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Abstract

Existing unsupervised document hashing
methods are mostly established on generative
models. Due to the difficulties of capturing
long dependency structures, these methods
rarely model the raw documents directly, but
instead to model the features extracted from
them (e.g. bag-of-words (BOW), TFIDF). In
this paper, we propose to learn hash codes
from BERT embeddings after observing their
tremendous successes on downstream tasks.
As a first try, we modify existing generative
hashing models to accommodate the BERT
embeddings. However, little improvement
is observed over the codes learned from the
old BOW or TFIDF features. We attribute
this to the reconstruction requirement in
the generative hashing, which will enforce
irrelevant information that is abundant in
the BERT embeddings also compressed
into the codes. To remedy this issue, a new
unsupervised hashing paradigm is further
proposed based on the mutual information
(MI) maximization principle. Specifically,
the method first constructs appropriate global
and local codes from the documents and then
seeks to maximize their mutual information.
Experimental results on three benchmark
datasets demonstrate that the proposed
method is able to generate hash codes that
outperform existing ones learned from BOW
features by a substantial margin. !

1 Introduction

With the explosion of information, similarity search
(Jing and Baluja, 2008) plays a increasingly im-
portant role in modern information retrieval sys-
tems. Traditional search engines conduct query by
evaluating the distances of items in the continuous
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Euclidean space, making it suffer from high com-
putational complexity and footprint. To address
this issue, considerable efforts have been devoted
to semantic hashing (Salakhutdinov and Hinton,
2009), which aims to represent each document by
a compact binary code. Such representations are
able to reduce the memory footprint and increase
the retrieval efficiency significantly by enrolling in
binary Hamming space.

A pivotal challenge in learning high-quality hash
codes is how to retain the semantic similarities
among documents. Although using supervised in-
formation is an efficient way to achieve this goal,
due to the high cost of labeling, unsupervised hash-
ing is more favourable in practice. Currently, most
of unsupervised document hashing methods are
established upon the perspective of deep genera-
tive models (Kingma and Welling, 2013; Rezende
et al., 2014). Essentially, all these methods seek to
model the documents with a deep generative model
and then employ the latent representations of doc-
uments to construct hash codes (Chaidaroon and
Fang, 2017; Shen et al., 2018; Dong et al., 2019;
Ye et al., 2020; Zheng et al., 2020; Ou et al., 2021).
Although great successes have been observed in
these methods, due to the difficulties in capturing
the long dependency structures of words (especially
for long documents), all of these methods are es-
tablished on modeling the BOW or TFIDF features
of documents.

Although the BOW or TFIDF features are in-
formative and are prevalent in many areas, their
limitations are also obvious for not considering the
word order and dependency structure. Recently,
large-scale pre-trained language models like BERT
(Devlin et al., 2018) have demonstrated their supe-
rior capabilities on various natural language under-
standing tasks. Embeddings extracted from them
have also been shown to contain much more abun-
dant information. Thus, in this paper, we argue that
capitalizing on BERT embeddings to produce hash
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codes is better than on the out-of-date BOW fea-
tures. As a first try, we modify existing generative
hashing methods to accommodate the BERT em-
beddings and then use the trained model to generate
hash codes. However, experimental results show
no improvement on the quality of obtained hash
codes. Even worse, the codes sometimes perform
even inferior to those learned from BOW features.
We conjecture that this is because the reconstruc-
tion requirement in generative hashing enforces
most of the information in BERT embeddings to
be transferred into the hash codes. However, as the
information contained in BERT embeddings is very
abundant, with only a small proportion relevant to
hashing, it is not surprising to see that the codes
are not aligned well with the semantic similarities
of documents.

