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Abstract
Knowledge graph entity typing aims to infer

entities’ missing types in knowledge graphs

which is an important but under-explored is-

sue. This paper proposes a novel method for

this task by utilizing entities’ contextual in-

formation. Specifically, we design two infer-

ence mechanisms: i) N2T: independently use

each neighbor of an entity to infer its type;

ii) Agg2T: aggregate the neighbors of an en-

tity to infer its type. Those mechanisms will

produce multiple inference results, and an ex-

ponentially weighted pooling method is used

to generate the final inference result. Fur-

thermore, we propose a novel loss function

to alleviate the false-negative problem during

training. Experiments on two real-world KGs

demonstrate the effectiveness of our method.

The source code and data of this paper can

be obtained from https://github.com/
CCIIPLab/CET.

1 Introduction

Knowledge graphs (KGs) store world knowledge

in a structured way. They consist of collections

of triples in the form of (head entity, relation, tail

entity), and entities are labeled with types (see Fig-

ure 1). The entity type information on knowledge

graph has applications in many NLP tasks includ-

ing entity linking (Gupta et al., 2017), question

answering (Bordes et al., 2014) and fine-grained

entity typing in text (Ling and Weld, 2012, Choi

et al., 2018, Zhou et al., 2018). An entity can have

multiple types, and the entity type information on

the knowledge graph is usually incomplete. In this

paper, we focus on Knowledge Graph Entity Typ-
ing (KGET), which aims to infer entities’ missing

types in knowledge graphs.

Existing methods for the KGET task can be di-

vided into embedding-based methods and graph

convolutional networks (GCNs) for the multi-

relational graph. Knowledge graph embedding
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Figure 1: A knowledge graph fragment. Some types of

entity Steven Weinberg are missing.

(KGE) is representative of embedding-based meth-

ods. Treating entities’ known types as special

triples with a unique relation "has type", e.g.,
(Barack Obama, has type, person), the KGET

task can be understood as a subtask of knowledge

graph completion. Consequently, KGE methods

can infer entities’ missing types by completing (en-

tity, has type, ?). Recently, two embedding-based

KGET models based on KGE have been proposed:

ETE (Moon et al., 2017b) and ConnectE (Zhao

et al., 2020). They first obtain entity embeddings

from KGE methods, then use them to infer enti-

ties’ missing types. GCNs for the multi-relational

graph can aggregate the rich information in entities’

neighbors to infer entities’ missing types.

Existing methods usually encode all attributes

of an entity into one embedding, then use this rep-

resentation to conduct inference. However, when

judging whether an entity has a particular type, only

some attributes of this entity may be helpful while

the others remain useless. For example, in Figure 1,

only the neighbor (graduate from, Cornell Univer-

sity) can indicate the central entity Steven Weinberg
have type Cornell University alumni. We argue that

always considering all attributes of an entity during

inference may introduce irrelevant information as

noise and ultimately reduce the accuracy of entity

typing.

Besides the above-mentioned shortcoming, ETE
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and ConnectE also ignore entities’ known type in-

formation when training entity embeddings, which

is important for entity typing. For instance, in

Figure 1 there are no known triples which can indi-

cate entity Steven Weinberg has type Jewish physi-
cists. In this case, the model needs to utilize the

known type information. Steven Weinberg has type

Jewish Scientists, and in the known triples exists

(Steven Weinberg, has won prize, Nobel Prize in

Physics). Combining the two, we can infer Steven
Weinberg has type Jewish physicists. In short, these

two KGET models have difficult using the enti-

ties’ known types to infer the missing ones. In

the experiment, we found this seriously affect their

performance.

To overcome those shortcomings in existing

methods, we propose a novel method for the KGET

task, called CET (Context-aware Entity Typing).

Specifically, CET contains two inference mecha-

nisms: i) N2T: independently use each neighbor

of an entity to infer its type; ii) Agg2T: aggregate

the neighbors of an entity to infer its type. Ac-

cording to our observation, one neighbor usually

represents a specific attribute of the central entity.

