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Abstract

Can pre-trained BERT for one language and
GPT for another be glued together to trans-
late texts? Self-supervised training using only
monolingual data has led to the success of pre-
trained (masked) language models in many
NLP tasks. However, directly connecting
BERT as an encoder and GPT as a decoder
can be challenging in machine translation, for
GPT-like models lack a cross-attention compo-
nent that is needed in seq2seq decoders. In
this paper, we propose Graformer to graft
separately pre-trained (masked) language mod-
els for machine translation. With monolin-
gual data for pre-training and parallel data for
grafting training, we maximally take advan-
tage of the usage of both types of data. Exper-
iments on 60 directions show that our method
achieves average improvements of 5.8 BLEU
in x2en and 2.9 BLEU in en2x directions com-
paring with the multilingual Transformer of
the same size1.

1 Introduction

In recent years, pre-trained (masked) language
models have achieved significant progress in all
kinds of NLP tasks (Devlin et al., 2019; Rad-
ford et al., 2019). Among them, neural machine
translation (NMT) is also explored by several at-
tempts (Yang et al., 2020a; Zhu et al., 2020b; Rothe
et al., 2020). The pre-training and fine-tuning style
becomes an important alternative to take advantage
of monolingual data (Yang et al., 2020c,b; Liu et al.,
2020; Pan et al., 2021).

An intuitive question comes as: Can we bridge
BERT-like pre-trained encoders and GPT-like de-
coders to form a high-quality translation model?
Since they only need monolingual data, we can
reduce the reliance on the large parallel corpus.

∗Work is done while at ByteDance.
1Our code will be public in https://github.com/

sunzewei2715/Graformer
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Figure 1: Grafting pre-trained (masked) language mod-
els like BERT and GPT for machine translation.

Moreover, if the combination of models is univer-
sal, it can be applied to translation for multiple
languages, as is shown in Figure 1.

However, though many works successfully gain
improvements by loading encoder/decoder param-
eters from BERT-like pre-trained encoders (Zhu
et al., 2020b; Guo et al., 2020), they do not achieve
satisfactory results with loading decoder param-
eters from GPT-like pre-trained decoders (Yang
et al., 2020a; Rothe et al., 2020). Theoretically, the
well-trained decoder model like GPT should bring
better generation ability to the translation model.
We suggest the outcome may be attributed to the
architecture mismatch.

Pre-trained (masked) language models predict
the current word solely based on the internal con-
text while the translation decoder has to capture
the source context. Specifically, the decoder in
NMT has a “cross-attention” sub-layer that plays a
transduction role (Bahdanau et al., 2015), while pre-
trained models have none, as is shown in Figure 2.
This mismatch between the generation models and
conditional generation models makes it a challenge
for the usage of pre-trained models as translation
decoders.

Therefore, some previous works manually insert
cross-attention sub-layer or adapters (Rothe et al.,
2020; Ma et al., 2020; Guo et al., 2020). However,
the extra implantation may influence the ability of
the pre-trained model. Other works try to avoid

https://github.com/sunzewei2715/Graformer
https://github.com/sunzewei2715/Graformer
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Figure 2: Taking the popular architecture Trans-
former (Vaswani et al., 2017) as an example, the trans-
lation model has a “cross-attention” sub-layer, while
pre-trained (masked) language models have none.

this problem by directly pre-training a seq2seq
model and conduct fine-tuning (Tang et al., 2020;
Yang et al., 2020b; Luo et al., 2020). However,
the pre-training objective is usually a variant of
auto-encoding (Song et al., 2019; Liu et al., 2020),
which is different from the downstream translation
objective and may not achieve adequate improve-
ments (Lin et al., 2020).

In this paper, we mainly focus on exploring
the best way to simultaneously take advantage of
the pre-trained representation model and genera-
tion model (e.g., BERT+GPT) without limiting
their strengths. The primary target is to link the
generation model to the source side and maintain
the invariability of the architecture in the mean-
time. Therefore, we propose Graformer, with pre-
trained models grafted by a connective sub-module.
The structure of the pre-trained parts remains un-
changed, and we train the grafting part to learn
to translate. For universality and generalization,
we also extend the model to multilingual NMT,
achieving mBERT+mGPT.

Generally, the translation process can be divided
into three parts: representation, transduction, and
generation, respectively achieved by the encoder,
cross-attention, and decoder. In multilingual NMT,
the transduction can only be trained with multiple
parallel data. But the rest two can be pre-trained
with multiple monolingual data, which is tens or
hundreds of the size of parallel one. To maximize
the efficacy of each part, we firstly pre-train a mul-
tilingual BERT and multilingual GPT. Then they
are grafted to implement translation. With the ar-
chitecture consistency, we can reserve the language
knowledge of the pre-trained models and obtain a

strong translation model flexibly at the same time.
Experiments on 30 language directions show that

our method improves the results of multilingual
NMT by 2.9 and 5.8 BLEU on average. It also
achieves gains of 9.2 to 13.4 BLEU scores on zero-
shot translation settings. In addition, it verifies that
such translation capability can be well transferred
to other languages without fine-tuning on the target
parallel corpus.

2 Related Work

This paper is related to a chain of studies of multi-
lingual translation and pre-trained models.