To generate high-quality hash codes from BERT
embeddings, it becomes necessary to refine the em-
beddings to highlight the information relevant to
hashing tasks (i.e., semantic information), while
attenuating the irrelevant. Recent progresses on
image representation learning have shown that it
is possible to learn discriminative semantic repre-
sentations using the mutual information (MI) max-
imization principle. Inspired by this, rather than
utilizing the reconstruction structure, an alternative
paradigm is proposed for unsupervised document
hashing based on the MI maximization principle,
named Deep Hash InfoMax (DHIM). The essen-
tial idea behind our approach is to construct ap-
propriate global and local codes and then seek to
maximize their mutual information, with the global
and local codes accounting for the entire document
and text fragments, respectively. As explained in
image representation learning, doing so implicitly
encourages the global codes to retain high-level
semantic information shared across different local
fragments, while ignoring the local irrelevant de-
tails. Extensive experiments are conducted on three
benchmark datasets. The results demonstrate that
by effectively refining the BERT embeddings via
MI maximization principle, the proposed method
is able to generate hash codes that outperform ex-
isting ones learned from BOW features by a sub-
stantial margin.

2 Preliminaries on Generative Hashing
for Documents

Document hashing aims to learn close binary codes
for semantically similar documents. An intuitive

idea towards this goal is to encourage hash codes
preserving as much information of documents as
possible so that close codes are easier to be ob-
tained for similar documents. Based on this idea,
many methods have be proposed to employ gen-
erative models like VAEs to model the documents
and then leverage the documents’ latent represen-
tations to produce binary hash codes. However,
due to the difficulties in capturing the long depen-
dency structures of words (especially for long docu-
ments), existing generative hashing methods rarely
seek to model the documents directly, but instead
to first extract representative features from docu-
ments (e.g., BOW or TFIDF) and then perform
modeling on the extracted features. Specifically,
by representing a document = as a sequence of
words © = {wi,wa, ..., W}, existing genera-
tive hashing methods (Chaidaroon and Fang, 2017)
are mostly established on the following document
model

ple.2) = [ polwilapz). (1)

w;ET
where

exp(zT Bw; + b;)
Z‘j‘ﬁl exp(zT Ew; + bj)

2

po(w;|z) £

Here z is the latent variable; w; is a |V]|-
dimensional one-hot vector corresponding to the
j-th word; E € R™*IV| represents the learnable
embedding matrix; b; is the biased term; and |V/|
and |z| represent the vocabulary size and document
length, respectively. The whole model is trained by
maximizing the evidence lower bound (ELBO) of
log-likelihood

po(x, 2)

L(0,0) = Eq,(zx) [log q5(z|z)

] 3)

with respect to 6 and ¢, where g4(z|x) denotes the
approximate posterior distribution parameterized
by ¢. After training, representation of the doc-
ument = can be extracted from the approximate
posterior g4 (z|x), e.g., using its output mean. Note
that a simple decoder of (2) is adopted purposely
for better transferring similarity information of doc-
uments z into the latent representations z.

In the early generative hashing work VDSH
(Chaidaroon and Fang, 2017), Gaussian distribu-
tions are employed for both the prior p(z) and ap-
proximate posterior ¢4(z|x) directly. But due to
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the continuous characteristics of Gaussian random
variables, a separate binarization step is required to
transform the continuous latent representations into
binary codes. To overcome the separate training is-
sue, Bernoulli prior and posterior are then proposed
in NASH (Shen et al., 2018). With the recent ad-
vances on gradient estimators for discrete random
variables, the model successfully circumvents gra-
dient backpropagation issue for discrete variables,
and can be trained efficiently in an end-to-end man-
ner. Inspired by NASH, many variant methods are
then proposed by using more sophisticated prior or
posterior distributions, with the objective to model
the documents more accurately, such as Bernoulli
mixture prior in BMSH (Dong et al., 2019) and
Boltzmann machine posterior in CorrSH (Zheng
et al., 2020) etc.

Despite of the observed remarkable performance,
all of the methods mentioned above rely on the doc-
ument model (1), which, however, is essentially es-
tablished on the BOW features of documents, with-
out considering any word order and dependency
information. Although BOW features are informa-
tive, their limitations are also obvious due to the ne-
glect of word order and dependency structure. With
the development of large-scale pre-trained models
like BERT, it becomes easy to obtain semantics-
rich features that contain long dependencies and
contextual information. Thus, we argue that it
is beneficial to capitalize on the information-rich
BERT embeddings over the out-of-date BOW fea-
tures to learn hash codes.

