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Abstract

Precise information of word boundary can al-
leviate the problem of lexical ambiguity to
improve the performance of natural language
processing (NLP) tasks. Thus, Chinese word
segmentation (CWS) is a fundamental task in
NLP. Due to the development of pre-trained
language models (PLM), pre-trained knowl-
edge can help neural methods solve the main
problems of the CWS in significant mea-
sure. Existing methods have already achieved
high performance on several benchmarks (e.g.,
Bakeoff-2005). However, recent outstanding
studies are limited by the small-scale anno-
tated corpus. To further improve the perfor-
mance of CWS methods based on fine-tuning
the PLMs, we propose a novel neural frame-
work, LBGCN, which incorporates a lexicon-
based graph convolutional network into the
Transformer encoder. Experimental results
on five benchmarks and four cross-domain
datasets show the LBGCN successfully cap-
tures the information of candidate words and
helps to improve performance on the bench-
marks (Bakeoff-2005 and CTB6) and the
cross-domain datasets (SIGHAN-2010). Fur-
ther experiments and analyses demonstrate
that our proposed framework effectively mod-
els the lexicon to enhance the ability of basic
neural frameworks and strengthens the robust-
ness in the cross-domain scenario.1

1 Introduction

Neural methods often leverage word-level informa-
tion to improve the performance of many down-
stream natural language processing (NLP) tasks
such as text classification and machine translation
(Yang et al., 2018), etc. Therefore, in determining
the word boundary, word segmentation is regarded
as a prerequisite for most downstream NLP tasks.

∗Corresponding author
1Source codes of this paper are available on https://

github.com/koukaiu/lbgcn

Unlike most written languages, the Chinese writ-
ten language has no explicit delimiters to separate
words in the written text. Thus, Chinese word seg-
mentation (CWS) is an essential and pre-processing
step for many Chinese NLP tasks.

With the development of deep learning tech-
niques, recent neural CWS approaches that do not
heavily rely on the hand-craft feature engineering
have already achieved high performance on several
benchmark datasets (Cai and Zhao, 2016; Cai et al.,
2017; Ma et al., 2018). In particular, recent out-
standing studies have also exploited the learning
paradigm in applying pre-trained language mod-
els (PLM) for many NLP tasks. Various methods
that fine-tune PLMs have achieved progress on in-
domain and cross-domain CWS without much man-
ual effort (Meng et al., 2019; Huang et al., 2020;
Tian et al., 2020; Ke et al., 2021).

Prior research has shown that the problems
of CWS are segmentation ambiguity and out-of-
vocabulary (OOV) words (Zhao et al., 2019). With
the help of the pre-trained knowledge (Devlin et al.,
2018; Liu et al., 2019), the fine-tuning CWS meth-
ods can effectively alleviate these two issues and
outperform other neural network architectures. The
methods fine-tuning PLMs become the mainstream
approach for CWS. However, the performance of
fine-tuning CWS methods is limited by the scale
and quality of annotated CWS corpus. The depen-
dencies between neighboring Chinese characters
are diverse and it is hard to build a large-scale an-
notated corpus because of the characteristics of
linguistics in Chinese. The difficulty of manual
annotation restricts the scale and quality of CWS
datasets. Besides, directly fine-tuning methods
do not utilize contextual n-grams or other con-
textual information, which is important for previ-
ous model architectures (e.g., BiLSTM and Trans-
former) (Huang et al., 2015; Ma et al., 2018; Qiu
et al., 2020). The methods that fine-tune PLMs may
generate segmentation errors because of ambigu-

https://github.com/koukaiu/lbgcn
https://github.com/koukaiu/lbgcn
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ous contextual information. Thus, it is a challenge
to design a framework that can effectively transfer
pre-trained knowledge into the CWS.

In this paper, we propose the LBGCN, a neural
framework with a lexicon-based graph convolu-
tional network (GCN), to improve the performance
of the CWS by leveraging lexicon knowledge. In
detail, we utilize the GCN to extract contextual
features of candidate words and the information
of word boundary from the pre-defined lexicon.
The neural framework incorporates the GCN into
the Transformer encoder (Vaswani et al., 2017)
which is a part of PLM (e.g., BERT (Devlin et al.,
2018)). The additional lexicon-based GCN can
supply a gap of fine-tuning paradigm and better
transfer pre-trained knowledge into the in-domain
and cross-domain CWS tasks. Besides, through
multi-feature interaction, the disambiguation and
OOV word recognition are effectively carried out.