2.1 Multilingual Neural Machine Translation

With the development of NMT, multilingual neu-
ral machine translation (MNMT) also attracts a
great amount of attention. Dong et al. (2015); Fi-
rat et al. (2016a,b) take early attempts and con-
firm its feasibility. The most well-known work
is from Johnson et al. (2017), who conduct a se-
ries of interesting experiments. And the usage of
the language token style is widely accepted. Also,
many subsequent works continuously explore new
approaches in MNMT, such as parameter shar-
ing (Blackwood et al., 2018; Wang et al., 2019b;
Tan et al., 2019a), parameter generation (Platan-
ios et al., 2018), knowledge distillation (Tan et al.,
2019b), learning better representation (Wang et al.,
2019a), massive training (Aharoni et al., 2019;
Arivazhagan et al., 2019), interlingua (Zhu et al.,
2020a), and adpater (Zhu et al., 2021). These works
mainly utilize parallel data.

There are also some works taking advantage of
monolingual corpus. Zhang et al. (2020); Wang
et al. (2020) use back-translation (BT) to improve
MNMT. However, for MNMT, BT is tremendously
costly, reaching O(n), or even O(n2). Siddhant
et al. (2020); Wang et al. (2020) adopt multi-task
learning (MTL), combining with other tasks such
as masked language model (MLM) (Devlin et al.,
2019), denoising auto-encoding (DAE) (Vincent
et al., 2008), or masked sequence-to-sequence gen-
eration (MASS) (Song et al., 2019). However, the
optimization target is different from translation,
which may interfere with the training and limit the
usage of extremely large-scale monolingual data.

2.2 Pre-trained Models

In recent years, pre-train models have become very
popular in both research and industry communities.
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With downstream fine-tuning, plenty of significant
results are achieved in NLP field (Qiu et al., 2020).

Devlin et al. (2019); Liu et al. (2019); Conneau
and Lample (2019); Conneau et al. (2020) take
masked language model (MLM) as the training tar-
get. The input tokens are randomly masked, and
the model learns the representation by maximiz-
ing their likelihood. Radford et al. (2018, 2019);
Brown et al. (2020) use language model (LM) as
their learning goal. With historical contexts, the
model acquires language knowledge by learning to
predict the next word. Raffel et al. (2020); Xue et al.
(2020); Lewis et al. (2020); Liu et al. (2020); Lin
et al. (2020) choose direct sequence-to-sequence
(seq2seq) for training. The pre-train tasks can be
machine translation, question answering, classifi-
cation, etc.

2.3 Pre-trained Models for NMT

Since pre-trained models can significantly boost
relevant tasks, several recent studies try to combine
them with NMT. They can be roughly divided into
two groups, depending on whether the models are
pre-trained uniformly or separately.

2.3.1 United Style
The first category is pre-training directly on
seq2seq tasks and providing downstream MT with
consistent architectures. Tang et al. (2020) tune
translation models from a pre-trained seq2seq
model, mBART (Liu et al., 2020), and obtain signif-
icant improvements. Yang et al. (2020c) pre-train a
seq2seq model with some input tokens replaced by
another language from lexicon induction. Luo et al.
(2020) pre-train the encoder and decoder in a single
model that shares parameters. Then the parameters
are partially extracted for tuning, depending on the
tasks (NLU or NLG).

However, the pre-training objective of these
works is usually a variant of auto-encoding (Song
et al., 2019; Liu et al., 2020), which is different
from the downstream translation objective and may
not achieve adequate improvements (Lin et al.,
2020).

2.3.2 Fused Style
The second category is pre-training the encoder or
decoder independently and fusing them with the
translation model in the fine-tuning stage. Yang
et al. (2020a); Zhu et al. (2020b); Guo et al. (2020);
Ma et al. (2020) fuse BERT/RoBERTa into NMT
with extra encoders or adapters. Yang et al. (2020b)
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Figure 3: The model architecture of Graformer. The
pre-trained multilingual encoder (mBERT) and de-
coder (mGPT) are grafted to achieve multilingual trans-
lation. The dashed line means feeding in the last token.

propose alternating language modeling as the target
of the pre-trained encoder. Rothe et al. (2020) ex-
plore the usage of GPT but still manually insert ex-
tra cross-attention. Weng et al. (2020) use dynamic
fusion mechanism and knowledge distillation to in-
tegrate the representation of the pre-trained models
into NMT models.

These works either do not touch the decoder side
or modify the architecture and conduct fine-tuning
to fuse BERT/GPT into the decoder model. As
mentioned in Section 1, the modification of the
model architecture may influence the model ability
and harm the performance.

3 Approach

To maintain the original model structure of pre-
trained models, we propose Graformer, as is in
Figure 3. For the encoder side, we stack another
K-layers encoder (K = 6, in this paper) on pre-
trained mBERT to help it adapt to the translation
training. For the decoder side, we do similarly,
except we append cross-attention layers to extract
conditional context from the source. Unlike previ-
ous works, we maintain the integrality of mBERT
and mGPT and do not change their architectures.

Finally, we employ a residual connection (He
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et al., 2016) that we combine the hidden state out-
putted by mGPT and the grafting decoder. The
summed context is then fed into the softmax layer.
This integration is for utilizing the generation abil-
ity of the pre-trained decoder to help to generate a
better language model.

As mentioned in Section 1, we try to take ad-
vantage of both multiple parallel data and multiple
monolingual data so as to maximize the efficacy
of representation, transduction, and generation, re-
spectively. Therefore, our training methods can
be separated into two stages: 1) pre-train on the
multiple monolingual data and obtain independent
encoder (representation) and decoder (generation);
2) fine-tune on the multilingual parallel data to graft
two models (transduction).