3 Hashing on BERT Embeddings via
Generative Models

Feeding a document x = {wy, w2, -+ ,w), } into
a pre-trained BERT model could produce an em-
beding/feature for the document, denoted as B(x)
for subsequent presentation. Inspired by the suc-
cess of generative hashing methods, we modify
them to accommodate the BERT embeddings. Due
to the difference between BERT embeddings and
BOW features, the decoder in (2) is replaced by a
conditional Gaussain distribution

1 [|B(z)—Wz||?

Po (.’E‘Z) = We_ 202 , (4)

where W is the learnable model parameter and
the bias term is omitted for brevity; and d denotes
the dimension of BERT embeddings. Similar to
the generative hashing models introduced above,

here a simple decoder is employed purposely to
facilitate the transferring of similarity information
of BERT embeddings into the latent codes z. To
achieve end-to-end training and directly output bi-
nary codes, Bernoulli prior p(z) and approximate
posterior g4(z|x) can be used, as done in NASH,
BMSH etc. After training, the binary hash code of
document x can be obtained from the latent codes
z ~ qg(2|x).

Unexpectedly, as observed in experiments (see
Table 2), the codes generated from BERT embed-
dings in this manner perform even worse than that
from TFIDF features. At first glance, this is unrea-
sonable, since information in BERT embeddings
is much abundant. However, we ought to empha-
size that more information does not represent better
performance. Although the BERT embedding has
been successfully applied to various downstream
tasks, it is also reported that directly using BERT
embeddings can not yield satisfactory gains to in-
formation retrieval (Reimers and Gurevych, 2019).
Li et al. (2020) attributed this issue to that the em-
bedding contains many types of information, and
the semantic information is not appropriately pre-
served. In this regard, the worse performance of
naively exploiting BERT embeddings is traceable.
In the generative hashing approach, what the model
does basically is to compress the embedding B(x)
into a latent code z and then use the code to re-
construct the original embedding B(x). Due to the
requirement of reconstruction, latent codes z are
enforced to preserve as much information of origi-
nal inputs B(x) as possible. However, as discussed
above, BERT embeddings contain various kinds of
information, and the categorical information is just
the one relevant to the hashing performance while
the others are redundant. Thus, when the genera-
tive approach is applied to BERT embeddings, it is
not surprising to see that the codes are not aligned
well with the semantic similarities of documents.

4 Refining BERT Embeddings via MI
Maximization

According to discussions in Section 3, to pro-
duce high-quality hash codes, it is necessary to
refine BERT embeddings to highlight the category-
relevant information, while attenuating the other
types of information. Recent progresses on image
representation learning (Hjelm et al., 2018) have
demonstrated that it is possible to learn category-
discriminative representations from images unsu-
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pervisedly with the MI maximization principle. In-
spired by this, a brand new hashing framework
based on MI maximization principle is proposed,
which learns binary hash cods from BERT embed-
dings without using the reconstruction requirement,
thereby overcoming the issues associated with the
generative hashing approaches.

4.1 Deep InfoMax Review

Deep InfoMax (Hjelm et al., 2018) learns category-
discriminative representations for images by maxi-
mizing the mutual information between global and
local representations. It first constructs a global
representation for an image and lots of local repre-
sentations, both extracted from the image’s CNN
feature maps. Then, it estimates the MI between
the global and local representations and maximizes
it. As explained in (Hjelm et al., 2018), since there
are many local representations and each of them
accounts for a local region of an image, maximiz-
ing the global-local MI implicitly encourages the
global representation to retain global semantic in-
formation that is shared across all local regions,
while ignoring specific details exclusive to differ-
ent local regions.

