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Abstract

Producing the embedding of a sentence in an
unsupervised way is valuable to natural lan-
guage matching and retrieval problems in prac-
tice. In this work, we conduct a thorough ex-
amination of pretrained model based unsuper-
vised sentence embeddings. We study on four
pretrained models and conduct massive experi-
ments on seven datasets regarding sentence se-
mantics. We have three main findings. First,
averaging all tokens is better than only using
[CLS] vector. Second, combining both top
and bottom layers is better than only using top
layers. Lastly, an easy whitening-based vector
normalization strategy with less than 10 lines
of code consistently boosts the performance. 1

1 Introduction

Pre-trained language models (PLMs) (Devlin et al.,
2019; Liu et al., 2019) perform well on learning
sentence semantics when fine-tuned with super-
vised data (Reimers and Gurevych, 2019; Thakur
et al., 2020). However, in practice, especially when
a large amount of supervised data is unavailable,
an approach that provides sentence embeddings in
an unsupervised way is of great value in scenar-
ios like sentence matching and retrieval. While
there are attempts on unsupervised sentence em-
beddings (Arora et al., 2017; Zhang et al., 2020), to
the best of our knowledge, there is no comprehen-
sive study on various PLMs with regard to multiple
factors. Meanwhile, we aim to provide an easy-to-
use toolkit that can be used to produce sentence
embeddings upon various PLMs.

In this paper, we investigate PLMs-based unsu-
pervised sentence embeddings from three aspects.
First, a standard way of obtaining sentence em-
bedding is to pick the vector of [CLS] token. We

∗Work done during internship at Microsoft.
1The whole project including codes and data

is publicly available at https://github.com/
Jun-jie-Huang/WhiteningBERT.

explore whether using the hidden vectors of other
tokens is beneficial. Second, some works suggest
producing sentence embedding from the last layer
or the combination of the last two layers (Reimers
and Gurevych, 2019; Li et al., 2020). We seek to
figure out whether there exists a better way of layer
combination. Third, recent attempts transform sen-
tence embeddings to a different distribution with
sophisticated networks (Li et al., 2020) to address
the problem of non-smooth anisotropic distribution.
Instead, we aim to explore whether a simple linear
transformation is sufficient.

To answer these questions, we conduct thorough
experiments upon 4 different PLMs and evaluate
on 7 datasets regarding semantic textual similarity.
We find that, first, to average the token representa-
tions consistently yields better sentence represen-
tations than using the representation of the [CLS]
token. Second, combining the embeddings of the
bottom layer and the top layer performs than us-
ing top two layers. Third, normalizing sentence
embeddings with whitening, an easy linear matrix
transformation algorithm with less than 10 lines of
code (§A.3), consistently brings improvements.

2 Transformer-based PLMs

Multi-layer Transformer architecture (Vaswani
et al., 2017) has been widely used in pre-trained
language models (e.g. Devlin et al., 2019; Liu
et al., 2019) to encode sentences. Given an in-
put sequence S = {s1, s2, . . . , sn}, a transformer-
based PLM produces a set of hidden repre-
sentations H(0), H(1), . . . ,H(L), where H(l) =

[h
(l)
1 ,h

(l)
2 , . . . ,h

(l)
n ] are the per-token embeddings

of S in the l-th encoder layer andH(0) corresponds
to the non-contextual word(piece) embeddings.

In this paper, we use four transformer-based
PLMs to derive sentence embeddings, i.e. BERT-
base (Devlin et al., 2019), RoBERTa-base (Liu
et al., 2019), DistilBERT (Sanh et al., 2019), and
LaBSE (Feng et al., 2020). They vary in the model

https://github.com/Jun-jie-Huang/WhiteningBERT
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architecture and pre-training objectives. Specifi-
cally, BERT-base, RoBERTa-base, and LaBSE fol-
low an architecture of twelve layers of transformers
but DistilBERT only contains six layers. Addition-
ally, LaBSE is pre-trained with a unique translation
ranking task which forces the sentence embeddings
of a parallel sentence pair to be closer, while the
other three PLMs do not include such a pre-training
task for sentence embeddings.