3.1 Pre-train Multilingual BERT
(Encoder for Representation)

Inspired by Devlin et al. (2019); Liu et al. (2019);
Conneau and Lample (2019); Conneau et al. (2020),
we use masked language model (MLM) as the
training goal with the masked probability of 15%.
Specifically, we adopt Transformer (Vaswani et al.,
2017) encoder withN layers (N = 6, in this paper).
To make cross-lingual token representation more
universal, we add no language token as previous
works do. The training goal is as follows:

LMLM = −
∑

x̂∈m(x)

log p(x̂|x\m(x)) (1)

m(x) and \m(x) denote the masked words and
rest words from x

3.2 Pre-train Multilingual GPT
(Decoder for Generation)

Inspired by Radford et al. (2018, 2019); Brown et al.
(2020), we use auto-regressive language model
(LM) as the training goal. Specifically, we adopt
Transformer (Vaswani et al., 2017) decoder with N
layers (N = 6, in this paper). To specify the gen-
eration language, we set a unique language token
(e.g., <2en>) as the first input for the language
model. The training goal is as follows:

LLM = −
T∑
t=1

log p(xt|x<t) (2)

T denotes the length of sequence. x<t =
<2lang>, x1, x2, ..., xt−1.

3.3 Fine-tune Multilingual Translation
(Grafting for Transduction)

After obtaining the pre-trained encoder and de-
coder, we tune the model to link the representation
model and generation model. The training goal is
as follows:

LMT = softmax(Wo1hN + Wo2hN+K) (3)

hN denotes the hidden state of the last layer in
mGPT. hN+K denotes the hidden state of the last
layer in the grafting decoder. Wo1 and Wo2 denote
the corresponding output matrix. The former one
shares the same parameters with the target-side
embedding.

In the tuning stage, we freeze the pre-trained
decoder parameters (including Wo1) and tune the
grafting parameters as well as the pre-trained en-
coder. Our ablation study shows that this setting
yields the best performance, as is in the experiment
section.

4 Experiments

In this paper, we perform many-to-many style mul-
tilingual translation (Johnson et al., 2017). The
detailed illustrations of the datasets and implemen-
tation are as follows.

4.1 Datasets and Preprocess

• Pre-training: We use News-Crawl corpus 2

plus WMT datasets. We conduct deduplica-
tion and label the data by language. In the
end, we collect 1.4 billion sentences in 45
languages, which is only one-fifth of that of
mBART (Liu et al., 2020). The detailed list
of languages and corresponding scales is in
Appendix A.
• Multilingual Translation: We use TED

datasets, the most widely used MNMT
datasets, following Qi et al. (2018); Aharoni
et al. (2019). We extract 30 languages 3 from
& to English, with the size of 3.18M sentence
pairs in raw data and 10.1M sentence pairs in
sampled bidirectional data. The detailed list
of language pairs and scales is in Appendix A.
We download the data from the open source 4

2http://data.statmt.org/news-crawl
3We use the corpus of “zh_cn” instead of “zh”.
4https://github.com/neulab/

word-embeddings-for-nmt

http://data.statmt.org/news-crawl
https://github.com/neulab/word-embeddings-for-nmt
https://github.com/neulab/word-embeddings-for-nmt
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Model bg bn bs cs de el es et fa fi
Transformer 32.0 12.5 30.3 23.7 28.7 30.7 34.7 17.5 20.4 17.1
mBART - - - 26.4 32.8 - 38.1 20.9 - 19.9
Graformer 38.5 18.1 36.5 29.4 35.5 37.4 40.7 24.0 26.9 23.0
Model fr hi hr hu it ja kk lt mk mr
Transformer 33.1 18.7 30.4 19.8 31.3 10.1 7.6 20.1 29.8 9.4
mBART 36.5 22.9 - - 34.7 12.0 8.9 23.6 - -
Graformer 39.2 25.1 36.7 26.1 37.2 13.7 10.5 27.2 35.7 13.0
Model nl pl pt ro ru sr ta tr uk zh
Transformer 28.9 19.7 34.8 28.6 20.8 29.0 5.8 18.7 23.4 15.6
mBART 32.9 - - 32.2 22.6 - - 22.6 - 18.1
Graformer 35.2 25.1 41.5 35.1 25.1 35.6 10.2 25.5 28.9 19.9

Table 1: The results of x→en directions, with average improvements of 5.8 against baseline (22.8→28.6)

Model bg bn bs cs de el es et fa fi
Transformer 28.8 11.3 23.4 16.6 23.7 25.9 33.0 14.0 12.5 12.1
mBART - - - 17.7 25.8 - 35.2 14.1 - 13.2
Graformer 33.0 14.1 26.3 20.2 27.8 29.8 37.5 16.1 14.2 14.4
Model fr hi hr hu it ja kk lt mk mr
Transformer 33.5 15.3 23.2 14.7 28.9 11.1 3.4 12.8 22.2 9.3
mBART 35.8 16.5 - - 30.6 12.6 3.0 14.2 - -
Graformer 37.8 18.1 26.8 17.2 32.5 12.8 3.8 15.9 25.7 10.6
Model nl pl pt ro ru sr ta tr uk zh
Transformer 25.9 12.8 32.0 24.7 16.1 18.7 13.6 11.6 17.3 21.2
mBART 28.9 - - 27.1 16.9 - - 13.4 - 22.2
Graformer 29.0 15.8 36.6 29.1 19.0 21.4 14.7 13.3 19.5 23.0