4.2 Construction of Global/Local Document
Features

To refine BERT embeddings with the deep Info-
Max, we first need to construct appropriate global
and local document features. To this end, we re-
represent a document as X = {ey,...,er}, where
e; € R?is the BERT embedding of the i-th word in
the document, and T" denotes the document length.
Then, we pass the document X through a textual
CNN (Kim, 2014), in which filters W € R *nxd
are convolved with the words sequentially, with n
and K denoting the filter size and number, respec-
tively. Obviously, such operation could generate
local features for every piece of n-gram fragments.
Specifically, the local feature for the ¢-th fragment
is computed as

hl(") = ReLU(W * é€j:i1n—1), o)

where * denotes the convolution operator, and the
bias term is omitted for brevity; and ReLU (-) rep-
resents the rectified linear unit (ReLU) function.
By applying this filter to all text fragments, we
obtain the local feature maps at all locations

H™ = (™ h5 ey (6)

—WS.1

—>W.S.3

1YONOD
1lnoavay

—>W.S.5

0000000

Figure 1: Architecture of the DHIM, in which W.S.n
denotes convolution operation with window size n.

By passing H(™ to READOUT function, which
can be a simple mean-over-time pooling operation
(Collobert et al., 2011) or more sophisticated self-
attention mechanism (Vaswani et al., 2017), we
obtain the document’s global feature.

To further highlight the semantic information
in global features, we propose to compute multi-
granularity local and global features using differ-
ent window sizes of convolution operation (set as
{1,3,5} in our experiments) . That is, the final
local and global features are computed as

hi = MLP(CONCAT({h{"} nen')),
H = READOUT({h:}L)),

where A denotes the set of different window sizes
and MLP is the multilayer perception layer used
to project the feature maps on desirable dimension.
By maximizing the MI between global and local
document features, the global feature H is encour-
aged to keep high-level semantic information that
are shared across all local fragments, while ignor-
ing the irrelevant local details.

4.3 End-to-End Hashing by Maximizing the
Global-Local MI

Maximizing the global-local MI is able to yield
semantic-rich global features H, which, however,
are in the real-valued space. To obtain the binary
hash codes, a feasible way is to binarize the global
feature H, e.g., by setting a threshold value. Ob-
viously, the separate binarization strategy is not
optimal in producing high-quality of codes. To ob-
tain hashing models that admit end-to-end training,
inspired by end-to-end generative hashing schemes,
we propose to generate binary global and local rep-
resentations by adding a probabilistic Bernoulli
layer, that is,

b; ~ Bernoulli(o(h;)),
B ~ Bernoulli(c(H)), (7)

where b; and B denote local and global binary
representations, respectively; and o(+) denotes the
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Figure 2: Intuitive illustration of DHIM. The local/global features are captured by textual convolution neural
network and then fed into discriminator to identify whether they are from the same document. For example,
consider a batch input with 2 documents with 3 words for each. For the global representation (gray cuboid) of
document A, there will be 6 input pairs (local/global features) to the discriminator and same for document B.
Additionally, we further encourage the mutual information between the learned representations and BERT CLS
embedding to be high such that refining more semantic information into binary codes.

sigmoid function that transforms the features into
probability. The probabilistic binarization layer
allows the gradient to be estimated efficiently by
backpropagation-like algorithms like ST (Bengio
et al., 2013), Gumbel-softmax (Jang et al., 2016)
etc., which are also widely used in the end-to-
end generative hashing models. The overall ar-
chitecture of generating binary representations is
depicted in Figure 1.

Since our goal is to learn binary hash codes,
instead of maximizing the MI between H and h;,
we propose to maximize the MI between the global
and local binary features B and b; directly