3 WhiteningBERT

In this section, we introduce the three strategies to
derive the sentence embedding s from PLMs.

3.1 [CLS] Token v.s. Average Tokens

Taking the last layer of token representations as
an example, we compare the following two meth-
ods to obtain sentence embeddings: (1) using the
vector of [CLS] token which is the first token of
the sentence, i.e., s = sL = hL

1 ; (2) averaging the
vectors of all tokens in the sentence, including the
[CLS] token, i.e., s = sL = 1

n

∑N
i=1 h

L
i .

3.2 Layer Combination

Most works only take the last layer to derive sen-
tence embeddings, while rarely explore which layer
of semantic representations can help to derive a bet-
ter one. Here we explore how to best combine
layers of embeddings to obtain sentence embed-
dings. Specifically, we first compute the vectors of
each layer following §3.1. Then we perform layer
combinations as s =

∑
l s

l to acquire the sentence
embedding. For example, for the combination of
L1+L12 with two layers, we obtain sentence em-
beddings by averaging the vector representations
of layer one and layer twelve, i.e., s = 1

2(s
1+ s12).

3.3 Whitening

Whitening is a linear transformation that transforms
a vector of random variables with a known covari-
ance matrix into a new vector whose covariance
is an identity matrix, and has been verified effec-
tive to improve the text representations in bilingual
word embedding mapping (Artetxe et al., 2018)
and image retrieval (Jégou and Chum, 2012).

In our work, we explore to address the prob-
lem of non-smooth anisotropic distribution (Li
et al., 2020) by a simple linear transformation
called whitening. Specifically, given a set of d-
dimensional embeddings of N sentences E =
{s1, . . . , sN} ∈ RN×d, we transform E linearly

as in Eq. 1 such that Ê ∈ RN×d is the whitened
sentence embeddings,

Ê = (E−m)UD− 1
2 , (1)

wherem ∈ Rd is the mean vector of E,D is a diag-
onal matrix with the eigenvalues of the covariance
matrix Cov(E) = (E − m)T (E − m) ∈ Rd×d

and U is the corresponding orthogonal matrix of
eigenvectors, satisfying Cov(E) = UDUT .

4 Experiment

We evaluate sentence embeddings on the task of
unsupervised semantic textual similarity. We show
experimental results and report the best way to de-
rive unsupervised sentence embedding from PLMs.

4.1 Experiment Settings
Task and Datasets The task of unsupervised se-
mantic textual similarity (STS) aims to predict the
similarity of two sentences without direct super-
vision. We experiment on seven STS datasets,
namely the STS-Benchmark (STS-B) (Cer et al.,
2017), the SICK-Relatedness (Marelli et al., 2014),
and the STS tasks 2012-2016 (Agirre et al., 2012,
2013, 2014, 2015, 2016). These datasets consist
of sentence pairs with labeled semantic similarity
scores ranging from 0 to 5.

Evaluation Procedure Following the proce-
dures in SBERT (Reimers and Gurevych, 2019),
we first derive sentence embeddings for each sen-
tence pair and compute their cosine similarity score
as the predicted similarity. Then we compute the
Spearman’s rank correlation coefficient between
the predicted similarity and gold standard similar-
ity scores as the evaluation metric. We average the
Spearman’s coefficients among the seven datasets
as the final correlation score.

Baseline Methods We compare our methods
with five representative unsupervised sentence em-
bedding models, including average GloVe embed-
ding (Pennington et al., 2014), SIF (Arora et al.,
2017) , IS-BERT (Zhang et al., 2020) and BERT-
flow (Li et al., 2020), SBERT-WK with BERT
(Wang and Kuo, 2020).

4.2 Overall Results
Table 1 shows the overall performance of sentence
embeddings. We can observe that:

(1) Averaging the token representations of the
last layer to derive sentence embeddings performs
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Models STSB SICK STS-12 STS-13 STS-14 STS-15 STS-16 Avg.

