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Abstract

Standard accuracy metrics have shown that
Math Word Problem (MWP) solvers have
achieved high performance on benchmark
datasets. However, the extent to which exist-
ing MWP solvers truly understand language
and its relation with numbers is still unclear.
In this paper, we generate adversarial attacks
to evaluate the robustness of state-of-the-art
MWP solvers. We propose two methods Ques-
tion Reordering and Sentence Paraphrasing to
generate adversarial attacks. We conduct ex-
periments across three neural MWP solvers
over two benchmark datasets. On average, our
attack method is able to reduce the accuracy
of MWP solvers by over 40 percentage points
on these datasets. Our results demonstrate that
existing MWP solvers are sensitive to linguis-
tic variations in the problem text. We verify
the validity and quality of generated adversar-
ial examples through human evaluation.

1 Introduction

A Math Word Problem (MWP) consists of a nat-
ural language text which describes a world state
involving some known and unknown quantities.
The task is to parse the text and generate equations
that can help find the value of unknown quantities.
Solving MWP’s is challenging because apart from
understanding the text, the model needs to identify
the variables involved, understand the sequence
of events, and associate the numerical quantities
with their entities to generate mathematical equa-
tions. An example of a simple MWP is shown in
Table 1. In recent years, solving MWPs has be-
come a problem of central attraction in the NLP
community. There are a wide variety of MWPs
ranging from simple linear equations in one vari-
able (Koncel-Kedziorski et al., 2016; Miao et al.,
2020) to complex problems that require solving a
system of equations (Huang et al., 2016; Saxton

∗Equal Contribution

Original Problem
Text: Tim has 5 books. Mike has 7 books.
How many books do they have together?
Equation: X = 5+7

Question Reordering
Text: How many books do they have together
given that Tim has 5 books and Mike has 7 books.
Equation: X = 5*7

Sentence Paraphrasing
Text: Tim has got 5 books. There are 7 books in
Mike’s possession. How many books do they have?
Equation: X = 5*5

Table 1: A MWP and generated adversarial examples
by our methods. Red and blue color denote the subject
and the entity respectively of numerical values.

et al., 2019). In this paper, we consider simple
MWPs which can be solved by a linear equation in
one variable.

Existing MWP solvers can be categorized into
statistical learning based (Hosseini et al., 2014;
Kushman et al., 2014) and deep learning based
solvers . However, recent deep learning based ap-
proaches (Wang et al., 2017; Xie and Sun, 2019;
Zhang et al., 2020b) have established their superi-
ority over statistical learning based solvers. Here,
we will briefly review some recent MWP solvers.
Initially, (Wang et al., 2017) modelled the task of
MWP as a sequence to sequence task and utilized
Recurrent Neural Nets (RNNs) to learn problem
representations. Building upon this, (Chiang and
Chen, 2018) focused on learning representations
for mathematical operators and numbers, (Xie and
Sun, 2019; Wang et al., 2019) utilized tree struc-
ture to develop decoders for MWP solvers. More
recently, to learn accurate relationship between nu-
merical quantities and their attributes (Zhang et al.,
2020b) modelled encoder as a graph structure.

All such MWP solvers have achieved high per-
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formance on benchmark datasets. However, the
extent to which these solvers truly understand lan-
guage and numbers remains unclear. Prior works
on various NLP tasks have shown that Deep Neu-
ral Networks (DNNs) attend to superficial cues to
achieve high performance on benchmark datasets.
Recently, (Patel et al., 2021) proposed a challenge
test set called SVAMP which demonstrate that ex-
isting MWP solvers rely on shallow heuristics to
achieve high performance. Instead of relying on
standard accuracy metrics, many works have used
adversarial examples (Szegedy et al., 2013; Paper-
not et al., 2017) to evaluate the robustness of neural
NLP models. Adversarial examples are generated
by making small changes to the original input such
that the adversarial example is (1) semantically
similar to the original input, (2) is grammatically
correct and fluent and (3) deceives the DNNs to
generate an incorrect prediction.