T
A 1
0 = argmax — » I(b;; B), (8)
gl T;:l (bi; B)

where 6 is the model parameters involved in the
construction of global and local binary representa-
tions. Note that b; and B are not specific for one
document, but for all documents in the training set.
Mutual information is notoriously hard for evalua-
tion. Recently, many sophisticated methods have
been proposed to estimate it, such as MINE (Bel-
ghazi et al., 2018), infoNCE (Oord et al., 2018)
and Jensen-Shannon divergence estimator (JSDE)
(Nowozin et al., 2016). Among them, JSDE is
known to be less sensitive to the number of nega-
tive samples, thus we apply it to estimate the MI
and then optimize it w.r.t. the model paramters.
Specifically, the MI can be estimated by minimiz-

ing the following function w.r.t. ¢

]Nd)(bi; B)= - SOftpluS(—D¢(bi, B))
— ]E@[softplus(Dqg(Bi, B))], (9

where b; is the i-th local representation of negative
samples generated from empirical distribution P=
IP; softplus function is defined as softplus(z) =
log(1 + €®); and Dy(+,-) is a discriminator real-
ized by a neural network with parameter ¢. In
practice, negative sample b; is chosen from local
representations of other documents in a minibatch.

The MI maximization scheme above relies solely
on BERT embeddings of individual words, totally
ignoring the embedding corresponding to the CLS
token of BERT. The CLS embeddings are known to
preserve global information of sentences or docu-
ments. Thus, to improve the global semantic infor-
mation in the learned codes, we add a regularization
term to boost the MI between the codes and CLS
embedding. Therefore, the final loss takes the form

T
£(6.0)= 3" Lol B) 81, B). (10)
=1

where [ is a hyper-parameter; and E denotes the
binarized CLS embedding, obtained in similar way
to (7). Note that 6 is the model parameters in-
volved in the construction of b; and B, while ¢
is used in the discriminator Dy(-, -). By resorting
to the gradient estimator for discrete random vari-
ables, the loss £(¢, #) can be optimized efficiently
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with stochastic gradient decent (SGD) algorithms.
An overall depiction of the proposed Deep Hash
InfoMax (DHIM) model is illustrated in Figure 2.

5 Related Work

Early works in unsupervised document hash-
ing generally built upon the generative models
(Kingma and Welling, 2013; Rezende et al., 2014),
in which the encoder-decoder architecture was es-
tablished to encourage binary codes to retain se-
mantic information by reconstructing original data.
For examples, VDSH (Chaidaroon and Fang, 2017)
first proposed to learn continuous representations
under variational autoencoder (VAE) framework,
and then cast it into binary codes. However, the
two-stage training procedure is prone to undermine
the performance. NASH (Shen et al., 2018) tack-
led this issue by replacing Gaussian prior with
Bernoulli in VAE and adopting straight-through
to enable end-to-end training. Since then, a lot of
methods surged to improve the performance.

Specifically, Dong et al. (2019) proposed to
employ mixture distribution as prior to enhance
model’s capabilities; Ye et al. (2020) introduced
auxiliary topic vectors to address the problem of
information loss in few-bits scenarios, and Zheng
et al. (2020) employed Boltzmann posterior to in-
troduce correlation among bits. Beyond genera-
tive models, AMMI (Stratos and Wiseman, 2020)
achieved superior performance by maximizing mu-
tual information between documents and codes.
However, the adversarial training procedure used
in AMMI is extremely unstable. Although these
models are impressive, one common issue of them
is that they simply exploited bag-of-words features
as input, which is not enough to capture the rich
semantic information of documents.

Recently, information theory enables a simple
and insightful paradigm of unsupervised represen-
tation learning (Oord et al., 2018; Stratos and Wise-
man, 2020; Qiu et al., 2021). For example, Hjelm
et al. (2018) proposed an unsupervised representa-
tion learning algorithm on image data, called Deep
InfoMax, which maximizes the MI between the
whole image and local patches. Velickovic et al.
(2019) and Sun et al. (2019) extended this idea
on graph data, in which the representations can be
learned by maximizing the MI between the whole
and sub graphs. These methods consistently en-
courage the global representations to retain similar
interest of local features. Following similar ideas,

Dataset Train Val Test Classes Avglen

NYT 9,221 1,154 1,152 26 648
DBpedia 50,000 5,000 5,000 14 47
AGNews 114,839 6,381 6,380 4 32

Table 1: The statistic of three benchmark datasets.

we train our models that maximize MI between
local n-grams features and the pooled global doc-
ument representation, which can efficiently distill
the semantic information of BERT embedding into
hash codes.