Baselines
Avg. GloVe (Reimers and Gurevych, 2019) 58.02 53.76 55.14 70.66 59.73 68.25 63.66 61.32
SIF (GloVe+WR) (Arora et al., 2017) - - 56.20 56.60 68.50 71.70 - 63.25
IS-BERT-NLI (Zhang et al., 2020) 69.21 64.25 56.77 69.24 61.21 75.23 70.16 66.58
BERT-flow (NLI) (Li et al., 2020) 58.56 65.44 59.54 64.69 64.66 72.92 71.84 65.38
SBERT WK (BERT) (Wang and Kuo, 2020) 16.07 41.54 26.66 14.74 24.32 28.84 34.37 26.65

WhiteningBERT (PLM=BERT-base)
token=CLS, layer=L12, whitening=F 20.29 42.42 32.50 23.99 28.50 35.51 51.08 33.47
token=AVG, layer=L12, whitening=F 47.29 58.22 50.08 52.91 54.91 63.37 64.94 55.96
token=AVG, layer=L1, whitening=F 58.15 61.78 58.71 58.21 62.51 68.86 67.38 62.23
token=AVG, layer=L1+L12, whitening=F 59.05 63.75 57.72 58.38 61.97 70.28 69.63 62.97
token=AVG, layer=L1+L12, whitening=T 68.68 60.28 61.94 68.47 67.31 74.82 72.82 67.76

WhiteningBERT (PLM=RoBERTa-base)
token=CLS, layer=L12, whitening=F 38.80 61.89 45.38 36.25 47.99 53.94 59.48 49.10
token=AVG, layer=L12, whitening=F 55.43 62.03 53.80 46.55 56.61 64.97 63.61 57.57
token=AVG, layer=L1, whitening=F 51.85 57.87 56.70 48.03 57.08 62.83 57.64 56.00
token=AVG, layer=L1+L12, whitening=F 57.54 60.75 58.56 50.37 59.62 66.64 63.21 59.53
token=AVG, layer=L1+L12, whitening=T 69.43 59.56 62.46 66.29 68.44 74.89 72.94 67.72

WhiteningBERT (PLM=DistilBERT)
token=CLS, layer=L6, whitening=F 30.96 47.73 40.91 31.30 39.49 40.64 57.96 41.29
token=AVG, layer=L6, whitening=F 57.17 63.53 56.16 59.83 60.42 67.81 69.01 61.99
token=AVG, layer=L1, whitening=F 55.35 61.34 57.57 53.79 60.55 67.06 63.60 59.89
token=AVG, layer=L1+L6, whitening=F 61.45 63.84 59.67 59.50 63.54 70.95 69.90 64.12
token=AVG, layer=L1+L6, whitening=T 70.37 58.31 62.09 68.78 68.99 75.06 74.52 68.30

WhiteningBERT (PLM=LaBSE)
token=CLS, layer=L12, whitening=F 67.18 69.43 66.99 61.26 68.36 77.13 73.10 69.06
token=AVG, layer=L12, whitening=F 71.02 68.36 67.81 63.94 70.56 77.93 75.07 70.67
token=AVG, layer=L1, whitening=F 53.70 55.25 54.81 44.62 56.97 60.30 54.57 54.32
token=AVG, layer=L1+L12, whitening=F 72.56 68.36 68.30 65.75 71.41 78.90 75.68 71.56
token=AVG, layer=L1+L12, whitening=T 73.32 63.27 68.45 71.11 71.66 79.30 74.87 71.71

Table 1: Spearman’s rank correlation coefficient (ρ× 100) between similarity scores assigned by sentence embed-
dings and humans. token=AVG or token=CLS denote using the average vectors of all tokens or only the [CLS]
token. L1 or L12 (L6) means using the hidden vectors of layer one or the last layer. Since DistilBERT only con-
tains six layers of transformers, we use L6 as the last layer. T and F denote applying whitening (T) or not (F). Bold
numbers indicate the best performance w.r.t the PLM.

better than only using [CLS] token in the last layer
by a large margin, no matter which PLM we use,
which indicates that single [CLS] token embed-
ding does not convey enough semantic information
as a sentence representation, despite it has been
proved effective in a number of supervised classi-
fication tasks. This finding is also consistent with
the results in Reimers and Gurevych (2019). There-
fore, we suggest inducing sentence embeddings by
averaging token representations.