Thus, the N2T mechanism allows CET to consider

each attribute of an entity during inference indi-

vidually. In contrast, previous works mix various

attributes of an entity into one embedding for infer-

ence. Therefore, we believe CET can produce more

accurate entity typing results than existing methods.

Moreover, some complex types like 21st-century
American novelists involve multiple semantic as-

pects of an entity. It’s difficult to infer those types

only using a single neighbor. Therefore, we further

propose the Agg2T mechanism, which simultane-

ously considers multiple attributes of the central

entity during inference by aggregating neighbors.

We also treat the known types of the central entity

as its neighbors to use them to infer the missing

types. To aggregate the inference results gener-

ated by N2T and Agg2T mechanism, we adopt a

carefully designed pooling method similar to soft-

pool (Stergiou et al., 2021). Experiments show

that this pooling method can produce stable and

interpretable inference results.

In addition, we face serious false-negative prob-

lem during training. Some (entity, type) pairs are

valid but happen to be missing in current knowl-

edge graphs. Treating them as negative samples

will seriously affect model performance. We pro-

pose a novel loss function to alleviate this. To sum

up, our contributions are three-fold:

• We propose CET, a novel and flexible method

for inferring entities’ missing types in knowl-

edge graphs, which fully utilize the neighbor

information in an independent-based mecha-

nism and aggregated-based mechanism.

• We design a novel loss function to alleviate

the false-negative problem during training.

• Experiments on two real-world knowledge

graphs demonstrate the superiority of our pro-

posed method over other state-of-the-art al-

gorithms, and the inference process of our

method is interpretable.

2 Related Work

Embedding-based methods. Moon et al. (2017b)

propose to learn type embedding for knowledge

graph entity typing and build two methodologies:

i) Synchronous training: Adding entities’ known

types to knowledge graphs in the form of triples

with a unique relation "has type", e.g., (Barack

Obama, has type, person), Knowledge Graph Em-

bedding (KGE) methods (Nickel et al., 2011, Bor-

des et al., 2013, Nickel et al., 2016) can learn the

embeddings of entities and types simultaneously.

KGE methods can infer entities’ missing types by

completing (entity, has type, ?). ii) Asynchronous

training: The model first obtains entities’ embed-

dings from KGE methods, then minimizes the L1

distance between the entities’ and their correspond-

ing types’ embeddings while keeping the entities’

embeddings fixed. During inference, the smaller

L1 distance between an entity and a specific type

means the entity is more likely to have this type.

Moon et al. (2017b) observe that there will be only

one type of relation associate with types in syn-

chronous training. They claim this lack of diversity

of relations means that synchronous training meth-

ods have difficulty solving the KGET task. So they

proposed a model called ETE, which follows the

asynchronous training strategy and uses CONTE

(Moon et al., 2017a) to obtain entity embeddings.

Zhao et al. (2020) propose ConnectE, a more

advanced KGET model which contains two infer-

ence mechanisms. One is called E2T, which uses

a linear transformation to project the entities’ em-

beddings into type embedding space. Another is

called TRT, which uses the neighbors’ types to in-

fer the central entities’ missing types. TRT is based
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on the assumption that the relationship can remain

unchanged when replacing the entities in the triple

to their corresponding types. For instance, if triple

(Barack Obama, born in, Honolulu) holds, a new

triple (person, born in, location) should also hold.

ConnectE also follows the asynchronous training

strategy, which first uses TransE to obtain entities’

embedding then fixes them to train E2T and TRT.

ETE and ConnectE do not consider entities’

known types when training entities’ embeddings,

which means they do not encode the known type

information into entities’ embeddings. Therefore,

both of them have difficulty using entities’ known

types to infer the missing ones, which seriously

affects their performance. Our experiments support

this claim.

GCNs for Multi-Relational Graph. The TRT

mechanism in ConnectE attempts to use entities’

neighbors to infer entities’ missing types. How-

ever, TRT only utilizes the neighbors’ types. To

fully utilize the information in entities’ neighbors,

GCNs for multi-relational graphs can be used to en-

code entities’ neighbors. Schlichtkrull et al. (2018)

proposed R-GCN, an extension of GCNs for re-

lational graphs. R-GCN aggregate the informa-

tion in neighbors using the relation-specific filter.