6 Experiments

6.1 Experiment Setup

Datasets We verify the proposed model on three
public benchmark datasets: i) The New York Times
(NYT) (Tao et al., 2018), which contains news ar-
ticles published by The New York Times; ii) DB-
pedia (Lehmann et al., 2015), which contains the
abstract of articles extracted from Wikipedia; iii)
AGNews (Zhang et al., 2015), which is a news col-
lection gathered from academic news search engine.
For all documents in a dataset, we simply apply the
same string cleaning operation” conducted in (Kim,
2014). After that, it is randomly split into training,
validation and test sets, with the statistics shown in
Table 1.

Baselines We compare our model with the fol-
lowing unsupervised deep semantic hashing meth-
ods: VDSH (Chaidaroon and Fang, 2017), NASH
(Shen et al., 2018), BMSH (Dong et al., 2019),
WISH (Ye et al., 2020), CorrSH (Zheng et al.,
2020) and AMMI (Stratos and Wiseman, 2020).
The TFIDF features and BERT embeddings are
taken as input to evaluate their impact for base-
lines. We exploit sklearn Tfidf Vectorizer API to
extract TFIDF features for each document with
the number of dimension in 10, 000, 20, 000, and
20,000 for NYT, DBpedia and AGnews, respec-
tively. BERT embedding is the CLS embedding,
whose dimension is 768. For all baselines, we tune
their parameters on the validation set and select the
best one to evaluate on the test set.

Training Details We implement our model with
PyTorch and HuggingFace API (Wolf et al., 2019).
In our experiment, the discriminator Dy is consti-
tuted by a one-layer feed-forward neural network

Zhttps://github.com/yoonkim/CNN_sentence
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Method | NYT |

DBpedia | AGNews

| 16bits 32bits G4bits 128bits | 16bits

32bits

64bits  128bits | 16bits 32bits  64bits 128bits

VDSH*
NASH*
WISH*
BMSH*
CorrSH*
AMMI*

0.6877
0.7487
0.7015
0.7402
0.7543
0.7106

0.6877
0.7552
0.7003
0.7638
0.7761
0.7648

0.7501
0.7508
0.6448
0.7688
0.7724
0.7737

0.7849
0.7301
0.6894
0.7763
0.7839
0.7803

0.6779
0.7802
0.8228
0.8317
0.8201
0.8451

0.7264
0.7984
0.8276
0.8624
0.8178
0.8953

0.7884
0.7979
0.8210
0.8705
0.8094
0.9078

0.8491
0.7676
0.7822
0.8386
0.8577
0.9103

0.6732
0.6574
0.7453
0.7409
0.7620
0.7647

0.6742
0.6934
0.7479
0.7603
0.7645
0.7661

0.7270
0.7272
0.7505
0.7609
0.7661
0.7732

0.7386
0.7433
0.7270
0.7356
0.7767
0.7823

VDSH*
NASH*
WISH*
BMSH*
CorrSH* | 0.6203
AMMI® | 0.6047

0.5338
0.5587
0.5883
0.5935

0.5818
0.5825
0.6475
0.6326
0.6548
0.6510

0.6244
0.6098
0.6547
0.6587
0.6838
0.6967

0.6464
0.6427
0.7034
0.6971

0.6959
0.6587
0.6565
0.6642
0.7228 | 0.6528
0.7447 | 0.8025

0.7521
0.7454
0.7291
0.7913
0.7463
0.8267

0.7954
0.7796
0.7666
0.8201
0.7865
0.8926

0.8062
0.8143
0.8229
0.8457
0.8361 | 0.6706
0.8674 | 0.6550

0.6297
0.6632
0.6535
0.6677

0.6635
0.6844
0.6619
0.6961
0.6851
0.6826

0.6957
0.7040
0.6939
0.7199
0.7086
0.7185

0.7027
0.7207
0.7203
0.7316
0.7317
0.7436

DHIM |0.7969 0.8055 0.7977 0.7909 | 0.9426

0.9480

0.9302 0.8821 | 0.7823 0.7917 0.7888 0.7986

Table 2: The precision on three datasets with different numbers of bits in unsupervised document hashing. & and
& denote that the input document features are TFIDF and BERT embeddings, respectively.