(2) Averaging the token representations in layer
one and the last layer performs better than sepa-
rately using only one layer, regardless of the PLM.
Since PLMs capture a rich hierarchy of linguistic
information in different layers (Tenney et al., 2019;
Jawahar et al., 2019), layer combination is capa-
ble of fusing the semantic information in different
layers and thus yields better performance. There-
fore, we suggest averaging the last layer and layer
one to perform layer combination and induce better

sentence embeddings.
(3) Introducing the whitening strategy produces

consistent improvement of sentence embeddings
on STS tasks. This result indicates the effective-
ness of the whitening strategy in deriving sentence
embeddings. (Results with more PLMs can be
found in Appendix A.1.) Among the four PLMs,
LaBSE achieves the best STS performance while
obtains the least performance enhancement after
incorporating whitening strategy. We attribute it
to the good intrinsic representation ability because
LaBSE is pre-trained by a translation ranking task
which improves the sentence embedding quality.

4.3 Analysis of Layer Combination

To further investigate the effects of layer combina-
tion, we add up the token representations of differ-
ent layers to induce sentence embeddings.

First, we explore whether adding up layer one
and the last layer is consistently better than other
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L0 55.45 L0 54.93
L1 59.88 62.23 L1 55.95 56.00
L2 59.87 62.07 61.14 L2 57.05 57.13 57.10
L3 59.28 61.73 60.75 59.57 L3 58.63 58.57 58.28 58.36
L4 58.34 61.08 60.06 58.76 57.32 L4 58.81 58.98 58.64 58.54 57.71
L5 58.87 61.41 60.50 59.18 57.62 57.12 L5 58.57 59.13 58.71 58.53 57.62 56.88
L6 58.90 61.46 60.57 59.19 57.64 57.03 56.17 L6 58.40 59.17 58.78 58.62 57.71 56.97 56.19
L7 59.43 61.96 61.07 59.79 58.18 57.55 56.61 56.19 L7 59.82 60.30 59.95 59.81 58.86 58.11 57.39 57.80
L8 59.57 62.25 61.41 60.09 58.46 57.83 56.82 56.32 55.45 L8 59.42 60.14 59.75 59.61 58.73 58.03 57.31 57.77 57.21
L9 58.50 61.60 60.85 59.56 57.96 57.38 56.41 55.89 54.92 53.51 L9 59.97 60.70 60.31 60.05 59.26 58.54 57.84 58.29 57.78 57.85
L10 59.68 62.31 61.72 60.62 59.27 58.76 57.94 57.47 56.66 55.09 55.68 L10 59.95 60.81 60.35 60.19 59.33 58.55 57.92 58.46 57.96 58.00 57.70
L11 59.43 62.22 61.62 60.60 59.33 58.92 58.17 57.80 57.05 55.45 55.94 55.41 L11 60.68 61.36 60.91 60.80 59.97 59.16 58.54 59.07 58.62 58.69 58.32 58.67
L12 59.93 62.97 62.26 61.17 59.67 59.24 58.52 58.27 57.69 56.05 56.68 56.17 55.96 L12 59.60 59.53 59.60 60.02 59.18 58.37 57.72 58.70 58.20 58.42 58.12 58.61 57.57

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

L0 57.94
L1 56.73 54.32
L2 57.52 55.09 55.87
L3 60.00 57.54 58.04 58.38
L4 60.43 56.95 57.64 59.39 58.35
L5 60.62 57.03 57.97 59.59 58.49 57.75

L0 56.42 L6 62.43 59.02 59.97 61.23 60.68 60.25 61.72
L1 59.01 59.90 L7 61.83 58.15 59.18 60.98 59.87 59.37 61.28 59.76
L2 57.88 58.84 56.13 L8 61.14 57.64 58.98 60.61 59.62 59.05 61.00 59.46 57.95
L3 58.55 59.36 56.68 56.11 L9 63.68 60.22 61.16 61.82 61.85 61.17 62.82 61.57 60.06 60.92
L4 60.14 60.84 58.24 57.36 57.21 L10 63.99 60.57 61.78 63.19 62.42 61.84 63.52 62.27 60.93 61.76 61.00
L5 64.12 64.53 62.47 61.44 61.07 63.09 L11 66.37 62.66 63.76 65.94 66.03 66.11 66.93 66.17 64.82 65.70 64.48 65.41
L6 63.34 64.12 61.96 61.12 60.96 63.16 61.99 L12 71.24 71.56 71.84 71.56 71.38 71.25 71.46 71.42 71.41 70.94 70.73 70.84 70.67