To sum up, the contributions of this work are as
follows:

• Our proposed framework mainly consists of
a lexicon-based GCN and the Transformer
encoder. The lexicon-based GCN captures
rich contextual information to alleviate the
problem of lack-training by the small-scale
annotated corpus. This framework achieves a
noticeable improvement for CWS.

• Experimental results obtained from widely
used benchmark datasets demonstrate that
LBGCN can improve the performance com-
pared with powerful baseline methods and out-
perform previous state-of-the-art studies.

• The novel method extracts the information
from the lexicon via the GCN and is not over-
reliant on the quality of the lexicon. Exper-
imental results in the cross-domain scenario
prove that the method can enhance the robust-
ness of the basic neural CWS approaches.

2 Related Work

Chinese Word Segmentation Since Xue (2003)
formalizes the CWS as a sequence labeling prob-
lem, most studies follow the character-based
paradigm to predict segmentation labels for each
character in the sentence. In particular, the adopted
methods fall into two categories, including 1) statis-
tical machine learning methods (Peng et al., 2004;
Tseng et al., 2005; Zhao and Kit, 2008; Zhao et al.,

2010) and 2) neural network methods (Zheng et al.,
2013; Pei et al., 2014; Chen et al., 2015a,b; Cai
and Zhao, 2016; Yang et al., 2017). As the studies
of deep learning techniques develop in-depth, the
neural CWS methods achieve better performance
compared with statistical learning methods (Cai
et al., 2017; Zhou et al., 2017; Ma et al., 2018;
Yang et al., 2019a; Wang et al., 2019). And neural
network architectures gradually replace statistical
machine learning methods as the mainstream ap-
proaches for CWS.

Cross-Domain CWS However, there is an obvi-
ous gap in the cross-domain CWS scenario. Neural
CWS methods still suffer from the OOV problems.
To alleviate this problem, many kinds of research
utilize external resources (e.g., pre-trained embed-
dings, unlabeled data, and lexicons) to improve the
performance of the cross-domain CWS (Zhao et al.,
2018; Zhang et al., 2018; Ye et al., 2019; Ding
et al., 2020). For example, Huang et al. (2020) try
to transfer pre-trained knowledge into the cross-
domain CWS in full by leveraging more annotated
datasets with different segmentation criteria (Chen
et al., 2017). Tian et al. (2020) utilize lexicons and
wordhood measures to enhance the robustness in
the cross-domain CWS scenario.

Graph Neural Network In recent years, the
graph neural network has been fully explored and
achieved significant progress in several kinds of
NLP tasks (Zhou et al., 2020). When dealing with
text scenarios, graphs can extract the features from
non-structural data by modeling a set of objects
(nodes) and their relationships (edges). In par-
ticular, we can consider each variable in the text
as a node and the dependencies as edges for the
sequence labeling task. Marcheggiani and Titov
(2017) present a syntactic GCN to solve the prob-
lem of semantic role labeling. Ding et al. (2019)
utilize a multi-graph structure to capture the infor-
mation that the gazetteers offer. In addition, the
graph neural network based on the domain lexicon
is used to learn the local composition features for
medical domain CWS (Du et al., 2020).

3 Proposed Framework

The framework of LBGCN is illustrated in Figure 1.
It mainly consists of two parts: an encoder-decoder
layer and a GCN. In the first part, we utilize the
Transformer as the encoder and the Dense as the de-
coder. The Transformer encoder adopts the PLMs
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Figure 1: The illustration of the proposed framework. Continuous nodes with the same color denote a Chinese
word in the pre-defined lexicon. The gray nodes of “B”, “M” and “E” indicate the three additional nodes, named
Begin, Middle, and End, respectively.

(e.g., BERT and RoBERTa) which contain rich
pre-trained knowledge to train. The pre-trained
knowledge can effectively help the model allevi-
ate the problem of OOV word recognition. In the
second part, a GCN based on the pre-defined lexi-
con is built. The generated graph embeddings can
make up the deficiency of contextual information
from candidate words. In addition, the proposed
framework that is integrated with bi-gram features
and multiple contextual features can improve the
performance of CWS.