Weighted Graph Convolutional Network (Shang

et al., 2019) utilizes learnable relational specific

scalar weights to aggregate neighbors. Vashishth

et al. (2020) proposed a more generalized frame-

work by leverage composition operators from KGE

techniques during GCN aggregation. In the KGET

task, the entities’ missing types can be inferred by

performing multi-label classification on entities’

embeddings obtained by GCNs.

Existing methods usually encode all attributes

of an entity into one embedding during inference.

We argue this will introduce noise as sometimes

only part of attributes of an entity is helpful for the

KGET task while the others may be useless. To

overcome this shortcoming, we propose the N2T

mechanism. By independently uses each neigh-

bor of an entity to infer its missing types, the N2T

mechanism allows our model to consider each at-

tribute of an entity during inference individually.

This can reduce the impact of irrelevant informa-

tion on entity typing. Also, we treat entities’ known

types as neighbors which means our model can use

them to infer entities’ missing types.

Others. Note that embedding knowledge graphs

containing concepts (ontologies) and modeling the

relationship between concepts (Lv et al., 2018, Hao

et al., 2019) are not the goal of this paper. We con-

centrate on inferring entities’ missing types. Some

other works on KGET (Neelakantan and Chang,

2015, Jin et al., 2018) mainly focus on how to com-

bine additional information, such as the text de-

scription of the entities, to infer the missing types.

Our work only uses the information on the knowl-

edge graphs to infer the missing types of entities,

which is more universal.

3 Method

In this section, we introduce our proposed method

in detail. We first introduce the notations used in

this paper. Afterward, we introduce two inference

mechanisms used in our method. Finally, we in-

troduce a novel loss function that can alleviate the

false negative problem during training.

3.1 Notations

Let G = {(s, r, o)} ⊆ E ×R× E be a knowledge

graph where E and R are the entity set and the

relation set, respectively. The known type infor-

mation on the knowledge graph is represented as

I = {(e, t)} ⊆ E × T . Let L be the number of

types. We number the type from 1 to L and use

type i to refer to the i-th type.

We add the known type information to the knowl-

edge graphs. If an entity e has type t, we add an

edge (e, has type, t) to KG, where has type is a

newly added relationship. For the convenience of

discussion, if edge (s, r, o) exists in KG, we add its

inverted edge (o, r−1, s) to KG where r−1 is the

reverse relation of r. Let G ′
be the KG after adding

known type information and inverted edges. Af-

ter adding those inverted edges, we only consider

outgoing edges when discussing entities’ neigh-

bors. The neighbors set of u can be represented as

N (u) = {(nr, ne)|(u, nr, ne) ∈ G ′}. We use bold

nr,ne to represent the embedding of neighbor rela-

tion and neighbor entity, respectively. Let k be the

dimension of the embeddings. The neighbors men-

tioned later all refer to those neighbors on G ′
which

include the neighbors in the knowledge graph and

the entities’ know types.

3.2 Proposed Method

Our proposed method contains two inference mech-

anisms. One is to use each neighbor to infer the

central entity’s type independently, called N2T. An-

other is to aggregate neighbor information then
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Figure 2: The overall architecture of CET. The N2T mechanism independently uses each neighbor to infer entities’

missing types. The Agg2T mechanism aggregates neighbors’ information then conducts inference. The final

inference result is generated by an exponentially weighted pooling method.

conduct inference, called Agg2T. And we use an

exponentially weighted pooling method to generate

the final inference result. The overall architecture

is shown in Figure 2.

N2T mechanism. We observe a strong correlation

between the neighbors and the central entity’s type.

For instance, the neighbor (is affiliated to, Los An-

geles Lakers) can indicate the central entity has

type Los Angeles Lakers player. Meanwhile, dif-

ferent neighbors may correspond to different types.

