the MRM objective was not al-
ways found to be important (Su et al., 2020; Hen-
dricks et al., 2021), and the same for sentence-
image prediction (Hendricks et al., 2021; Li et al.,
2019). For this reason, we focus on the MLM ob-
jective.

6.2 Alternative MLM objectives in vision and
language

Concurrently with our work, Zellers et al. (2021)
presented an approach for pre-training over
YouTube videos. They suggested a strategy of
corrupting highly visual words in the masked lan-



3021

guage modeling task, observing that vanilla BERT-
style often masks ungrounded words like “umm”
or “yeah”. We share the same motivation to mask
highly visual words.

6.3 Challenges in VQA generalization
Visual understanding Language and vision
tasks inherently demand deep understanding of
both the text and the image. However, many works
show that models can succeed on VQA datasets
using strong language priors, and by relying on
superficial cues, and there are still challenges to
overcome for tasks with more compositional struc-
ture (Jabri et al., 2016; Zhang et al., 2016; Goyal
et al., 2017; Agarwal et al., 2020; Bitton et al.,
2021; Dancette et al., 2021). Balanced datasets
such as VQA 2.0 (Goyal et al., 2017) and GQA
(Hudson and Manning, 2019) have been presented
to address these challenges. Novel models with
richer visual representations (Zhang et al., 2021)
were also presented, and some works tried to en-
courage the model to look at the “correct” image
regions (Liu et al., 2021; Yang et al., 2020).

Bias Yang et al. (2021) and Hendricks et al.
(2018) have shown that attention-based vision-
language models suffer from bias that misleads the
attention module to focus on spurious correlations
in training data, and leads to poor generalization.
Some examples are presented in Appendix B.4, Fig-
ure 9. To mitigate the language priors bias, it may
be beneficial to increase the focus on the image
during pre-training.

7 Conclusions

We have shown that the current MLM pre-training
method is sub-optimal for visual language pre-
training, as this process tends to focus on stop
words and punctuation, and in many cases does
not mask any word in the sentence. We proposed
alternative masking strategies that better utilize the
image during pre-training, for example, focusing
on physical objects. We found improved results in
two evaluation setups, especially in low resource
settings. We introduced the ∆ image loss met-
ric, which aims to explain the relation between a
masked token and the image. Our analysis includes
a hierarchy that describes the necessity of the image
for different semantic classes. We publicly release
the extracted data with this metric on the LXMERT
pre-train validation data. Future work can use this
information to devise new masking strategies, and

progress towards VLP models that better leverage
the visual aspect of the cross-modal tasks.
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A Appendix

Reproducibility The experiments have been per-
formed with the LXMERT model (Tan and Bansal,
2019) with the public implementation.13 The ex-
periments were performed with NVIDIA RTX2080
GPUs.

Pre-training data 10% 20% 50% 100%

# Epochs 7 7 7 7
Batch size 64 64 100 256
# GPUs 1 1 3 4
Runtime 2 days 3 days 3 days 3 days

Table 4: Pre-training experiments configurations.

A.1 Detection of Objects, Attributes and
Relationships

Using the annotated scene-graph as ground
truth A simple way to detect objects, attributes,
and relationships in captions, is to obtain it, given
that the image has scene-graph annotation from
Visual-Genome or GQA. In LXMERT pre-training
data, 83% of the sentences have scene-graph anno-
tations for their corresponding image. For example,
given the sentence, image pair: “The rabbit is eat-
ing the orange carrot”, and an image, the ground
truth by the scene-graph will include Objects: rab-
bit, carrot; Attributes: orange; and Relationships:
eating. When obtained from the scene-graph, we
call it “Grounded” (Grounded objects, grounded
attributes, and grounded relationships).

Predicting objects, attributes, and relationships
in each caption: For more general and scalable
method when scene-graph is not available, we can
use matching heuristics. We use the Part-of-speech
tagging (POS), and we aggregate lists of Objects,
Attribute and Relationships from Visual Genome
dataset annotations.14 Those are our heuristics:15

• Objects are words with POS = “NOUN” and
in Visual Genome objects list.

• Attributes are words with POS = “ADJ” and
in Visual Genome attributes list.

13https://github.com/airsplay/lxmert
14http://visualgenome.org/api/v0/api_

home.html
15Our full code, including code to detect the semantic type

tokens will be published

Epoch Baseline MLM Content words Objects Top Concrete

1 1.70 3.07 3.23 3.26
2 1.46 2.11 2.28 2.29
3 1.40 1.97 2.14 2.15
4 1.36 1.88 2.04 2.05
5 1.33 1.81 1.96 1.98
6 1.30 1.75 1.90 1.91
7 1.27 1.71 1.84 1.86
8 1.25
9 1.27
10 1.23
11 1.21
12 1.19
13 1.17
14 1.16
15 1.14
16 1.12
17 1.11
18 1.09

Table 5: Training loss for models trained in different
masking strategies. The training loss for the original is
obtained from the original model repository. Because
we focus on tokens that are more difficult for the model
to complete, the training loss is higher.

# items Accuracy Recall

Objects 7,484,940 89.89 97.39
Attributes 3,240,096 92.91 79.91

Relationships 3,195,345 86.42 96.88

Table 6: Detection performance of Objects, Attributes,
and Relationships.

• Relationships are words with POS = “ADP” or
“VERB”, and in Visual Genome relationships
list.

Those simple rules are our predictions for de-
tecting Objects, Attributes, and Relationships in a
sentence.