In (Jia and Liang, 2017) authors crafted adver-
sarial attacks to test the robustness of QA systems.
Prior works in (Glockner et al., 2018; McCoy et al.,
2019) uses adversarial examples to show deficien-
cies of NLI models. Similarly, (Dinan et al., 2019;
Cheng et al., 2019) uses adversarial examples to
develop robust dialogue and neural machine transla-
tion models. Recently, there has been a plethora of
work (Ebrahimi et al., 2017; Alzantot et al., 2018;
Jin et al., 2020; Maheshwary et al., 2021, 2020) to
evaluate text classification systems against adver-
sarial examples. Although adversarial examples
are commonly used for various NLP tasks, there
has been no work that uses adversarial examples to
evaluate MWP solvers. In this paper, we bridge this
gap and evaluate the robustness of state-of-the-art
MWP solvers against adversarial examples.

Generating adversarial attacks for MWP is a
challenging task as apart from preserving textual
semantics, numerical value also needs to be pre-
served. The text should make mathematical sense,
and the sequence of events must be maintained
such that humans generate the same equations from
the problem text. Standard adversarial generation
techniques like synonym replacement (Alzantot
et al., 2018) are not suitable for MWP as the fluency
of the problem statement is not preserved. Simi-
larly, paraphrasing techniques like back-translation
(Mallinson et al., 2017) are not ideal as they gener-
ate syntactically uncontrolled examples.

We propose two methods to generate adversarial
examples on MWP solvers, (1) Question Reorder-

ing — It transforms the problem text by moving
the question part to the beginning of the problem
and (2) Sentence Paraphrasing — It paraphrases
each sentence in the problem such that the seman-
tic meaning and the numeric information remains
unchanged. Our results demonstrate that current
solvers are not robust against adversarial examples
as they are sensitive to minor variations in the in-
put. We hope that our insights will inspire future
work to develop more robust MWP solvers. Our
contributions are as follows:

1. To the best of our knowledge, this is the first
work that evaluates the robustness of MWP
solvers against adversarial attacks. We pro-
pose two methods to generate adversarial ex-
amples on three MWP solvers across two
benchmark datasets.

2. On average, the generated adversarial exam-
ples are able to reduce the accuracy of MWP
solvers by over 40%. Further, we experiment
with different type of input embeddings and
perform adversarial training using our pro-
posed methods. We also conducted human
evaluation to ensure that the generated adver-
sarial examples1 are valid, semantically simi-
lar and grammatically correct.

2 Proposed Approach

2.1 Problem Definition
A MWP is defined as an input of n tokens,
P = {w1, w2..wn} where each token wi is ei-
ther a numeric value or a word from a natural
language. The goal is to generate a valid math-
ematical equation E from P such that the equation
consists of numbers from P , desired numerical
constants and mathematical operators from the set
{/, ∗,+,−}. The above problem can also be ex-
pressed as P = {S1, S2..Sk, Q} where Q is the
question, {S1, S2..Sk} are the sentences constitut-
ing the problem description.
Let F : P → E be a MWP solver where E is the
solution equation to problem P . Our goal is to craft
an adversarial text input P∗ from the original input
P such that the generated sequence is (1) seman-
tically similar to the original input, (2) preserves
sequence of events in the problem, (3) preserve nu-
merical values and (4) makes the MWP solver F to
generate an incorrect equation E∗ for the unknown

1Adversarial Examples and Code is available at:
https://github.com/kevivk/MWP_Adversarial

https://github.com/kevivk/MWP_Adversarial
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variable. We assume a black-box setting in which
we have no access to the parameters, architecture
or training data of the MWP solver. We only have
access to the input text and equations generated by
the solver.

2.2 Question Reordering

To examine whether existing MWP solvers are
sensitive to the order of the question in the prob-
lem text, we moved the question Q at the start,
followed by the rest of the problem description
{S1, S2..Sk}. Formally, given the original in-
put P = {S1, S2...Sk, Q} we transformed this
to P∗ = {Q,S1, S2...Sk}. We keep the rest of
the problem description {S1, S2..Sk} unaltered.
Also, to ensure that the generated problem text
P∗ is grammatically correct and fluent, we added
phrases like "Given that" or "If" after the end of
the question Q and before the start of the sentences
{S1, S2..Sk}. An example of this is shown in Ta-
ble 1. We additionally, make use of co-reference
resolution and named entity recognition2 to replace
pronouns with their co-referent links. Note that
placing the question Q at the start rather than any
other position ensures that the generated problem
P∗ has the same sequence of events as the origi-
nal problem P . Moreover, this method is better
than randomly shuffling the sentences in P as it
can change the sequence of events in the problem,
resulting in a completely different equation.