L0 L1 L2 L3 L4 L5 L6 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

BERT-base RoBERTa-base

LaBSEDistilBERT

Figure 1: Performance of sentence embeddings of two layers of combinations. X-axis and Y-axis denote the layer
index. Each cell is the average correlation score of seven STS tasks of two specific layer combinations. The redder
the cell is, the better performance the corresponding sentence embeddings achieve.

combinations of two layers. Figure 1 shows the
performance of all two-layer combinations. We
find that adding up the last layer and layer one does
not necessarily performs best among all PLMs, but
could be a satisfying choice for simplicity.

Second, we explore the effects of the number of
layers to induce sentence embeddings. We evaluate
on BERT-base and figure 2 shows the maximum
correlation score of each group of layer combi-
nations. By increasing the number of layers, the
maximum correlation score increases first but then
drops. The best performance appears when the
number of layers is three (L1+L2+L12). This in-
dicates that combining three layers is sufficient to
yield good sentence representations and we do not
need to incorporating more layers which is not only
complex but also poorly performed.

5 Related works

Unsupervised sentence embeddings are mainly
composed with pre-trained (contextual) word em-
beddings (Pennington et al., 2014; Devlin et al.,
2019). Recent attempts can be divided into two
categories, according to whether the pre-trained
embeddings are further trained or not. For the for-
mer, some works leverage unlabelled natural lan-
guage inference datasets to train a sentence encoder
without direct supervision (Li et al., 2020; Zhang
et al., 2020; Mu and Viswanath, 2018). For the
latter, some works propose weighted average word
embeddings based on word features (Arora et al.,
2017; Ethayarajh, 2018; Yang et al., 2019; Wang

Figure 2: Maximum correlation scores of sentence em-
beddings from BERT-base with different numbers of
combining layers. Combining three layers performs
best than of other layer numbers. Especially the best
combination is L1+L2+L12.

and Kuo, 2020). However, these approaches need
further training or additional features, which limits
the direct applications of sentence embeddings in
real-world scenarios. Finally, we note that concur-
rent to this work, Su et al. (2021) also explored
whitening sentence embedding, released to arXiv
one week before our paper.

6 Conclusion

In this paper, we explore to find a simple and ef-
fective way to produce sentence embedding upon
various PLMs. Through exhaustive experiments,
we make three empirical conclusions here. First,
averaging all token representations consistently in-
duces better sentence representations than using the
[CLS] token embedding. Second, combining the
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embeddings of the bottom layer and the top layer
outperforms that using the top two layers. Third,
normalizing sentence embeddings with a whitening
algorithm consistently boosts the performance.
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A Appendix

A.1 More Results of WhiteningBERT
To further illustrate the effectiveness of the whiten-
ing algorithm in induce sentence embeddings for
STS tasks, we experiment with more PLMs and
report their performance with and without incorpo-
rating the whitening algorithm. From the results
exhibited in Table 2, we find that no matter which
PLM we use, the average performance on 7 STS
tasks improves after incorporating the whitening
strategy. This result again verifies the effectiveness
of whitening in producing sentence embeddings.