Therefore, we propose the N2T mechanism that

independently uses each neighbor to infer the miss-

ing types of central entities. It’s worth noting that

when judging whether an entity has a particular

type, sometimes only a few neighbors are helpful

while the others remain useless. The N2T mecha-

nism focuses on a single neighbor during inference,

reducing the interference of irrelevant information

on entity typing. In practice, CET follows the trans-

lating assumption in TransE to obtain the neighbor

embedding1, then conducts non-linear activation2

on neighbor embedding and sent it to a linear layer:

RN2T
(nr,ne)

= WRelu(ne − nr) + b, (1)

where W ∈ R
L×k,b ∈ R

L are the learning pa-

rameters and RN2T
(nr,ne)

∈ R
L is the relevance score

calculated by the N2T mechanism, where the i-

th entry represents the relevance score between

neighbor (ne, nr) and type i. The higher RN2T
(nr,ne),i

means the neighbor (ne, nr) is more relevant to

1The original relation r and its reversed relation r−1 share
the same set of parameters and their embeddings satisfy r =
−r−1.

2Non-linear activation is not necessary, but we found that
adding it can achieve better results.

type i, which indicates the central entity is more

likely to have type i.

Agg2T mechanism. It’s difficult to infer some

complex types like 21st-century American novel-
ists and Film directors from New York City from

a single neighbor. Therefore, we further propose

the Agg2T mechanism which aggregate entities’

neighbors to infer entities’ missing types:

hu =
1

|N (u)|
∑

(nr,ne)∈N (u)

(ne − nr), (2)

RAgg2T
u = WRelu(hu) + b, (3)

where hu ∈ R
k is the aggregated representation

of u’s neighbors and RAgg2T
u ∈ R

L stores the rele-

vance scores with all types. Here we chose a simple

non-parameterized mean aggregation operation to

verify the effectiveness of our method. Actually,

CET is a highly flexible method that can work with

the existing GCN-based method by replacing the

aggregation operation in the Agg2T mechanism.

We leave those analyses as future work.

Pooling approach. The N2T mechanism and the

Agg2T mechanism will generate multiple entity

typing results for every entity. To generate the final

entity typing result, a pooling method is needed.

Mean-pooling is not recommended as some types

can only be indicated by a few neighbors. Max-

pooling seems to be a suitable choice. However, we

find its performance is not ideal. Choosing the max

value as the final result makes only a small part

of the input get the gradient which means some

embeddings may not be sufficiently trained. As

a result, the model may fail to represent every at-

tribute of an entity accurately. In practice, we adopt
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an exponentially weighted pooling method similar

to softpool (Stergiou et al., 2021):

Ru,i = pool({RAgg2T
u,i , RN2T

(nr,ne),i

| ∀(ne, nr) ∈ N (u)}), for i ∈ 1, 2, . . . , L, (4)

pool({x1, x2, ..., xn}) =
n∑

i=1

wixi, (5)

wi =
expαxi∑n

k=1 expαxk
, (6)

where Ru,i ∈ R is the relevance score between

entity u and type i. α ∈ R
+ is a hyperparameter

that controls the temperature of the pooling process.

The higher Ru,i means entity u is more likely to

have type i. This pooling method has a similar

effect to max-pooling but can generate a gradient

for every input which ensures every embedding

gets sufficient training.

Neighbor sampling. If we use all the neighbors

during training, the model may learn to use avail-

able type information to infer themselves, e.g., us-

ing neighbor (has type, person) to infer the entity

has type person. The model can perfectly fit the

training set in this way, result in a severe overfitting

problem. One solution is to perform the following

mask operation before the equation (6):{
RN2T

(has type,i),i = −∞, i ∈ 1, 2, . . . , L

RAgg2T
u,i = −∞, if (u, i) ∈ I (7)

Another solution is to perform neighbor sampling:

dynamically sample entities’ neighbors with re-

placement during training. We find both methods

have similar performance while performing neigh-

bor sampling can significantly save training time,

so we finally settle with neighbor sampling. Sam-

pling fewer neighbors can lead to faster training

speed, but at the expense of performance degrada-

tion. In practice, we find that sampling ten neigh-

bors can usually achieve a good balance between

speed and performance. We only conduct neighbor

sampling during training; all neighbors of the entity

are used during inference.