2.3 Sentence Paraphrasing

To check whether MWP solvers generate different
equations to semantically similar inputs, we gen-
erate paraphrases of each sentence in the problem
text. Sentence Paraphrasing ensures that solvers do
not generate equations based on keywords and spe-
cific patterns. Formally, given a problem statement
P we obtain top m paraphrases for each sentence
Si as {Si,1, Si,2, ..., Si,m} and for question Q as
{Qi,1, Qi,2, ..., Qi,m} by passing it through a para-
phrasing modelM. For sentences with numerical
values present in them, we need to ensure that each
paraphrase candidate associates the numeric values
with the same entity and subject as it is present in
the original sentence Si. To ensure this, we follow
the approach used in (Hosseini et al., 2014) to seg-
regate each sentence Si into entities and its subject.
These are collectively labeled as head entity hi,orig
for the original sentence Si and hi,k for the para-

2https://spacy.io/

phrase candidates Si,k. This methodology ensures
that each numeric value is still associated correctly
with its attributes even after paraphrasing. Para-
phrased sentences that do not have matching head
entities for any of the numeric values are filtered
out. The remaining paraphrases of Si and question
Q are combined to generate all possible combina-
tions of problem texts. The input combination for
which the MWP solver generates an incorrect or
invalid equation is selected as the final adversarial
problem text P∗. Sentence Paraphrasing generates
inputs containing small linguistic variations and
diverse keywords (more examples in appendix).
Therefore, it is used to evaluate whether existing
MWP solvers rely on specific keywords or patterns
to generate equations. Algorithm 1 shows all the
steps followed above to generate paraphrases.

Algorithm 1 Sentence Paraphrasing
Input: Problem text P,M is Paraphrase model
Output: Adversarial text P∗

1: P∗ ← P
2: yorig ← F(P)
3: for Si in P do
4: C ← M(Si)
5: for cj in C do
6: if hi,orig == hi,j then
7: paraphrases.add(cj)

8: paraphrases.add(Si)
9: candidates.add(paraphrases)

10: for ck in Combinations(candidates) do
11: yadv ← F(ck)
12: if yadv 6= yorig then
13: P∗ ← ck
14: end

3 Experiments

3.1 Datasets and Models

We evaluate the robustness of three state-of-the-art
MWP solvers: (1) Seq2Seq (Wang et al., 2017)
having an LSTM encoder and an attention based
decoder. (2) GTS (Xie and Sun, 2019) having an
LSTM encoder and a tree based decoder and (3)
Graph2tree (Zhang et al., 2020b) consists of a both
a tree based encoder and decoder. Many exist-
ing datasets are not suitable for our analysis as
either they are in Chinese (Wang et al., 2017) or
they have problems of higher complexities (Huang
et al., 2016) . We conduct experiments across the

https://spacy.io/
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two largest available English language datasets sat-
isfying our requirements: (1) MaWPS (Koncel-
Kedziorski et al., 2016) containing 2, 373 problems
(2) ASDIV-A (Miao et al., 2020) containing 1, 213
problems. Both datasets have MWPs with linear
equation in one variable.

3.2 Experimental Setup
We trained the three MWP solvers from scratch
as implemented in baseline paper (Wang et al.,
2017) on the above two datasets using 5-fold cross-
validation as followed in (Zhang et al., 2020b). The
original accuracies obtained on the datasets are
shown in Table 2. We used (Zhang et al., 2020a) to
generate paraphrases of each sentence in the prob-
lem text. Same hyperparameter values were used
as present in the original implementation of the
paraphrase model. We conducted a human evalua-
tion (Section 4.3) to verify the quality of generated
adversarial examples. Further details are given in
Appendix.