A.2 Comparison with GPT-3
GPT-3 (Brown et al., 2020) is a powerful language
model that is capable of sophisticated natural lan-
guage understanding of tasks like classification in
a zero-shot fashion. Here we report the results
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PLM STSB SICK STS-12 STS-13 STS-14 STS-15 STS-16 Average

BERT-base (Devlin et al., 2019) 59.05 → 68.72 63.75 → 60.43 57.72 → 62.20 58.38 → 68.52 61.97 → 67.35 70.28 → 74.73 69.63 → 72.42 62.97 → 67.77 (+4.80)
RoBERTa-base (Liu et al., 2019) 57.54 → 68.18 60.75 → 58.80 58.56 → 62.21 50.37 → 67.13 59.62 → 67.63 66.64 → 74.78 63.21 → 71.43 59.53 → 67.17 (+7.64)
SpanBERT-base (Joshi et al., 2019) 59.10 → 69.82 60.28 → 58.48 58.27 → 63.16 54.27 → 69.00 61.37 → 68.71 67.84 → 75.37 66.54 → 73.24 61.10 → 68.25 (+7.16)
DeBERTa-base (He et al., 2020) 56.55 → 67.60 61.66 → 59.38 57.55 → 62.54 54.78 → 67.62 61.43 → 66.76 68.84 → 74.97 67.51 → 71.13 61.19 → 67.14 (+5.95)
ALBERT-base (Lan et al., 2020) 46.18 → 61.76 54.99 → 58.03 51.02 → 58.33 43.94 → 62.89 50.79 → 59.92 60.83 → 68.84 55.35 → 65.90 51.87 → 62.24 (+10.37)
T5-base (Raffel et al., 2020) 42.39 → 68.32 51.85 → 56.13 46.38 → 61.92 42.15 → 68.50 49.75 → 67.94 58.22 → 74.88 55.09 → 72.90 49.41 → 67.23 (+17.82)
LayoutLM-base (Xu et al., 2020) 25.14 → 61.77 38.99 → 56.50 33.22 → 58.33 19.63 → 59.63 26.19 → 63.41 31.50 → 69.65 30.16 → 65.90 29.26 → 62.17 (+32.91)
XLM-base (Lample and Conneau, 2019) 54.47 → 69.51 54.65 → 55.54 54.52 → 62.26 43.15 → 66.46 56.50 → 69.41 61.10 → 75.09 57.30 → 73.95 54.53 → 67.46 (+12.93)
DistilBERT (Sanh et al., 2019) 61.45 → 69.41 63.84 → 59.43 59.68 → 61.82 59.50 → 66.90 63.54 → 67.69 70.95 → 74.27 69.90 → 72.81 64.12 → 67.48 (+3.35)
M-BERT (Devlin et al., 2019) 57.67 → 69.09 58.60 → 56.85 58.71 → 61.13 53.14 → 65.74 61.72 → 67.18 68.78 → 73.64 67.09 → 72.53 60.82 → 66.60 (+5.78)
MPNet (Song et al., 2020) 58.58 → 69.30 62.22 → 59.58 58.21 → 62.18 53.93 → 68.99 60.78 → 67.76 67.26 → 75.51 63.05 → 71.62 60.58 → 67.85 (+7.27)
SqueezeBERT (Iandola et al., 2020) 54.86 → 67.80 60.57 → 58.43 56.36 → 61.43 53.05 → 64.57 60.59 → 66.96 67.81 → 73.57 64.68 → 71.24 59.70 → 66.29 (+6.58)
LaBSE (Feng et al., 2020) 72.56 → 73.32 68.36 → 63.27 68.29 → 68.45 65.75 → 71.11 71.41 → 71.66 78.90 → 79.30 75.68 → 74.87 71.56 → 71.71 (+0.15)
SPECTER (Cohan et al., 2020) 62.37 → 68.90 57.37 → 56.42 62.91 → 63.62 52.93 → 67.43 62.77 → 68.82 67.76 → 74.47 66.81 → 71.04 61.85 → 67.24 (+5.40)
MiniLM (Wang et al., 2020) 50.59 → 67.91 58.40 → 59.79 55.21 → 60.32 44.92 → 65.00 54.44 → 66.35 64.27 → 73.79 59.27 → 72.38 55.30 → 66.51 (+11.21)