Following previous studies (Xue, 2003), we re-
gard the CWS as the character-based sequence la-
beling task. The framework predicts a tag that
represents the position in a word for each charac-
ter (e.g., tag “B” represents the first character in a
word). The process of LBGCN to find the most
possible path Ŷ can be formalized as:

Ŷ = argmax
Y∈T N

p (Y|X ) (1)

where T denotes the set of all types of segmenta-

tion labels, andN is the length of the input sentence
X .

The rest of this section describes the architecture
of the encoder-decoder layer, the construction of
the lexicon graph, and how it is integrated with the
GCN, respectively.

3.1 Encoder and Decoder
Transformer Encoder Recently, there are sev-
eral PLMs (e.g., BERT and RoBERTa) that have
shown state-of-the-art performance of many NLP
tasks. In particular, a modified method based on
RoBERTa model is built for the Chinese NLP
tasks (Cui et al., 2019). With the previous success
on PLMs, we adopt the main architecture (Trans-
former) as the encoder of our proposed frame-
work, which can straightforwardly leverage the pre-
trained knowledge from PLMs for the Transformer
encoder because of the similar structure.

The PLM is trained for predicting the word in
general. To transfer the pre-trained knowledge into
the CWS, we need to fine-tune the PLM by the
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annotated corpus of CWS. Given an input sentence
X = x1...xi−1xi...xn from the training data, the
input sentence is converted to the corresponding
vector embeddings H = [h1...hi−1hi...hn] in the
“Lookup Table” layer, where H ∈ RN∗dmodel , N
and dmodel represent the length and the same di-
mensions with the PLM. To be consistent with
the pre-trained process, two tags (“[CLS]” and
“[SEP]”) are added to the beginning and the end
of each sentence, respectively.

Given an input vector sentence H ∈ RN×dmodel ,
the Transformer encoder utilizes self-attention lay-
ers to extract the contextual feature for each char-
acter. The self-attention layer adopts “Scaled Dot-
Product Attention” to compute representation.

Q,K, V = HWQ, HWK , HW V (2)

Attn (Q,K, V ) = softmax

(
QKT

√
dk

)
V (3)

where Q,K, V represents a query and a set of key-
value pairs through a linear transformation respec-
tively, the matrices WQ ∈ Rdmodel×dk , WK ∈
Rdmodel×dk , W V ∈ Rdmodel×dv are trainable pa-
rameters, and dk is the dimension of K.

Instead of performing a single-head attention
function, the Transformer encoder uses the multi-
head self-attention layer in order to extract contex-
tual features from different representation spaces
and utilizes feed forward network (FFN) to enhance
representation ability. Assuming the input of the
multi-head self-attention layer is H , the output H̃
is calculated by

Z = LN (H +MultiHead(H)) (4)

H̃ = LN (Z + FFN(Z)) (5)

where “LN” indicates the layer normalization (Ba
et al., 2016).

Dense Decoder A dense layer with WD ∈
Rdmodel×Tn converts hidden dimensions to the 4-
tag set T = {B,M,E, S}, where Tn presents the
size of the tag sets (Tn = 4). After linear map-
ping, the framework adopts the function Softmax
and the greedy search for decoding. In previous
studies, many kinds of research adopt the CRF as
the decoder layer to improve the performance of
sequence labeling tasks (Lample et al., 2016). How-
ever, the CRF layer has larger time complexity and
space complexity for CWS (Duan and Zhao, 2020).
For practicality, the proposed framework utilizes

the lightweight function Softmax as the decoder
layer and also achieves competitive performance
compared with other studies using the CRF.

p(x) = Softmax(H̃ ·WD + b) (6)

The training step of the framework is to minimize
the errors by solving the following optimization
function:

min
Θt,Θg

Jseg(y(x)|p(x; Θt,Θg)) (7)

where y(x) denotes the true labels on the annotated
corpus, Θt and Θg are all trainable parameters in
the transformer layer and GCN, respectively, and
the loss function Jseg is given by:

Jseg(y(x)|p(x)) = −
∑
x

y(x)logp(x) (8)

3.2 Lexicon-Based GCN
Lexicon-Based Construction The bottom part
of the Figure 1 starts with a lexicon and we con-
struct the graph by the pre-defined lexicon. Given
the input sentenceX = x1...xi−1xi...xn, the graph
utilizes a pre-defined lexicon to extract candidate
words in the sentence after the Transformer en-
coder. For example, X = [“水仙花是草本植
物”] (Daffodils are herbaceous plant) consists of
8 Chinese characters, and the word list L = [“水
仙花”(daffodils), “是”(are), “草本”(herbaceous),
“植物”(plant)] is obtained from the lexicon. The
lexicon-based graph is defined as G := (V,E),
where V and E are the sets of nodes and edges, re-
spectively. Each character is represented as a node
in the graph and adjacent nodes connect to each
other by undirected edges for capturing the con-
textual information. The set of these undirected
edges is Ec. Besides, we integrate three addi-
tional nodes Vd = (VB, VM , VE) with the char-
acter set of nodes Vc, and the entire set of nodes
is V = Vc ∪ Vd. To extract the information of the
word boundary, we also build edges between can-
didate words wi = c1...cn, wi ∈ L and additional
nodes Vd. The entire set of edges is E = Ec ∪ Ed,
whereEd represents the set of edges between candi-
date words and additional nodes. The 1st character
c1 in the candidate word connects to the node VB
and VM , and the last character cn connects to the
node VM and VE . For instance, the candidate word
“水仙花” (daffodils) consists of three characters
“水(water), 仙(fairy) and花(flower)”. In particu-
lar, the character node “水” (water) connects to the
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Benchmarks
MSR PKU AS CITYU CTB6

TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST

CHAR # 4,050K 184K 1,826K 173K 8,368K 198K 2,403K 68K 1,156K 134K
WORD # 2,368K 107K 1,110K 104K 5,500K 123K 1,456K 41K 701K 82K
Cross-domain LITERATURE COMPUTER MEDICINE FINANCE

CHAR # 50K 54K 51K 53K
WORD # 35K 35K 31K 33K

Table 1: The size of the benchmark, the top blocks indicate the CWS benchmarks (Bakeoff-2005 and CTB6) and
the bottom blocks indicate the cross-domain CWS datasets (SIGHAN-2010). Note that the cross-domain datasets
do not contain the training sample, so we use the “PKU” which is the most similar to them as the training data.

node VB and VM . The character node “仙” (fairy)
only connects to the node VM . The character node
“花” (flower) connects to the node VM and VE . The
construction of the lexicon graph is illustrated in
Figure 1.

GCN After the construction of the lexicon-based
graph, we utilize a GCN (Kipf and Welling, 2016)
to encode the graph G.

Ã = A+ IN , D̃ii =
∑

j
Ãij

Ĥ(l+1) = σ
(
D̃−

1
2 ÃD̃−

1
2 Ĥ(l)W (l)

) (9)

Here, A is the adjacency matrix of the undirected
graph G. IN is the identity matrix and W (l) is a
layer-specific trainable weight matrix. σ(·) denotes
the ReLU activation function. Ĥ(l) ∈ RN×D is the
matrix of hidden states in the lth layer; H(0) = X .
GCN mainly consists of two matrices. One is the
symmetric normalized Laplacian matrix Ã. The
other is the layer-specific trainable weight matrix
W (l). The GCN can extract the features from the
lexicon-based graph. In addition, the weight matrix
adopts the random initialization and the learning
rate of this layer is different from the transformer
encoder.

4 Experiments

4.1 Datasets and Settings
To verify the improvement of our proposed frame-
work LBGCN, we do comparative experiments on
both benchmarks (Bakeoff-2005 (Emerson, 2005)
and CTB6) and cross-domain datasets (SIGHAN-
2010) (Zhao and Liu, 2010). The size of the bench-
mark is shown in Table 1. We randomly pick 10%
sentences from the training data as the development
data for tuning hyper-parameters. For the experi-
ments on the cross-domain datasets, we follow the
settings of the “PKU” dataset. For consistency, we

Parameters

Hidden states 768
GCN hidden states [128,256,768]
Bi-gram embeds 128
Learning rate [2e-4,1e-4,2e-5]
GCN learning rate [1e-3,1e-4,1e-5]
Batch size [64,128,256]
Dropout [0.1, 0.2, 0.4]
GCN dropout [0.1,0.2,0.4]
Hidden layers 12
Epochs 20

Table 2: The crucial hyper-parameters and search
ranges.

pre-process the unsegmented sentences, which is
similar to the previous paper (Cai et al., 2017). The
evaluation values for CWS are F-score and Roov.