3.3 Implementation Details
For conducting our experiments we have used
two Boston SYS-7048GR-TR nodes equipped
with NVIDIA GeForce GTX 1080 Ti computa-
tional GPU’s . The number of parameters ranged
from 20M to 130M for different models. Hyper-
parameter values were not modified, and we follow
the recommendations of the respective models. We
chose the number of candidate paraphrases m used
in Algorithm 1 to be 7. Generating adversarial ex-
amples using Question Reordering took around 3
minutes on average for both MaWPS and ASDiv-
A dataset. Sentence Paraphrasing took around 10
minutes on average for generation of adversarial
examples on both the datasets. These experiments
are not computation heavy as the generation tech-
nique is of linear order and number of examples
are moderate.

3.4 Results
Table 2 shows the results of our proposed methods.
On average, the generated adversarial examples can
lower the accuracy of MWP solvers by over 40 per-
centage points. Across both datasets, Graph2Tree,
the state-of-the-art MWP solver achieves only 34%
and 24% accuracy on Question Reordering and Sen-
tence Paraphrasing respectively. Sentence Para-
phrasing is around 10 percentage points more suc-
cessful in attacking MWP solvers than Question
Reordering. These results verify our claim that

Dataset Eval Type Seq2Seq GTS Graph2Tree

MaWPS
Orig 53.0 82.6 83.7

QR 18.2 32.3 35.6
SP 10.5 22.7 25.5

ASDIV-A
Orig 54.5 71.4 77.4

QR 17.5 30.5 33.5
SP 13.2 21.2 23.8

Table 2: Results of MWP Solvers on adversarial ex-
amples. Orig is the original accuracy, QR is Question
Reordering and SP is Sentence Paraphrasing.

current MWP solvers are sensitive to small varia-
tions in the input. Table 1 shows an MWP problem
and its adversarial counterparts generated by our
method—more examples in the Appendix section.

4 Analysis

4.1 BERT Embeddings

We trained the solvers using pre-trained BERT em-
beddings and then generated adversarial examples
against them using our proposed methods. Results
obtained are shown in Table 3. We see that using
BERT embeddings, the original accuracy of MWP
solvers increases by 5 percentage points, and they
are more robust than solvers trained from scratch.
Specifically, these solvers do well against Question
Reordering because of the contextualized nature
of BERT embeddings, but for examples generated
using Sentence Paraphrasing methods these mod-
els do not perform well. However, on average, our
adversarial examples can lower the accuracy by 30
percentage points on both datasets.

4.2 Adversarial Training

To examine the robustness of MWP solvers against
our attacks, we generated adversarial examples on
the training set of both the datasets using our pro-
posed methods and then augmented the training
sets with the generated adversarial examples. We
then retrained the MWP solvers and again attacked
these solvers using our methods. Table 3 shows
that the MWP solvers become more robust to at-
tacks. Specifically, the solvers perform well against
Question Reordering but are still deceived by Sen-
tence Paraphrasing. Nevertheless, our proposed
attack methods are still able to lower the accuracy
of MWP solvers by 25 percentage points.
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Dataset Eval Type Seq2Seq GTS Graph2Tree

MaWPS
Adv (QR) 32.4 52.3 54.9

Adv (SP) 27.6 40.7 42.3

BERT (QR) 45.3 63.0 65.6
BERT (SP) 32.5 43.5 45.5

ASDIV-A
Adv (QR) 34.5 48.4 54.8

Adv (SP) 28.8 31.6 33.0

BERT (QR) 41.3 59.8 62.7
BERT (SP) 30.6 40.0 42.6

Table 3: Accuracy of MWP solvers with adversarial
training on our proposed methods. Adv and BERT rep-
resent models trained from scratch and BERT embed-
dings respectively.

4.3 Human Evaluation

To verify the quality and the validity of the adver-
sarial examples, we asked human evaluators (1)
To check if the paraphrases will result in the same
linear equation as that of the original problem, (2)
Evaluate each adversarial example in the range 0 to
1 to check its semantic similarity with the original
problem and (3) On a scale of 1 to 5 rate each ad-
versarial example for its grammatical correctness.
We also explicitly check for examples which do
not satisfy our evaluation criteria and manually re-
move them from adversarial examples set. Three
different human evaluators evaluate each sample,
and the mean results obtained are shown in Table
4.