3.3 Optimization

We hope that Ru,i as high as possible if entity u

has type i (positive samples), while Ru,i as low as

possible if entity u does not has type i (negative

samples). The known (entity, type) pairs in I can

be used as positive samples. To gather the negative

samples, a simple choice is to treat all the nonex-

istent (entity, type) pairs in I as negative samples.

Then we can use the binary cross-entropy (BCE)

as loss function:

pu,i = σ(Ru,i), (8)

L = −
∑

(u,i)∈I
log pu,i−

∑
(u,i)/∈I

log(1− pu,i). (9)

However, some (entity, type) pairs are valid but

happen to be missing in current knowledge graphs.

Actually, the entities’ missing types which we want

to infer belongs to this category. This brings serious

false negative problems during training. To over-

come this, we propose the following false-negative

aware (FNA) loss function:

L =−
∑

(u,i)/∈I
β(pu,i − p2u,i) log(1− pu,i)

−
∑

(u,i)∈I
log pu,i, (10)

where β is a hyper-parameter used to control the

overall weight of negative samples. The FNA loss

function will assign lower weight to those nega-

tive samples with too large or too small relevance

scores. Those negative samples with too large rel-

evance scores are possibly false negative samples,

and those with too small relevance scores are easy

ones. These two kinds of negative samples do not

provide helpful information, so we give them a

lower weight.

Dataset FB15kET YAGO43kET

# Entities 14951 42334

# Relations 1345 37

# Types 3584 45182

# Train. triples 483142 331686

# Train. tuples 136618 375853

# Valid 15848 43111

# Test 15847 43119

Table 1: Statistics of used datasets.

4 Experiment

In this section, we evaluate and analyze the pro-

posed method on two real-world KGs. We intro-

duce datasets and experiment settings in Section

4.1, present the main result in Section 4.2. The

ablation study can be found in Section 4.3. Sec-

tion 4.4 provides some cases to further analyze our

method.
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4.1 Datasets and Experiment Setup

Datasets. We conduct experiments on two real-

world knowledge graphs, i.e., FB15k (Bordes et al.,

2013), YAGO43k (Moon et al., 2017b) which are

subsets of Freebase (Bollacker et al., 2008) and

YAGO (Suchanek et al., 2007), respectively. Moon

et al. collected entities’ types in both datasets and

added them into the original datasets in the form

of (entity, entity type). The datasets after adding

those entity-type tuples are called FB15kET and

YAGO43kET. Their training sets consist of original

triples in FB15k and YAGO43k with some entity-

type tuples, and the other entity-type tuples are

served as validation and test sets. The statistics of

the datasets are shown in Table 1 3.

Hyper-parameter Settings. We perform stochas-

tic minibatch training and use Adam (Kingma and

Ba, 2015) as the optimizer. The hyper-parameters

are tuned according to the MRR on the valida-

tion set. The search space for the grid search are

set as follows: embedding dim k ∈ {50, 100},

pooling temperature α ∈ {0.5, 1.0}, negative sam-

ples weight β ∈ {1.0, 2.0, 4.0} and learning rate

lr ∈ {0.001, 0.005, 0.01}. We also tried to adjust

the batch size but this had no impact so we fixed

the batch size to 128. The embeddings of entities,

relations, and types are uniformly initialized, us-

ing a uniform distribution:[−10/k, 10/k] (k is the

dimension of embeddings). The best model was

selected by early stopping using the MRR on vali-

dation sets, computed every 25 epochs with a max-

imum of 1000 epochs. The optima configurations

are: {k = 100, α = 0.5, β = 4.0, lr = 0.001}
on FB15kET; {k = 100, α = 0.5, β = 2.0, lr =
0.001} on YAGO43kET.

Evaluation Protocol. For each test sample (e, t)
in test set. We first calculate the relevance score be-

tween e and every type and then rank all the types

in descending order of relevance score. Following

(Bordes et al., 2013), we evaluate model perfor-

mance in the filtered setting: All the known types

of e in the training, validation, and test sets are re-

moved from the ranking. Finally, we can obtain the

exact rank of the correct type t in all types. We use

Mean Rank (MR), Mean Reciprocal Rank (MRR),

and Hits at 1/3/10 as evaluation metrics.