We utilize three mainstream PLMs for training
the Transformer encoder, including XLNET-BASE

(Yang et al., 2019b; Cui et al., 2020), BERT-BASE

and ROBERTA-WWM (Cui et al., 2019).2 To fine-
tune PLMs, we tune a few crucial hyper-parameters
with the development sets for the model. The hyper-
parameters and search ranges are shown in Table
2. We deploy the model on the same device (GPU
environment: Nvidia Tesla V100).

4.2 Experimental Results

This section first reports the results of LBGCN with
different configurations on five benchmarks and
comparison with existing models. Then it describes
the effect of LBGCN in the cross-domain scenario.

Results on Benchmarks In the benchmark sce-
nario, we verify the validity on Bakeoff-2005 and
CTB6 by comparing LBGCN with three different
PLMs, i.e., XLNET, BERT, and RoBERTa. As

2The PLMs are available at https://huggingface.
co/models

https://huggingface.co/models
https://huggingface.co/models
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PKU MSR AS CITYU CTB6

F Roov F Roov F Roov F Roov F Roov

MA ET AL. (2018) 96.1 78.8 98.1 80.0 96.2 70.7 97.2 87.5 96.7 85.4
GONG ET AL. (2019) 96.15 69.88 97.78 64.20 95.22 77.33 96.22 73.58 97.26 83.89
MENG ET AL. (2019) 96.7 - 98.3 - 96.7 - 97.9 - - -
QIU ET AL. (2020) 96.41 78.91 98.05 78.92 96.44 76.39 96.91 86.91 96.99 87.00
HUANG ET AL. (2020) 96.85 82.35 98.29 81.75 - - - - 97.56 88.02
TIAN ET AL. (2020) 96.53 85.36 98.40 84.87 96.62 79.64 97.93 90.15 97.25 88.46

XLNET 96.62 87.81 98.16 79.83 96.68 79.68 97.74 89.57 97.47 89.43
XLNET+LBGCN 96.92 88.05 98.26 82.39 96.92 79.59 97.77 89.96 97.49 87.85

BERT 96.85 88.15 98.29 79.92 96.99 83.54 98.12 91.21 97.75 89.88
BERT+LBGCN 97.00 88.58 98.42 80.24 97.03 80.35 98.13 91.74 97.83 89.12

ROBERTA 97.00 89.80 98.42 84.59 96.80 79.15 98.09 92.32 97.70 89.33
ROBERTA+LBGCN 97.21 90.03 98.52 86.13 96.87 79.22 98.13 91.87 97.79 90.15

Table 3: Results and comparison with existing models on the benchmarks Bakeoff-2005 and CTB6, LBGCN is
trained based on different PLMs and components. The best values are bolded for each column.

LIT. COM. MED. FIN. AVG.

LIU ET AL. (2014) 92.49 94.07 92.63 95.54 93.68
CHEN ET AL. (2015B) 92.89 93.71 92.16 95.20 93.49
CAI ET AL. (2017) 92.90 94.04 92.10 95.38 93.61
HUANG ET AL. (2017) 94.33 93.99 92.26 95.81 94.10
ZHAO ET AL. (2018) 93.23 95.32 93.73 95.84 94.53
ZHANG ET AL. (2018) 94.76 94.70 94.18 96.06 94.93
HUANG ET AL. (2020) 96.13 96.08 95.21 96.82 96.06

XLNET 95.87 96.07 95.09 96.72 95.93
BERT 96.16 95.57 95.38 96.89 96.00
ROBERTA 96.20 96.11 95.44 96.75 96.12

XLNET-LBGCN 96.09 96.33 95.21 96.88 96.12
BERT-LBGCN 96.51 95.59 95.66 97.04 96.20
ROBERTA-LBGCN 96.49 96.13 95.66 97.14 96.33