Validation of the objects attributes and rela-
tionships task: We can now evaluate the pre-
dicted objects, attributes and relationships with the
ground-truth obtained from the scene-graph. The
grounding method (matching between the caption
and the scene-graph) we use is simple: exact match
between the word in the scene-graph and the cap-
tion. Using a more complex grounding algorithm
will not change our predictions, but it can only
improve our results (For example, if the caption
has “women” that was predicted as Object, and the
scene-graph has “woman”, it is currently counted
as “False-Positive” because it’s not exact match).
Results are presented at Table 6.

http://visualgenome.org/api/v0/api_home.html
http://visualgenome.org/api/v0/api_home.html


3025

A.2 Concrete and Abstract definitions
The concreteness annotation dataset (Brysbaert
et al., 2014) is annotated by 20-30 annotators. The
rating scale is 1-5, when 1 is abstract, and 5 is
concrete. This is how they define concrete: “A con-
crete word comes with a higher rating and refers
to something that exists in reality ; you can have
immediate experience of it through your senses
(smelling, tasting, touching, hearing, seeing) and
the actions you do. The easiest way to explain a
word is by pointing to it or by demonstrating it.”

This is how they define abstract: “An abstract
word comes with a lower rating and refers to some-
thing you cannot experience directly through your
senses or actions. Its meaning depends on lan-
guage. The easiest way to explain it is by using
other words”.

B Additional Experiments

B.1 How good is current pre-training?
We want to asses contribution of the current
LXMERT pre-training. We conduct fine-tune ex-
periments with LXMERT without pre-tain. Results
are presented at Table 7. We see that pre-training
adds ≈6.5 in GQA, ≈4.8 in VQA, and ≈23.8 in
NLVR2.

Dataset GQA VQA NLVR2

No pre-train 53.24 65.10 51.07

Pre-training all data
Reported LXMERT GitHub results

59.80 69.90 74.95

Table 7: Downstream task performance for limited pre-
training methods.

B.2 How to change the 15% masking
amount?

In Section 2 we discussed that 15% with short cap-
tions (≈6.86) causes that with third of the cases no
token is masked, in another third 1 token is masked,
and in the last third, multiple tokens are masked.

We isolate those factors by conducting 3 experi-
ments:

• Not allowing 0 masked (if 0 tokens were
masked, sampling 1 token to mask).

• Not allowing multiple masked (if multiple to-
kens were masked, sample 1 token from them
to mask)

• Masking only 1 word.

GQA VQA NLVR2

Baseline MLM 54.4 65.06 58.55

Don’t allow 0 masked 54.98 65.4 59.45

Don’t allow multiple masked 54.46 65 58.82

Mask 1 word 55.07 65.26 61.25

Table 8: Changing 15% masking amount. Masking 1
word achieves the higher downstream tasks results.

Results are presented at Table 8.
We can see that not allowing multiple masked

tokens helps a bit. Not allowing 0 masked tokens
helps more. And masking 1 word is the better
overall strategy.

B.3 Full results tables
B.4 Examples
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% of pre-train data
Masking Strategy 10 20 50 100

Baseline MLM 65.05 ±0.02 65.86 ±0.06 67.14 ±0.2 68.79 ±0.02
Content words 65.53 ±0.04 66.37 ±0.04 67.86 ±0.08 68.94 ±0.05
Objects 65.77 ±0.05 66.5 ±0.04 67.64 ±0.08 68.94 ±0.06
Top concrete 65.54 ±0.21 66.32 ±0.02 67.47 ±0.1 68.8 ±0.03

Table 9: Full VQA 2.0 results, mean±std

% of pre-train data
Masking Strategy 10 20 50 100

Baseline MLM 54.39 ±0.01 55.14 ±0.02 57.47 ±0.13 58.87 ±0.04
Content words 55.46 ±0.04 56.27 ±0.33 58.07 ±0.09 59.36 ±0.08
Objects 55.25 ±0.21 56.08 ±0.10 58.49 ±0.01 59.02 ±0.03
Top Concrete 55.31 ±0.12 56.56 ±0.35 58.38 ±0.25 58.9 ±0.04

Table 10: Full GQA results, mean±std

% of pre-train data
Masking Strategy 10 20 50 100

Baseline MLM 59.67 ±1.04 65.1 ±1.13 68.75 ±0.53 70.73 ±0.65
Content words 61.65 ±0.95 67.25 ±0.48 70.85 ±0.06 71.63 ±0.44
Objects 63.7 ±0.14 66.45 ±1.2 70.36 ±0.91 71.81 ±0.51
Top Concrete 62.49 ±0.72 66.4 ±0.56 70.29 ±0.22 71.8 ±0.1

Table 11: Full NLVR2 results, mean mean±std
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Figure 8: Precision-recall curve for prompt-base object detection task. Our models achieve improved results over
published LXMERT, although trained with a half of the pre-train data and a third of the epochs.

Figure 9: LXMERT mistakes observed on examples from GQA and VQA. The tendency of VLP models is to
predict something that is correlated with the text, or common answers. In many cases, the prediction is not an item
that even appears in the image.
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Published LXMERT bathroom, kitchen, bedroom, beach, city
Objects bathroom, restroom, sink, toilet, mirror

Ground truth objects tile, toilet, wash cloth, tub, sink, mirror, ...

Published LXMERT beach, field, bathroom, woman, man
Objects beach, field, baseball, woman, game

Ground truth objects bat, shirt, catcher, glove, lot, distance, ...

Figure 10: Additional examples of top 5 predictions for the prompt based object detection task, for the prompt “A
photo of a [MASK]”. Green underline indicate that the model predicted an object that appear in the ground truth
objects (obtained from the scene graph).