Ablation Study

DHIMmedian
DHIMW/O reg
DHIM

DHIMmedian
DBpedia DHIMy/o reg
DHIM

DHIMmedian
AGnews DHIMw/o reg
DHIM

| 16bits

0.7040
0.7371
0.7969

0.7955
0.9057
0.9426

0.7431
0.7629
0.7823

32bits

0.6949
0.7639
0.8055

0.8432
0.9327
0.9480

0.7538
0.7622
0.7917

64bits

0.6943
0.7704
0.7977

0.8530
0.9206
0.9302

0.7767
0.7821
0.7888

128bits

0.6999
0.7647
0.7909

0.8630
0.8788
0.8821

0.7897
0.7944
0.7986

NYT

Table 3: The performance of variant models of DHIM.

followed with a sigmoid activation function, and
the READOUT function is simply implemented
as mean-pooling. We exploit the output of BERT-
base module (Devlin et al., 2018) as the features
of documents. During training, the parameters of
pre-trained BERT network are fixed, while only
training the proposed convolutional encoder. We
employ Adam optimizer for optimization (Kingma
and Ba, 2014), with the learning rate selected from
{1 x1073,1 x 107%,1 x 107"}, and coefficient
B from {0.1,0.2, ..., 1}, according to the perfor-
mance observed on the validation set.

Evaluation Metrics Same as the previous works
(Chaidaroon and Fang, 2017), the retrieval preci-
sion is used to measure the quality of generated
hash codes. For each query document, we retrieval
its top-100 most similar documents based on the
Hamming distance of learned codes. Then the re-
trieval precision is calculated as the percentage of
the retrieved documents sharing with the same label
as the query. Finally, The precision averaged over
the whole test set is reported as the performance of
the evaluated method.

Features | 16bits 32bits  64bits  128bits
Random 0.8140 0.8377 0.8666 0.8612
GloVe 0.8334 0.8507 0.8734 0.8611
BERTbase 0.9426 0.9480 0.9302 0.8821
BERT arge 09167 0.9261 0.9013 0.8902
ROBERTApsse | 09383  0.9437 0.9142 0.8728
ROBERTAj; | 0.9521 0.9527 0.9144 0.8706

Table 4: The performance of models with variant docu-
ment features on the DBpedia datasets.

6.2 Results and Analysis

Overall Performance The performances of our
proposed model DHIM and all baselines are demon-
strated in Table 2. It can be seen that our model
performs favorably to the current state-of-the-art
methods, yielding best performance across differ-
ent datasets and settings. Compared with taking
TFIDF as input, we find that the performance de-
clines sharply if directly taking BERT embedding
as input and redefining the generative model as
Gaussian. This may be attributed to the fact that
the reconstruction-based models may potentially
tend to pay more attention on the generation of
semantically-irrelevant information. However, if
further refining the BERT embeddings via the pro-
posed DHIM model, significant performance gains
can be observed, which strongly corroborates the
benefit of mutual information maximization frame-
work. When examining the performance across
different code lengths, our proposed method can
achieve comparable performance with short codes.
This is an attractive nature, since remarkable gra-
tuity can be acquired profitably on the short codes,
which is more suitable for low resource (small foot-
print) scenarios.
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Distance | Category | Content
query Athlete Ilya Aleksandrovich Borodin (born July 6 1976) is a Russian professional footballer
1 Athlete Vojislav vodka Meli (5 January 1940 - 7 April 2006) is a former Yugoslavian footballer
5 Athlete Rik Goyito Gregorio pérez (born November 19 1989) is a Mexican mixed martial artist
10 Artist Themistocles Popa (June 27 1921 - November 26 2013) was a Romanian composer musician
20 Film Allpakallpais a 1975 Peruvian drama film directed by Bernardo Arias
30 Transportation USS Alcor (ad 34) was a destroyer tender the lone ship in her class named

Table 5: Qualitative analysis of the learned 32-bit hash codes on the DBpedia dataset. We present the documents

with Hamming distance of 1, 5, 10, 20 and 30 to the query.
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Figure 3: Parameter sensitivity analysis for the 8 and
batch size with 32-bit hash codes on DBpedia.