BERT-large (Devlin et al., 2019) 59.13 → 69.81 60.38 → 59.62 58.13 → 62.92 57.70 → 69.49 60.19 → 67.19 66.89 → 74.45 70.07 → 73.67 61.78 → 68.16 (+6.38)
RoBERTa-large (Liu et al., 2019) 60.43 → 69.44 59.13 → 57.33 58.78 → 61.66 54.31 → 67.02 61.10 → 68.21 66.40 → 75.81 65.28 → 73.29 60.78 → 67.54 (+6.76)
SpanBERT-large (Joshi et al., 2019) 59.51 → 70.06 61.10 → 58.53 60.85 → 63.46 58.36 → 71.17 63.24 → 69.09 70.43 → 75.40 68.24 → 73.70 63.10 → 68.77 (+5.67)
DeBERTa-large (He et al., 2020) 57.98 → 70.28 62.13 → 59.11 58.50 → 63.48 55.20 → 70.10 62.04 → 69.10 70.24 → 76.76 68.57 → 74.56 62.09 → 69.06 (+6.96)
ALBERT-large (Lan et al., 2020) 50.49 → 63.45 57.16 → 57.98 55.01 → 60.29 49.44 → 63.15 53.73 → 60.81 65.02 → 70.16 60.71 → 66.37 55.94 → 63.17 (+7.24)
T5-large (Raffel et al., 2020) 35.57 → 69.16 40.31 → 55.75 37.83 → 62.33 29.33 → 70.70 39.63 → 68.41 45.72 → 74.82 47.52 → 72.01 39.42 → 67.60 (+28.18)
LayoutLM-large (Xu et al., 2020) 45.04 → 68.16 49.94 → 56.32 49.48 → 59.50 32.83 → 64.28 42.65 → 67.60 47.77 → 73.14 49.10 → 71.81 45.26 → 65.83 (+20.57)
XLM-large (Lample and Conneau, 2019) 56.76 → 70.04 56.34 → 55.06 57.35 → 61.53 46.84 → 66.08 60.38 → 69.63 64.41 → 75.38 61.18 → 73.89 57.61 → 67.37 (+9.76)
DialogRPT (Gao et al., 2020) 52.92 → 69.08 54.65 → 55.16 56.93 → 62.75 43.37 → 67.06 51.27 → 67.88 55.72 → 75.44 56.25 → 72.44 53.02 → 67.12 (+14.10)

Table 2: Experimental results of WhiteningBERT with different PLMs without (to the left of the arrow) or with (to
the right of the arrow) whitening strategy. We report the Spearman’s rank correlation coefficient (ρ×100) between
similarity scores assigned by sentence embeddings and humans. The embeddings are produced by averaging tokens
representations (token=AVG) and combining layer one and the last layer (layer=L1 + L12(L24 or L6)). The average
performance improves after incorporating the whitening algorithm.

Model Accuracy # Param

GPT-3 (125M) 47.7 125M
GPT-3 (350M) 49.8 350M
GPT-3 (760M) 48.4 760M
GPT-3 (1.3B) 56.0 1.3B
GPT-3 (2.7B) 46.6 2.7B
GPT-3 (6.7B) 55.2 6.7B
GPT-3 (13B) 62.8 13B
GPT-3 (175B) 63.5 175B

whiteningBERT (PLM=BERT) 52.7 110M

Table 3: Experiment results on RTE. The embeddings
are produced by averaging tokens representations (to-
ken=AVG), combining layer one and the last layer
(layer=L1 + L12), and incorporating whitening whiten-
ing=T.

of whiteningBERT (PLM=BERT) on RTE dev set
(Wang et al., 2019). Specifically, we first compute
the cosine similarity of the two sentence embed-
dings and then manually set a threshold of 0.5 to
predict the label of each sentence pairs. The results
are shown in Table 3.

A.3 Code for Whitening
Figure 3 displays the source code for whitening
algorithm in PyTorch (Paszke et al., 2019).

def whitening_torch(embeddings):
mu = torch.mean(embeddings, dim=0, keepdim=True)
cov = torch.mm((embeddings - mu).t(), embeddings - mu)
u, s, vt = torch.svd(cov)
W = torch.mm(u, torch.diag(1/torch.sqrt(s)))
embeddings = torch.mm(embeddings - mu, W)
return embeddings

Figure 3: Pytorch code for whitening strategy.