Baselines. We compare our model with six state-

of-the-art models, which can be divided into three

3we exclude the data which contains unseen types in the
training set from validation set and test set.

groups. Models in the first group are KGE models

which treat the KGET task as a special sub-task

of knowledge graph completion, including TarnsE

(Bordes et al., 2013), ComplEx (Trouillon et al.,

2016) and RotatE (Sun et al., 2019). The second

group are recently proposed KGET models includ-

ing ETE (Moon et al., 2017b) and ConnectE (Zhao

et al., 2020). And for GCNs for multi-relational

graph we choose R-GCN (Schlichtkrull et al., 2018)

as baseline. To make a fair comparison, R-GCN

has similar experiment settings with CET: treating

entities’ known types as neighbors and perform-

ing the neighbor sampling during training. Hyper-

parameter settings of those baselines can be found

in Appendix A.

Implementation. All the KGE baselines in this pa-

per are implemented using DGL-KE (Zheng et al.,

2020). Our model and R-GCN are implemented

using the DGL framework (PyTorch as backends).

All the experiments were run on a single 1080Ti

system with 32GB RAM.

4.2 Main Results

Table 2 summarizes our result on FB15kET and

YAGO43kET. We implement TransE, ComplEx,

and RotatE using the self-adversarial negative sam-

pling (Sun et al., 2019) and L3 regularization

(Lacroix et al., 2018), which leads to better results

than the reported results in the previous paper. We

can see our model outperforms all baselines on al-

most all metrics. Meanwhile, after using the FNA

loss, the performance significantly improved. Not

only our model, but R-GCN can also benefit from

this, which further proved the effectiveness of FNA

loss.

The performance of TransE, ComplEx, and Ro-

tatE is limited by their entity representation strategy.

These KGE methods encode all attributes of an en-

tity into one embedding for inference. However,

when judging whether an entity has a particular

type, the irrelevant attributes may interfere with the

inference result. CET overcomes this shortcoming

by using the N2T mechanism and achieves better

performance.

Similar to the KGE methods, R-GCN also suf-

fers from the noise introduced by irrelevant infor-

mation. R-GCN aggregates entities’ neighbors

to infer entities’ missing types. However, some-

times a type can only be indicated by a few neigh-

bors. This kind of rare information is easily over-

whelmed by other irrelevant information during
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Model
FB15kET YAGO43kET

MRR MR Hit@1 Hit@3 Hit@10 MRR MR Hit@1 Hit@3 Hit@10

TransE 0.618 18 0.504 0.686 0.835 0.427 393 0.304 0.497 0.663

ComplEx 0.595 20 0.463 0.680 0.841 0.435 631 0.316 0.504 0.658

RotatE 0.632 18 0.523 0.699 0.840 0.462 316 0.339 0.537 0.695

ETE* 0.500 - 0.385 0.553 0.719 0.230 - 0.137 0.263 0.422

ConnectE* 0.590 - 0.496 0.643 0.799 0.280 - 0.160 0.309 0.479

R-GCN (BCE) 0.662 19 0.571 0.711 0.836 0.357 366 0.266 0.392 0.533

R-GCN (FNA) 0.679 20 0.597 0.722 0.843 0.372 397 0.281 0.409 0.549

CET (BCE) 0.682 19 0.593 0.733 0.852 0.472 239 0.362 0.540 0.669

CET (FNA) 0.697 19 0.613 0.745 0.856 0.503 250 0.398 0.567 0.696

Table 2: Results of several models on FB15kET and YAGO43kET datasets. Best results are in bold. [*]: Results

are taken from original papers. ConnectE has three different training settings, here we report the best one.

Model FB15kET YAGO43kET

N2T TAN Agg2T FNA MRR MR Hit@1 Hit@3 Hit@10 MRR MR Hit@1 Hit@3 Hit@10

� � � � 0.697 19 0.613 0.745 0.856 0.503 250 0.398 0.567 0.696
� � � 0.682 19 0.593 0.733 0.852 0.472 239 0.362 0.540 0.669

� � 0.679 19 0.591 0.730 0.850 0.460 272 0.348 0.528 0.664

� 0.663 21 0.575 0.710 0.836 0.431 505 0.331 0.491 0.615

Table 3: Results of ablation study. Models without FNA loss function use BCE loss function instead.