Table 2: The results of en→x directions, with average improvements of 2.9 against baseline (19.0→21.9)

and conduct detokenization with Moses Deto-
kenizer (Koehn et al., 2007) 5.
• Zero-shot and Bilingual Translation: We

use WMT 2014 German-English (4.5M sen-
tence pairs) and French-English (36M sen-
tence pairs) datasets.
• Sample: Upsampling is an important way

to improve the performance of low-resource
pairs (Arivazhagan et al., 2019). Therefore,
sentences are sampled according to a multi-
nomial distribution with probabilities {qi},
where qi ∝ pαi , pi is the proportion of
languagei. For monolingual pre-training, we
follow (Conneau and Lample, 2019; Liu et al.,
2020) and set α = 0.7. For parallel fine-
tuning, we follow (Arivazhagan et al., 2019)
and and set α = 0.2 (T = 5).
• Tokenization: Like previous works, we use

5https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer/detokenizer.perl

sentencepiece (Kudo and Richardson, 2018)
and learn a joint vocabulary of 64000 tokens.

4.2 Implementation Details

• Architecture: We use Transformer (Vaswani
et al., 2017) as our basic structure with
pre-norm style (Xiong et al., 2020), and
GELU (Hendrycks and Gimpel, 2016) as acti-
vation function. Specifically, we adopt 1024
dimensions for the hidden state, 4096 dimen-
sions for the middle FFN layer, and 16 heads
for multi-head attention. Learnable position
embedding is also employed. For baseline
models, we use 12 layers. For pre-trained
ones, we use Transformer encoder and de-
coder (without cross-attention) with 6 layers,
respectively. For the grafting part, we add
another 6 layers.
• Training: We train the models with a batch

size of 320,000 tokens on 16 Tesla V100
GPUs. For pre-training, we go through the

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/detokenizer.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/detokenizer.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/detokenizer.perl
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total data for five times. Parameters are op-
timized by using Adam optimizer (Kingma
and Ba, 2015), with β1 = 0.9, β2 = 0.98,
with warmup_steps = 4000. Without extra
statement, we use dropout = 0.3 (Srivastava
et al., 2014). Label smoothing (Szegedy et al.,
2016) of value = 0.1 is also adopted. Besides,
we use fp16 mixed precision training (Micike-
vicius et al., 2018) with Horovod library with
RDMA inter-GPU communication (Sergeev
and Del Balso, 2018).
• Evaluation: We uniformly conduct beam

search with size = 5 and length penalty
α = 0.6. For hi, ja, and zh, we use Sacre-
BLEU (Post, 2018). Otherwise, we use tok-
enized BLEU (Papineni et al., 2002) with the
open-source script 6.

4.3 Main Results

As is shown in Table 1 and 2, our methods ob-
tain significant improvements across all language
pairs. For x→en and en→x pairs, advances of
nearly 6 BLEU and 3 BLEU are achieved. We also
compare the results with loading from mBART, a
well-known multilingual pre-trained sequence-to-
sequence model (Liu et al., 2020) 7. Due to the
language difference, we only tune the model on a
part of languages. With both 12-layers depth and
1024-dimensions width, our method outperforms
mBART on almost all pairs, proving the superior-
ity of Graformer comparing with pre-training in
United Style mentioned in Section 2. It is worth
noticing that we only use the one-fifth amount of
the data of mBART.

4.4 Ablation Study

To verify the contribution of each part of our model,
we do a series of ablation studies. As is shown in
Table 3 and 4, we can draw at least four empirical
conclusions.

Encoder needs tuning, decoder needs not. In
Table 3, comparing Row 1 with Row 2, and Row
5 with Row 8, we can see that the tuning of the
encoder is essential. It can bring further improve-
ments. However, freezing pre-trained decoder pa-
rameters is a better choice. Comparing Row 3 with
Row 4, and Row 6 with Row 8, we can see that

6https://github.com/pytorch/fairseq/
blob/master/examples/m2m_100/tok.sh

7https://dl.fbaipublicfiles.com/
fairseq/models/mbart/mbart.cc25.v2.tar.
gz

tuning may lead to a drop for decoder. It seems that
the pre-trained decoder model learns much more
knowledge, and its original language model can
better guide the generation.

Decoder matters more. In Table 3, compar-
ing Row 1,2,3,4, we can see that the pre-trained
decoder yields more progress than the pre-trained
encoder. This shows that involving only pre-trained
encoders like BERT into MT is limited. The per-
formance can be further enhanced with the intro-
duction of pre-trained decoders.

Residual connection contributes. In Table 3,
comparing Row 7 with Row 8, we can see that the
residual connection from the pre-trained decoder
can further boost the results. The well-trained lan-
guage model effectively helps the translation model.
It also shows the importance of incorporating the
knowledge-rich generation model.

Row Encoder Decoder x→en en→x
0 - - 22.8 19.0
1 Freeze - 23.2 19.2
2 Fine-tune - 27.0 20.2
3 - Freeze 27.8 21.0
4 - Fine-tune 25.2 19.9
5 Freeze Freeze 25.8 20.4
6 Fine-tune Fine-tune 27.0 19.4
7 Fine-tune Freeze* 28.1 20.9
8 Fine-tune Freeze 28.6 21.9

Table 3: Each number is the average BLEU of 30 language
directions. “-” means not loading from pre-trained models. “*”
means the residual connection is abandoned.