Evaluation criteria MaWPS ASDIV-A
Same Linear Equation 85.7% 86.2%
Semantic Similarity 0.88 0.89

Grammatical Correctness 4.55 4.63

Table 4: Human Evaluation scores on datasets

5 Future Work and Conclusion

The experiments in this paper showcase that NLP
models do not understand MWP entirely and are
not robust enough for practical purposes. Our
work encourages the development of robust MWP
solvers and techniques to generate adversarial math
examples. We believe that the generation of quality
MWP’s will immensely help develop solvers that
genuinely understand numbers and text in combi-
nation. Future works could focus on creating more
such techniques for adversarial examples genera-
tion and making robust MWP solvers.
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Original Problem
Problem Statement : A teacher had 7 worksheets to grade . If she graded 3 , but then another 4 were turned in,
how many worksheets would she have to grade ?
Predicted Equation : X = 7+3-4
Question Reordering
Problem Statement : How many worksheets would she have to grade given that a teacher had 7 worksheets
to grade and if she graded 3 but then another 4 were turned in?
Predicted Equation : X = 7+3+4
Sentence Paraphrasing
Problem Statement : A teacher had her students work on 7 questions. 3 would be graded if she graded it.
Then another 4 was turned in. How many things would she have to grade?
Predicted Equation : X = 7+3-4

Original Problem
Problem Statement : Gwen earned 20 points for each bag of cans she recycled . If she had 10 bags, but didn’t
recycle 3 of them , how many points would she have earned ?
Predicted Equation : X = (20*(10-3))
Question Reordering
Problem Statement : How many points would she have earned given that Gwen earned 20 points for each bag
of cans she recycled and if she had 10 bags but didn’t recycle 3 of them ?
Predicted Equation : X = 20*10-3
Sentence Paraphrasing
Problem Statement : Gwen earned 20 points for each bag of cans she recycled. She have 10 bags.
She did not recycle 3 of them. How many points would she have gotten?
Predicted Equation : X = 20+10-3

Original Problem
Problem Statement : : Dennis has 12 pencils stored in boxes. If there are 3 boxes, how many pencils must
go in each box?
Predicted Equation : X = 12/3
Question Reordering
Problem Statement : : If there are 3 boxes, how many pencils must go in each box given that Dennis has
12 pencils stored in boxes ?
Predicted Equation : X = 12/3
Sentence Paraphrasing
Problem Statement : Dennis has 12 pencils in boxes. There are 3 boxes. Find the number of pencils in each box?
Predicted Equation : X = 12-3

Original Problem
Problem Statement : Oliver made 10 dollars mowing lawns over the summer . If he spent 4 dollars buying new
mower blades. How many 3 dollar games could he buy with the money he had left ?
Predicted Equation : X = (10-4)/3
Question Reordering
Problem Statement : How many 3 dollar games could Oliver buy with the money he had left given that Oliver
made 10 dollars mowing lawns over the summer and if he spent 4 dollars buying new mower blades.
Predicted Equation : X = (10-4)*3
Sentence Paraphrasing
Problem Statement : Over the summer, Oliver made 10 dollars mowing lawns. He spent 4 dollars on new blades.
With the money he had left, how many 3 dollar games could he buy?
Predicted Equation : X = (10-4)*3

Table 5: Some instances of valid Adversarial Examples
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Original Problem
Problem Statement : A trivia team had 10 members total. But during a game 2 members did not show up. If each
member that did show up scored 3 points. How many points were scored?
Predicted Equation : X = (10-2)*3
Sentence Paraphrasing
Problem Statement : A team with 10 members had a lot of questions to answer. But during the game 2 members
did not show up. 3 points were scored if each member showed up. How many points were scored?

Original Problem
Problem Statement : A tailor cut 15 of an inch off a skirt and 5 of an inch off a pair of pants . How much more did
the tailor cut off the skirt than the pants ?
Predicted Equation : X = 15-5
Sentence Paraphrasing
Problem Statement : The 15 was cut by a tailor. There is a skirt and 5 of an inch off. There is a pair of pants.
How much more did the tailor cut off the skirt than the pants?

Original Problem
Problem Statement : A vase can hold 10 flowers . If you had 5 carnations and 5 roses,
how many vases would you need to hold the flowers?
Predicted Equation : X = (5+5)/10
Sentence Paraphrasing
Problem Statement : 10 flowers can be held in a vase. If you had 5 and 5 roses. How many vases
do you need to hold the flowers.

Table 6: Some instances of invalid Adversarial Examples