R-GCN’s aggregation process. This phenomenon

is rarely observed on FB15kET but is common on

YAGO43kET. This can explain why R-GCN out-

performs other baselines on FB15kET but has a

poor performance on YAGO43kET.

ETE and ConnectE are largely left behind, es-

pecially on YAGO43kET. This is because these

two methods have difficulty using entities’ known

types to infer the missing ones. Compared with

FB15k, YAGO43k has a sparser graph structure and

fewer types of relations (see Table 1). Therefore,

in YAGO43kET, ignoring entities’ known types

and only using the (entity, relation, entity) triples

to train entity embeddings can hardly fully model

various attributes of each entity. As a result, the

performance gap between ETE/ConnectE and other

methods is more pronounced on YAGO43kET. This

result demonstrates that using entities’ known types

to infer the missing ones is crucial in the KGET

task. We will further illustrate this in Section 4.3.

4.3 Ablation Study

Our model includes two inference mechanisms:

N2T and Agg2T. Treating entities’ known types

as neighbors (TAN, short for types as neighbors)

and the false negative aware loss function (FNA)

can also improve the performance. To understand

Model MRR MR Hit@1 Hit@3 Hit@10

mean 0.396 338 0.300 0.440 0.578

max 0.462 327 0.366 0.517 0.636

ewp 0.503 250 0.398 0.567 0.696

Table 4: Comparison of different pooling methods.

each component’s effect on the model, we conduct

the ablation study on FB15kET and YAGO43kET

datasets. The result is reported in Table 3. We can

see the full model (the first row) outperforms all the

ablated models on almost all metrics, illustrating

every component’s effectiveness in our model.

Impact of N2T. Only using the N2T mechanism,

our model still achieves competitive results against

other state-of-the-art baselines. This indicates that

independently considering entities’ different at-

tributes during inference can reduce the noise and

produce accurate entity typing results.

Impact of TAN. Treating entities’ known types as

neighbors allows CET utilize entities’ known type

to infer the missing ones. This strategy is especially

effective on datasets containing rich entity-type

information such as YAGO43kET.

Impact of Agg2T. Agg2T mechanism is designed
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Inference Top 3 Relevant Information Source

Entity Type Information Source Relevance Score

Bob Dylan Pulitzer Prize winners

(has won prize, Pulitzer Prize) 6.93

(has won prize, Quill Award) -0.44

(has type, American poets) -0.72

Ian Fleming English writers

(has type, English short story writers) 3.36

(has type, English novelists) 2.96

(has type, English spy fiction writers) 2.15

Ben Gazzara
American male

television actors

Aggregation 3.04

(has type, American male film actors) -0.53

(has type, American television actors) -0.61

Table 5: Representative entity typing examples. We present the top 3 relevant information sources for entity typing

and their relevance scores. Aggregation stands for the aggregation of neighbors, the information source used in the

Agg2T mechanism.

to infer those complex types. Types like 21st-
century American novelists that involve multi-

ple attributes of entities and require joint infer-

ence by multiple neighbors almost only appear in

YAGO43kET. So it is natural that the Agg2T mech-

anism has little effect on FB15kET but improves

model performance on YAGO43kET.

Impact of FNA. The false-negative aware loss

function can bring significant performance im-

provement, which proves its effectiveness.

We also compared several pooling methods on

YAGO43kET. The result is summarized in Table 4.

mean, max, ewp stand for mean pooling, maximum

pooling and exponential weighted pooling, respec-

tively. We can see that exponentially weighted

pooling outperforms other pooling methods, which

is consistent with our previous analysis.

4.4 Case Study

In Tabel 5, we select three representative inferences

made by our model. These examples show how

CET used the N2T and Agg2T mechanisms to infer

entities’ missing types, and the inference process

is interpretable.