Encoder Decoder x→en en→x
6+6 6+6 28.6 21.9
6+6 6+5 28.7 21.7
6+6 6+4 28.2 21.6
6+6 6+3 28.3 21.6
6+6 6+2 28.2 21.1
6+6 6+1 27.9 18.0
6+5 6+6 28.6 21.3
6+4 6+6 28.5 21.5
6+3 6+6 28.4 21.7
6+2 6+6 28.4 21.0
6+1 6+6 28.0 20.8

6 6+6 28.0 20.7

Table 4: Each number is the average BLEU of 30 lan-
guage directions. “x+y” means the combination of
x-layers pre-trained (masked) language models and y-
layers grafting models.

https://github.com/pytorch/fairseq/blob/master/examples/m2m_100/tok.sh
https://github.com/pytorch/fairseq/blob/master/examples/m2m_100/tok.sh
https://dl.fbaipublicfiles.com/fairseq/models/mbart/mbart.cc25.v2.tar.gz
https://dl.fbaipublicfiles.com/fairseq/models/mbart/mbart.cc25.v2.tar.gz
https://dl.fbaipublicfiles.com/fairseq/models/mbart/mbart.cc25.v2.tar.gz
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Layer number has slight effects. In Table 4,
as the number of layers decreases, the performance
drops slightly for both the encoder and decoder.
But the extent of the decline is limited. Even no
extra encoder layer or one-layer extra decoder can
maintain a relatively high performance.

4.5 Well-trained Language Model Helps

Except for BLEU, we also study how the pre-
trained generation model influence the translation
model. We speculate that the pre-trained decoder
helps to translate through combining the well-
trained language model. Therefore, we collect and
compare the perplexity of the models on the valida-
tion sets.

As is in Table 5, we can see that our method
significantly lowers the perplexity comparing to
the baseline model. The pre-trained decoder brings
in better representation and language knowledge.
Also, the residual connection from the original pre-
trained decoder can further improve the results,
illustrating the enlightening role the well-trained
language model plays.

Model x→en en→x
Transformer 8.64 8.76
Graformer * 5.60 6.58
Graformer 5.27 6.21

Table 5: The perplexity of models. Each number is the
average result of 30 language directions. “*” means the
residual connection is abandoned.

4.6 Better than Fused Styles

Besides United Style (mBART), we also compare
our method with Fused Style. Specifically, we
choose two typical works, as are in Figure 4: 1)
loading parameters directly and ignoring cross-
attention (denoted as “Direct”) (Rothe et al., 2020;
Ma et al., 2020); 2) insert extra cross-attention
layers into each decoder sub-layer and freeze pre-
trained models (denoted as “Adapter”) (Guo et al.,
2020). We re-implement the models with the same
depth and width as Graformer.

The crucial difference is that we leave the
pre-trained decoder module unchanged and com-
plete. Other works inject extra layers internally,
such as cross-attention or adapters. Specifically,
they go like layer1 → adapter1 → layer2 →
adapter2 → ... → layerN → adapterN . The
well-trained bond between layeri and layeri+1 is

× N
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Figure 4: The model architecture of “Direct”
(left) (Rothe et al., 2020; Ma et al., 2020) and “Adapter”
(right) (Guo et al., 2020).

Model
BLEU↑ Perplexity↓

x→en en→x x→en en→x
Direct 27.1 20.5 6.61 8.06
Adapter 27.4 19.8 5.78 6.71
Graformer 28.6 21.9 5.27 6.21

Table 6: Each number is the average BLEU/Perplexity
of 30 language directions. Our model outperform re-
lated methods in fused style.

broken, which can not activate the full potential of
the pre-trained decoder.

Differently, we maintain the original structure
and even feed its output into the final layer. These
strategies are all for the sake of fully taking ad-
vantage of the pre-trained generation model. As
is in Table 6, our approach outperforms other two
methods (The detailed results are in Appendix B).

4.7 Graformer Maintains Good Performance
in Few-Shot Translation

We also conduct few-shot experiments. We ran-
domly select 30%, 10%, 3%, 1% of the data and
reproduce the experiments. As is in Figure 5,6, as
the scale of datasets decreases, the performance of
baseline drops dramatically and fails to generate
comprehensible sentences (BLEU < 5). However,
our method keeps relatively higher results even
with only 1% data. And with the less data provided,
the gap between Graformer and baseline is much
larger (5.8→12.1, 2.9→7.1). Again, it proves that
the usage of multiple monolingual data can benefit
MNMT greatly since its scale is tens or hundreds
of times of the parallel one.
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Figure 5: The results of x→en directions. As the data
scale decrease from 100% to 1%, the gap is getting
larger (5.8→12.1).
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Figure 6: The results of en→x directions. As the data
scale decrease from 100% to 1%, the gap is getting
larger (2.9→7.1).

4.8 The More Monolingual data, The Better

To further analyze the effectiveness of monolin-
gual data, we look into the relationship between
the BLEU advance and the data scale. As is in
Figure 7, as the quotient of the monolingual data
scale divided by the parallel data scale increases,
the BLEU improvements gradually go up. It shows
the extra benefit provided by the monolingual data,
especially in the large-scale scene. Since the par-
allel data is rare, Graformer can be an essential
approach to enhance low-resource language pairs.

4.9 Graformer Boosts Zero-Shot Translation

To verify whether the multilingual pre-trained
model learns cross-lingual knowledge, we also con-
duct a crossed experiment of zero-shot translation.
Firstly, we use our approach to train models only

0 50 100 150 200 250 300 350 400
Monolingual data / Parallel data

1

2

3

4

BL
EU

 in
cr

ea
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Figure 7: Each point represents a language. The x-axis
means the quotient of the monolingual data scale di-
vided by the parallel data scale. The y-axis means the
BLEU improvements of en→x directions.