Table 4: Results and comparison with existing mod-
els on the cross-domain datasets SIGHAN-2010, where
“LIT., COM., MED., and FIN.” represent the domain
of literature, computer, medicine, and finance, respec-
tively. The best values are bolded for each column.

shown in Table 3, three baseline models which
utilize different PLMs to train the Transformer en-
coder of our proposed framework, are represented
as “XLNET”, “BERT, and “ROBERTA”, respec-
tively. There are three observations drawn from the
results. First, The framework which integrates with
our proposed LBGCN outperforms the baseline
models for all 5 datasets in terms of F-scores and
for the majority of datasets in terms of Roov. Sec-
ond, the proposed LBGCN make small improve-
ments in some datasets, whereas considerable im-
provements are shown in the other datasets. The
extent of improvement of LBGCN does not depend
on PLMs which the encoder utilizes. For instance,
when training the Transformer encoder fine-tuning
the RoBERTa, LBGCN improves the F-score on

ID Bi-gram GCN
PKU MSR

F Roov F Roov

1 × × 97.00 89.80 98.42 84.59
2

√
× -0.02 +0.17 -0.01 +0.42

3 ×
√

+0.15 +0.25 +0.10 +1.54
4

√ √
+0.21 +0.23 +0.08 +0.85

Table 5: Ablation experiments. The baseline (ID:1) is
based on the RoBERTa model.

the PKU dataset from 97.00 to 97.21 and Roov

from 89.80 to 90.03. With XLNET or BERT as
the baseline PLM, the improvement of LBGCN
on F-scores and Roov are still decent. Lastly, the
methods that fine-tune the RoBERTa can achieve
better performance on most benchmarks, and our
proposed LBGCN utilizes the GCN to get further
promotion on the baseline model which already
achieves competitive performance of CWS.

Besides, we compare the proposed framework
with existing methods. The comparison is also pre-
sented in Table 3, where the proposed framework
LBGCN based on the BERT or RoBERTa outper-
forms all existing models in terms of the F-scores
on all benchmarks.

Results on Cross-Domain CWS Domain vari-
ance is important to affect the performance of
word semgenters. To demonstrate the efficiency
of LBGCN, we also run frameworks with and with-
out the LBGCN in the cross-domain scenario. Ta-
ble 4 reports the results in F-score, which shows
a similar trend as that in Table 3, where LBGCN
outperforms baselines in all 5 domains. And the
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Figure 2: The F-scores of LBGCN using four differ-
ent lexicons on two benchmark datasets, where “PKU”
is the simplified Chinese dataset and “AS” is the tradi-
tional Chinese dataset.

framework ROBERTA-LBGCN achieves state-of-
the-art performance in terms of average F-score.
In particular, the XLNET has better performance
on the “Computer” domain, and the BERT has bet-
ter performance on the “Literature” domain. In
general, our proposed LBGCN mechanism can ef-
fectively improve performance in the cross-domain
scenario, and all LBGCNs fine-tuning different
PLMs achieve competitive performance, compared
with existing methods.

4.3 Effect of Using Different Lexicons
LBGCN utilizes a general way of integrating lex-
icon for CWS. To analyze the effect of methods
using different lexicons, we adopt four different
lexicons into the ROBERTA-LBGCN and compare
them with the baseline model, as shown in Figure 2.
Four lexicons consist of two simplified Chinese dic-
tionaries3 and two traditional Chinese dictionaries4.
Particularly, two simplified Chinese dictionaries
consist of a basic version “LBGCNs” (red) and
a modified version “LBGCNsd” (yellow), respec-
tively. Similarly, two traditional Chinese dictionar-
ies are also a basic version “LBGCNt” (purple),
and a modified version “LBGCNtd” (green).