Ablation Study To understand the influence of
different components of DHIM, we further ex-
periment with two variants of our model: 1)
DHIMycdian: DHIM with hash codes after directly
binarizing the real-value representations using the
median value as the threshold; ii) DHIMyyq reg:
DHIM without semantic-preserving regularizer. As
seen from Table 3, DHIMyy, re¢ achieves better per-
formance than DHIMygian, demonstrating the ef-
fectiveness of our proposed adaptions on the orig-
inal deep InfoMax framework, i.e., introducing a
probabilistic layer to enable end-to-end training.
Moreover, the additional semantic-preserving regu-
larization is benefit to integrate expressive semantic
information. This can be verified by significant per-
formance of DHIM over DHIMyo reg, €specially
in short bits scenarios. However, the performance
gap between them becomes small as code length in-
creases. We attribute this interesting observation to
the fact that the increased generalization ability of
models brought by large bits is inclined to alleviate
the impact of semantic regularization.

Impact of Different Features One desirable
property of DHIM is that we can exploit differ-
ent textual features to enhance model abilities. To
understand their effects, we investigate the impact
of different kinds of word features: i) Random:
with randomly initialized word embeddings; ii)
GloVe: with the GloVe embeddings (Pennington
et al., 2014); iii) Pre-trained: with the ouputs of
BERT (Devlin et al., 2018) or ROBERTA (Liu et al.,
2019). As seen from Table 4, simply exploiting ran-
dom embeddings, our model still achieves compa-
rable performance, demonstrating the effectiveness

BEMA

(a) DHIM

(b) AMMI

Figure 4: Visualization of the 32-bit codes learned by
the proposed models for the DBpedia dataset.

of the proposed mutual information maximization
based hashing framework. It is worth to note that
the model trained on pre-trained features yields bet-
ter performance. This proves that the expressive
context information of the document is conducive
to learning high-quality hash codes.

Parameter Sensitivity We also investigate the
influence of hyperparameter 5 and minibatch size.
As shown in the left column of Figure 3, compared
with the case of 8 = 0, significant performance
gains can be obtained by introducing semantic reg-
ularization. However, the appropriate value of 3
should be chosen carefully, since the best perfor-
mance cannot be guaranteed if 3 is too small or
too large. Since the number of negative samples
plays important roles in MI estimation, we further
investigate the impact of batch size. From the right
column of Figure 3, we see that as batch size in-
creases, the performance rises gradually and then
converges to certain level.

Case Study To evaluate the quality of generated
codes more intuitively, we present a retrieval case
of the given query documents. As shown in Table 5,
as the Hamming distance increases, the semantic of
the retrieved document becomes less relevant, illus-
trating that the hash codes can effectively capture
the semantic information.

Visualization of Hash Codes In Figure 4, we
project the learned binary codes into 2-dimensional
plane with t-SNE (van der Maaten and Hinton,
2008) technique. It can be seen that the codes
produced by our DHIM are more distinguishable
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than those of AMMI, demonstrating the superiority
of our method.

7 Conclusion

We have proposed an effective and efficient seman-
tic hashing method by refining the BERT embed-
ding. Specifically, we applied a textual convolu-
tional neural network with probabilistic layers to
capture local and global features, and refined se-
mantic information into binary codes by maximiz-
ing their mutual information. Extensive evaluations
demonstrated that our model significantly outper-
forms baseline methods by learning hash codes
under the guidance of MMI frameworks.
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