Train Model
Testing

de→en fr→en

de→en
Transformer 31.9 6.7
Graformer 33.4 15.2
Graformerfe 33.0 20.1

fr→en
Transformer 5.1 35.1
Graformer 10.8 36.0
Graformerfe 16.8 35.5

Table 7: Zero-shot experiments on WMT Datasets. “fe”
means freezing the pre-trained encoder. Notice that even the
model does not see parallel sentences for a testing language,
our method can achieve 11.7 and 13.4 BLEU improvement.

Train Model
Testing

de→en fr→en

de→en
Transformer 33.6 1.7
Graformer 36.9 3.4
Graformerfe 35.4 11.9

fr→en
Transformer 1.5 37.3
Graformer 4.5 40.7
Graformerfe 10.7 39.8

Table 8: Zero-shot experiments on TED Datasets. “fe′′ means
freezing the pre-trained encoder. Notice that even the model
does not see parallel sentences for a testing language, our
method can achieve 10.2 and 9.2 BLEU improvement.

on German-English corpus and then conduct infer-
ence on French-English test sets. Converse ones
are done similarly. We perform experiments on
both TED and WMT datasets, with the encoder
frozen (Graformerfe) and tuned (Graformer).

As is in Table 7 and 8, we can draw similar
conclusions. On the one hand, the performance of
the original direction is improved, as expected. On
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the other hand, the inference results in the other
direction are also significantly boosted at the same
time. It is worth noting that our models are trained
with none of the test directions but obtain BLEU
score high than 10.

More specifically, if the encoder is frozen, the
results of the main direction can be slightly low-
ered, but the results of the zero-shot one will be
significantly improved. It illustrates that the un-
tuned pre-trained model contains much more cross-
lingual knowledge and can be better transferred to
untrained pairs.

4.10 Graformer Works in Bilingual
Translation

To verify the effect of our methods, we also con-
duct experiments on bilingual translation. We
use WMT14 English-German and English-French
Datasets. In this series of settings, the datasets
and vocabulary of both pre-training and tuning are
limited in the bilingual corpus. For en-fr training,
we adopt dropout = 0.1, following Vaswani et al.
(2017).

The results, along with several strong related pre-
training works, are listed in Table 9. Those related
works all take advantage of pre-trained models and
significantly improve the translation. Our method
boosts the performance of bilingual translation and
is at the top level. It proves the universal effective-
ness of Graformer.

Model en→de en→fr
Transformer 28.9 41.8
Yang et al. (2020a) 30.1 42.3
Weng et al. (2020) 29.2 -
Yang et al. (2020b) 29.2 -
Zhu et al. (2020b) 30.8 43.8
Rothe et al. (2020) 30.6 -
Guo et al. (2020) 30.6 43.6
Graformer 31.0 43.6

Table 9: Bilingual translation results of English-
German and English-French of WMT14. Comparing
objects are strong results reported by recent works.
Graformer boosts the performance and is at the top
level.

5 Conclusion

In this paper, we propose Graformer, grafting mul-
tilingual BERT and multilingual GPT for multilin-
gual neural machine translation. By pre-training

the representation part (encoder) and generation
part (decoder) of the model, we leverage the mono-
lingual data to boost the translation task. And differ-
ent from other previous fusing methods, we main-
tain the original architectures. With this approach,
we can fully take advantage of the pre-trained mod-
els, including their well-trained capacity for rep-
resentation and generation. Experimental results
show that our method can significantly improve
the performance and outperform similar related
works. A series of empirical analyses of perplexity,
few-shot translation, and zero-shot translation also
shows its universality.

References
Roee Aharoni, Melvin Johnson, and Orhan Firat. 2019.

Massively multilingual neural machine translation.
In NAACL-HLT.

Naveen Arivazhagan, Ankur Bapna, Orhan Firat,
Dmitry Lepikhin, Melvin Johnson, Maxim Krikun,
Mia Xu Chen, Yuan Cao, George Foster, Colin
Cherry, et al. 2019. Massively multilingual neural
machine translation in the wild: Findings and chal-
lenges. arXiv preprint arXiv:1907.05019.

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Graeme Blackwood, Miguel Ballesteros, and Todd
Ward. 2018. Multilingual neural machine transla-
tion with task-specific attention. In ICLR.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
NeurIPS.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Édouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
ACL.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In NeurIPS.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL-HLT.



2744

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for mul-
tiple language translation. In ACL-IJCNLP.

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio.
2016a. Multi-way, multilingual neural machine
translation with a shared attention mechanism. In
NAACL-HLT.

Orhan Firat, Baskaran Sankaran, Yaser Al-Onaizan,
Fatos T Yarman Vural, and Kyunghyun Cho. 2016b.
Zero-resource translation with multi-lingual neural
machine translation. In EMNLP.

Junliang Guo, Zhirui Zhang, Linli Xu, Hao-Ran Wei,
Boxing Chen, and Enhong Chen. 2020. Incor-
porating bert into parallel sequence decoding with
adapters. In NeurIPS.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In CVPR.

Dan Hendrycks and Kevin Gimpel. 2016. Gaus-
sian error linear units (gelus). arXiv preprint
arXiv:1606.08415.