As shown in Figure 2, the performance of us-
ing the four lexicons are all better than those
of the baseline models on both the “PKU” and
“AS” dataset, indicating the efficiency of our pro-
posed lexicon-based framework. The framework
using the basic simplified Chinese dictionary (red)
achieves the biggest improvement on the “PKU”
and the one using the basic traditional Chinese dic-
tionary (purple) achieves the biggest improvement

3https://github.com/fxsjy/jieba/blob/
master/jieba/dict.txt

4https://github.com/L706077/jieba-zh_
TW/blob/master/jieba/dict.txt

Figure 3: Heatmaps of weights that learn from the
Transformer encoder (a), and (b) the tags from the de-
coder. Each row corresponds to a character in the input
sentence. Higher weights are visualized with darker
colors.

on the “AS”.

4.4 Ablation Study
LBGCN integrates two additional components
for CWS, including the bi-gram features and
the lexicon-based GCN. To analyze the effect of
LBGCN with respect to different components, we
do an ablation experiment based on the ROBERTA

PLM which performs better for both “PKU” and
“MSR” benchmarks and the results are shown in
Table 5. Table 5 shows that the GCN (ID:3,4) ef-
fectively improves the performance of the baseline
model on “PKU” and “MSR”, and it also alleviates
the issue of OOV words, indicating the effective-
ness of our proposed framework. While the GCN
that integrates with the bi-gram component (ID:4)
achieves progress on the “PKU” from +0.15 to
+0.21, it hurts the Roov. A single bi-gram com-
ponent (ID:2) hardly affects the F-score but it can
improve the recall of OOV words. In terms of the
results in Table 5, the bi-gram and GCN boost the
performance considerably.

4.5 Case Study
To investigate how the proposed framework learns
from the lexicon-based GCN, we choose an exam-
ple input sentence “在/青石板/路上/的/清脆/回
声” (The clear echo on the flagstone road) in the
literature domain scenario as a case study. In this
sentence, the n-gram “青石板/路” (flagstone road)
is the road that is made of a special kind of stone
and always occurs in the Chinese literature. How-
ever, the split “板路” is short for the plate circuit.
The baseline model may confuse this case because
of the character diversity in Chinese. Intuitively,
the “青石板” is in the pre-defined lexicon and an

https://github.com/fxsjy/jieba/blob/master/jieba/dict.txt
https://github.com/fxsjy/jieba/blob/master/jieba/dict.txt
https://github.com/L706077/jieba-zh_TW/blob/master/jieba/dict.txt
https://github.com/L706077/jieba-zh_TW/blob/master/jieba/dict.txt
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undirected graph is constructed with the informa-
tion of the word boundary. Then the lexicon-based
GCN capture this information and integrates the
graph embeddings with the original hidden states.
The integrated embeddings with the knowledge
of lexicon information are transferred into correct
tags by the decoder. In Figure 3, we visualize the
resulted weights that learn from the basic Trans-
former encoder (a), as well as from the final tagger
(b).

In addition, in another case, “地瓜/粥” (sweet
potato congee) represents a Chinese food and “粥”
(congee) should be regarded as a single suffix word
on “PKU” segmentation criterion. The baseline
model cannot segment it correctly, because it keeps
the superabundant pre-trained knowledge of PLMs.
In the LBGCN, “地瓜粥” does not exist in the lex-
icon but “地瓜” is a lexicon word. The LBGCN
constructs this relationship in the graph to dis-
tinguish important n-grams and improves perfor-
mance accordingly for CWS.

5 Conclusion

To make up for the insufficiency of previous meth-
ods that fine-tune PLMs, in this paper, we propose
a lexicon-based graph convolutional network to bet-
ter transfer pre-trained knowledge from PLMs into
the CWS. Our proposed framework LBGCN pro-
vides baseline models with the information of word
boundary and contextual information, in addition to
preserving the merits of baseline models in apply-
ing PLMs. In summary, the advantages of LBGCN
are threefold. First, the novel framework does not
rely on a particular PLM, and it can get further
promotion on all baseline methods based on three
mainstream PLMs for CWS. Second, the results on
extensive experiments show that LBGCN achieves
competitive performance on the CWS benchmarks,
compared with previous methods. Third, further
experiments and analyses demonstrate the effec-
tiveness of LBGCN in the cross-domain scenario
as well as when using different lexicons and com-
ponents. Overall, this paper presents an elegant
way to use a graph neural network for CWS and en-
hance fine-tuning CWS methods. For future work,
we plan to investigate other sequence labeling tasks
using the same methodology.
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