In the first example, our model mainly uses the

neighbor (has won prize, Pulitzer Prize) to conduct

inference. This is intuitive because the correlation

between other neighbors and the candidate type

Pulitzer Prize winners is indeed not strong. In the

second example, our model uses several entities’

known types to conduct inference. This inference

process is reasonable and can be described in nat-

ural language: Ian Fleming is an English short

story writer, so he is also an English writer. In the

first two examples, the model mainly uses the N2T

mechanism. However, in the last example, the type

American male television actors involves multiple

attributes of the entity, which the N2T mechanism

cannot infer. Therefore, we can see our model

uses the aggregation of neighbors to complete the

inference, which is consistent with our previous

analysis.

In addition, we provide some N2T examples in

Table 6 to show the mapping from neighbors to

types, and the results are intuitive.

Neighbors
Top 3 Relevant Types

Type Relevance
Score

(plays for, A.C. Milan)

A.C Milan players 6.32

Serie A footballers 4.68

Living people 2.71

(has won prize,

Nobel Prize in Chemistry)

Nobel laureates in Chemistry 3.33

scientist 2.35

20th-century chemists 1.54

(type, American rock singers)

American rock singers 6.37

American singers 3.87

rock singers 1.89

Table 6: Three most relevant types with a particular

neighbor.

5 Conclusion

This paper describes a novel knowledge graph en-

tity typing method called CET, which utilizes the

entities’ contextual information to infer entities’

missing types. We design two inference mecha-

nisms, one is to independently use each neighbor

of an entity to infer its types, another is to aggre-
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gate entities’ neighbors than conduct inference. In

addition, we propose a novel loss function to allevi-

ate the false negative problem during training. Our

method is highly flexible, and we are considering

introducing advanced graph convolutional network

technology into our method.
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A Hyper-parameter Settings

R-GCN. We use one layer R-GCN with 100-

dimension embeddings in our experiment. The

hyper-parameters are tuned according to the MRR

on the validation set. The search space for the

grid search are set as follows: learning rate

lr ∈ {0.001, 0.005, 0.01}, activation function ϕ ∈
none, relu, tanh, and the weight of negative sam-

ples in FNA loss β ∈ {1, 2, 3, 4}. The input em-

bedding is randomly initialized with a uniform dis-

tribution [-0.1, 0.1], and the training batch size is

fixed to 128. Using basis- or block-diagonal- de-

composition do not improve results but removing

the self-loop improve performance. Table 7 sum-

marizes the best configuration.

Dataset lr β ϕ self-loop

FB15kET 0.001 3 none FALSE

YAGO43kET 0.001 2 none FALSE

Table 7: The best configuration for R-GCN.

KGE methods. For KGE methods, we use 200-

dimension embeddings in our experiment. We use

random search to tune the hyper-parameters for
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KGE methods. Table 8 summarizes the search

space. neg_num is the number of negative samples

for every positive sample; α is the temperature

in the self-adversarial negative sampling; lr is the

learning rate; λ is the regularization coefficient in

L3 regularization; γ is a fixed margin in logsigmoid
loss function and it also controls the initialization

of the embeddings. We fix the training batch size

to 1024.

Model neg_num α lr λ γ

TransE {128, 256, 512} [0.5, 2.0] [0.005, 0.2] [1e-7, 1e-5] [5, 15]

ComplEx {128, 256, 512} [0.5, 2.0] [0.005, 0.2] [1e-7, 1e-5] [60, 80]

RotatE {128, 256, 512} [0.5, 2.0] [0.005, 0.2] [1e-7, 1e-5] [5, 20]

Table 8: Search space for KGE methods.

We run 100 trails for each model, and every

trial runs 50000 steps. The best configuration was

selected according to the MRR on the validation

set. Table 9 summarizes the best configuration for

each model.

Dataset Model neg_num α lr λ γ

FB15kET

TransE 256 1.98 0.023 7.20E-06 6.5

ComplEx 512 2.00 0.148 6.20E-06 66.8

RotatE 512 1.91 0.0168 3.50E-06 6.0

YAGO43kET

TransE 512 1.99 0.05 4.40E-06 10.5

ComplEx 512 1.99 0.154 2.00E-06 62.4

RotatE 256 1.74 0.0344 2.40E-06 11.8

Table 9: The best configuration for KGE methods.