Melvin Johnson, Mike Schuster, Quoc Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
et al. 2017. Google’s multilingual neural machine
translation system: Enabling zero-shot translation.
TACL.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In ACL.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
EMNLP.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In ACL.

Zehui Lin, Xiao Pan, Mingxuan Wang, Xipeng Qiu,
Jiangtao Feng, Hao Zhou, and Lei Li. 2020. Pre-
training multilingual neural machine translation by
leveraging alignment information. In EMNLP.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation. TACL.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Fuli Luo, Wei Wang, Jiahao Liu, Yijia Liu, Bin Bi,
Songfang Huang, Fei Huang, and Luo Si. 2020.
Veco: Variable encoder-decoder pre-training for
cross-lingual understanding and generation. arXiv
preprint arXiv:2010.16046.

Shuming Ma, Jian Yang, Haoyang Huang, Zewen Chi,
Li Dong, Dongdong Zhang, Hany Hassan Awadalla,
Alexandre Muzio, Akiko Eriguchi, Saksham Sing-
hal, et al. 2020. Xlm-t: Scaling up multilingual ma-
chine translation with pretrained cross-lingual trans-
former encoders. arXiv preprint arXiv:2012.15547.

Paulius Micikevicius, Sharan Narang, Jonah Alben,
Gregory Diamos, Erich Elsen, David Garcia, Boris
Ginsburg, Michael Houston, Oleksii Kuchaiev,
Ganesh Venkatesh, et al. 2018. Mixed precision
training. In ICLR.

Xiao Pan, Mingxuan Wang, Liwei Wu, and Lei Li.
2021. Contrastive learning for many-to-many mul-
tilingual neural machine translation. In ACL.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In ACL.

Emmanouil Antonios Platanios, Mrinmaya Sachan,
Graham Neubig, and Tom Mitchell. 2018. Contex-
tual parameter generation for universal neural ma-
chine translation. In EMNLP.

Matt Post. 2018. A call for clarity in reporting bleu
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers.

Ye Qi, Devendra Sachan, Matthieu Felix, Sarguna Pad-
manabhan, and Graham Neubig. 2018. When and
why are pre-trained word embeddings useful for neu-
ral machine translation? In NAACL-HLT.

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao,
Ning Dai, and Xuanjing Huang. 2020. Pre-trained
models for natural language processing: A survey.
Science China Technological Sciences.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing with unsupervised learning.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. JMLR.



2745

Sascha Rothe, Shashi Narayan, and Aliaksei Severyn.
2020. Leveraging pre-trained checkpoints for se-
quence generation tasks. TACL.

Alexander Sergeev and Mike Del Balso. 2018.
Horovod: fast and easy distributed deep learning in
tensorflow. arXiv preprint arXiv:1802.05799.

Aditya Siddhant, Ankur Bapna, Yuan Cao, Orhan Firat,
Mia Xu Chen, Sneha Kudugunta, Naveen Arivazha-
gan, and Yonghui Wu. 2020. Leveraging monolin-
gual data with self-supervision for multilingual neu-
ral machine translation. In ACL.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. Mass: Masked sequence to sequence
pre-training for language generation. In ICML.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. JMLR, 15(1):1929–1958.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
CVPR.

Xu Tan, Jiale Chen, Di He, Yingce Xia, QIN Tao, and
Tie-Yan Liu. 2019a. Multilingual neural machine
translation with language clustering. In EMNLP-
IJCNLP.

Xu Tan, Yi Ren, Di He, Tao Qin, Zhou Zhao, and Tie-
Yan Liu. 2019b. Multilingual neural machine trans-
lation with knowledge distillation. In ICLR.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Na-
man Goyal, Vishrav Chaudhary, Jiatao Gu, and An-
gela Fan. 2020. Multilingual translation with exten-
sible multilingual pretraining and finetuning. arXiv
preprint arXiv:2008.00401.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. NIPS.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and
Pierre-Antoine Manzagol. 2008. Extracting and
composing robust features with denoising autoen-
coders. In ICML.

Xinyi Wang, Hieu Pham, Philip Arthur, and Graham
Neubig. 2019a. Multilingual neural machine trans-
lation with soft decoupled encoding. In ICLR.

Yining Wang, Long Zhou, Jiajun Zhang, Feifei Zhai,
Jingfang Xu, and Chengqing Zong. 2019b. A com-
pact and language-sensitive multilingual translation
method. In ACL.

Yiren Wang, ChengXiang Zhai, and Hany Hassan.
2020. Multi-task learning for multilingual neural
machine translation. In EMNLP.

Rongxiang Weng, Heng Yu, Shujian Huang, Shanbo
Cheng, and Weihua Luo. 2020. Acquiring knowl-
edge from pre-trained model to neural machine
translation. In AAAI.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng,
Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan
Lan, Liwei Wang, and Tieyan Liu. 2020. On layer
normalization in the transformer architecture. In
ICML.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2020. mt5: A mas-
sively multilingual pre-trained text-to-text trans-
former. arXiv preprint arXiv:2010.11934.

Jiacheng Yang, Mingxuan Wang, Hao Zhou, Chengqi
Zhao, Weinan Zhang, Yong Yu, and Lei Li. 2020a.
Towards making the most of bert in neural machine
translation. In AAAI.

Jian Yang, Shuming Ma, Dongdong Zhang, ShuangZhi
Wu, Zhoujun Li, and Ming Zhou. 2020b. Alternat-
ing language modeling for cross-lingual pre-training.
In AAAI.

Zhen Yang, Bojie Hu, Ambyera Han, Shen Huang, and
Qi Ju. 2020c. Csp: Code-switching pre-training for
neural machine translation. In EMNLP.

Biao Zhang, Philip Williams, Ivan Titov, and Rico Sen-
nrich. 2020. Improving massively multilingual neu-
ral machine translation and zero-shot translation. In
ACL.

Changfeng Zhu, Heng Yu, Shanbo Cheng, and Weihua
Luo. 2020a. Language-aware interlingua for multi-
lingual neural machine translation. In ACL.

Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao
Qin, Wengang Zhou, Houqiang Li, and Tieyan Liu.
2020b. Incorporating bert into neural machine trans-
lation. In ICLR.

Yaoming Zhu, Jiangtao Feng, Chengqi Zhao, Mingx-
uan Wang, and Lei Li. 2021. Serial or parallel?
plug-able adapter for multilingual machine transla-
tion. arXiv preprint arXiv:2104.08154.



2746

A Languages and Scales

The languages of datasets are listed in Table 10 and
Table 11, for pre-training and translation training,
respectively. We use significantly less data than
mBART(Liu et al., 2020). According to its paper
(and some naive summation), they use 208 billion
tokens in 1.4T in total. We only use 42 billion
tokens in 0.18T.

B Results of Fused Style Methods

The results of other Fused Style methods are in
Table 12 and 13.

Language Scale Language Scale
am 119643 ky 279440
bg 38305118 lt 4992036
bn 3916068 lv 13059185
bs 1955342 mk 209389
cs 90149511 ml 182467
de 329456604 mr 325364
el 8159512 nl 1205639
en 326422361 or 444212
es 65422557 pa 218067
et 7023190 pl 14480947
fa 1304611 ps 948310
fi 23127824 pt 9260529
fr 121133895 ro 21285406
gu 535156 ro* 20509504
hi 32491838 ru 94788355
hr 6718607 so 168710
hu 40181635 sr 3798788
it 39682711 sw 455488
iu 781877 ta 1251716
ja 19579066 te 882347
kk 1956205 tr 17494020
km 4410059 uk 1486906
kn 502499 zh 25401930

all 1.40B

Table 10: Languages used for pre-training and their
scales (in sentences). “ro*” means processed Roma-
nian.

Language Scale Language Scale
bg 174444 ja 204090
bn 4649 kk 3317
bs 5664 lt 41919
cs 103093 mk 25335
de 167888 mr 9840
el 134327 nl 183767
es 196026 pl 176169
et 10738 pt 51785
fa 150965 ro 180484
fi 24222 ru 208458
fr 192304 sr 136898
hi 18798 ta 6224
hr 122091 tr 182470
hu 147219 uk 108495
it 204503 zh 5534

all 3.18M

Table 11: Language pairs (from & to English) used for
translation training and their scales (in sentences).
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Model bg bn bs cs de el es et fa fi
Direct 36.8 18.0 35.2 28.5 33.9 35.3 39.1 22.5 24.8 21.2
Adapter 38.0 18.1 36.8 29.2 34.3 36.2 40.1 23.3 23.7 21.9
Graformer 38.5 18.1 36.5 29.4 35.5 37.4 40.7 24.0 26.9 23.0
Model fr hi hr hu it ja kk lt mk mr
Direct 38.0 23.6 35.3 24.4 36.0 12.3 10.1 25.4 33.8 12.1
Adapter 38.7 24.1 36.2 24.9 36.5 11.7 10.1 25.9 34.7 11.2
Graformer 39.2 25.1 36.7 26.1 37.2 13.7 10.5 27.2 35.7 13.0
Model nl pl pt ro ru sr ta tr uk zh
Direct 33.2 23.6 40.1 33.6 23.9 33.9 8.7 23.3 27.8 18.5
Adapter 33.8 24.0 41.1 34.2 24.3 34.9 7.1 22.9 27.6 17.9
Graformer 35.2 25.1 41.5 35.1 25.1 35.6 10.2 25.5 28.9 19.9

Table 12: The results of x→en directions for “Direct” (Rothe et al., 2020; Ma et al., 2020) and “Adapter” (Guo
et al., 2020).

Model bg bn bs cs de el es et fa fi
Direct 30.7 12.2 24.5 18.2 25.1 27.8 35.3 14.9 13.3 13.1
Adapater 31.0 10.5 24.3 18.5 25.4 26.9 35.3 15.3 9.6 13.4
Graformer 33.0 14.1 26.3 20.2 27.8 29.8 37.5 16.1 14.2 14.4
Model fr hi hr hu it ja kk lt mk mr
Direct 35.4 16.7 25.2 15.7 30.7 12.2 4.0 14.5 24.4 10.5
Adapater 35.8 15.3 24.8 15.7 30.2 9.2 3.8 14.5 24.5 9.0
Graformer 37.8 18.1 26.8 17.2 32.5 12.8 3.8 15.9 25.7 10.6
Model nl pl pt ro ru sr ta tr uk zh
Direct 28.1 14.4 34.3 26.9 17.5 20.2 15.6 12.3 18.7 21.8
Adapater 26.9 13.9 34.2 26.7 17.1 19.7 11.6 11.7 18.1 20.5
Graformer 29.0 15.8 36.6 29.1 19.0 21.4 14.7 13.3 19.5 23.0

Table 13: The results of en→x directions for “Direct” (Rothe et al., 2020; Ma et al., 2020) and “Adapter” (Guo
et al., 2020).


