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Abstract
Latent Dirichlet allocation (LDA), a widely
used topic model, is often employed as a fun-
damental tool for text analysis in various ap-
plications. However, the training process of
the LDA model typically requires massive text
corpus data. On one hand, such massive data
may expose private information in the training
data, thereby incurring significant privacy con-
cerns. On the other hand, the efficiency of the
LDA model training may be impacted, since
LDA training often needs to handle these mas-
sive text corpus data. To address the privacy is-
sues in LDA model training, some recent works
have combined LDA training algorithms that
are based on collapsed Gibbs sampling (CGS)
with differential privacy. Nevertheless, these
works usually have a high accumulative privacy
budget due to vast iterations in CGS. Moreover,
these works always have low efficiency due
to handling massive text corpus data. To im-
prove the privacy guarantee and efficiency, we
combine a subsampling method with CGS and
propose a novel LDA training algorithm with
differential privacy, SUB-LDA. We find that
subsampling in CGS naturally improves effi-
ciency while amplifying privacy. We propose
a novel metric, the efficiency–privacy function,
to evaluate improvements of the privacy guar-
antee and efficiency. Based on a conventional
subsampling method, we propose an adaptive
subsampling method to improve the model’s
utility produced by SUB-LDA when the sub-
sampling ratio is small. We provide a compre-
hensive analysis of SUB-LDA, and the experi-
ment results validate its efficiency and privacy
guarantee improvements.

1 Introduction

Latent Dirichlet allocation (LDA)(Blei et al., 2003)
is a widely used topic model to discover the la-
tent semantic of text data. High-dimensional text
data can be mapped to low-dimensional latent topic
space via LDA. Thus, LDA simplifies subsequent
text analysis tasks, such as similarity judgment.

Platforms based on LDA for analyzing various text
data have been established by many enterprises,
such as Tencent (Wang et al., 2014)(Yut et al., 2017)
and Microsoft (Yuan et al., 2015).

Differential privacy (DP) is a de-facto standard
of privacy protection definition with a rigorous
mathematical proof and is widely used for quanti-
fying the privacy risks of random algorithms. To
address privacy issues when touching datasets con-
taining sensitive information in the training process
of LDA, some works (Park et al., 2016)(Zhu et al.,
2016)(Wang et al., 2020)(Zhao et al., 2019)(Zhao
et al., 2020) combine DP with LDA. In this study,
we focus on LDA training algorithms based on
collapsed Gibbs sampling (CGS).

HDP-LDA, proposed by Zhao et al (Zhao et al.,
2020), has been demonstrated to be effective and
outperforms other relevant works (Park et al.,
2016)(Zhu et al., 2016)(Zhao et al., 2019) when
protecting sensitive word-count information in
CGS training. HDP-LDA injects noise into word
counts in each training iteration. However, this
method suffers from worse efficiency when deal-
ing with massive text corpus data. Moreover, even
when HDP-LDA chooses a small privacy budget
in each iteration, the accumulative privacy budget
during the whole training may be very large due to
a mass of iterations.

Subsampling is a widely used method to achieve
privacy amplification in differentially private algo-
rithms (Dwork et al., 2014)(Balle et al., 2020)(Zhu
and Wang, 2019)(Wang et al., 2019)(Mironov et al.,
2019). A subsampled randomized algorithm takes
a subsample of the original dataset generated by
some subsampling procedure, and then applies a
known randomized mechanism to the subsampled
data. When introducing a subsampling operation
in CGS, we discover that subsampling naturally
improves the efficiency of CGS while amplifying
privacy.

Moreover, a natural question is whether we can
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amplify privacy while improving the efficiency of
CGS simultaneously. We need a metric to evaluate
the efficiency–privacy improvement.

In this study, we propose a subsampling solution
to improve the privacy guarantee and efficiency of
HDP-LDA. We call our novel LDA training algo-
rithm with differential privacy SUB-LDA. Then,
we propose a novel metric, the efficiency–privacy
function, to evaluate the privacy guarantee and effi-
ciency improvements of SUB-LDA. When the sub-
sampling ratio is small, the model always suffers
from heavy utility loss. We propose an adaptive
subsampling (AS) method to mitigate the dilemma.
Our contributions are summarized as follows.

• We combine subsampling with HDP-LDA, a
general differentially private CGS algorithm,
and propose our SUB-LDA algorithm, which
provides a better privacy guarantee and effi-
ciency than existing methods.

• We propose a novel metric, called the
efficiency–privacy function, and provide a
comprehensive analysis of SUB-LDA and
how the metric behaves when we change the
subsampling ratio. We find that we can im-
prove efficiency and privacy guarantee simul-
taneously only under a certain range of the
subsampling ratio.

• We propose an AS method that can be used
to improve the model’s utility. We conduct
extensive experiments on several real-world
datasets to validate the effectiveness of SUB-
LDA. The experiments show that SUB-LDA
achieves better efficiency and amplifies pri-
vacy.

2 Related works

We divide related works into the following three
categories.

(a)LDA training with differential privacy
As a widely used machine learning model, LDA

with DP has attracted the interest of researchers.
Zhu et al.(Zhu et al., 2016) propose a privacy-
preserving tag release algorithm. To protect in-
termediate private weight information, they add
Laplace noise to the weights in the last iteration
of CGS. Zhao et al. (Zhao et al., 2019) propose a
locally private LDA training algorithm on crowd-
sourced data to provide local DP for individual data
contributors. (Zhao et al., 2020) propose a central-
ized privacy-preserving algorithm that can prevent

data inference from the intermediate statistics in
CGS training. Variational Bayes for parameter esti-
mation of LDA is the focus of (Park et al., 2016). In
this study, we aim to provide an LDA model trained
via CGS with a DP guarantee under a centralized
situation.

(b)Subsampled differential privacy

Since machine learning algorithms always han-
dle massive sensitive data and perform many it-
erations before finding the optimal solution, limi-
tations arise when we want to bound the privacy
budget of iterative machine learning algorithms.
Privacy amplification by subsampling has gradu-
ally attracted the interest of researchers. Wang et
al. (Wang et al., 2019) propose a general “RDP-
amplification” bound that applies to any random-
ized mechanism equipped with subsampling with-
out replacements. However, this bound is a con-
stant factor away from being optimal. Zhu and
Wang (Zhu and Wang, 2019) provide a more gen-
eral result of tighter RDP-amplification bound
under Poisson subsampling. Mironov (Mironov,
2017) discuss the special sampled Gaussian mecha-
nism, which is successfully used in several machine
learning applications. They describe a numerically
stable procedure for precise computation of sam-
pled Gaussian Mechanism’s Rényi Differential Pri-
vacy (RDP) and prove a nearly tight closed-form
bound. Dwork et al. (Dwork et al., 2014) give a
general bound of privacy loss of the subsampled
mechanism in terms of (ε, δ)-DP. Balle et al. (Balle
et al., 2020) improve the bound and propose a gen-
eral framework to derive tight bound of privacy loss
of the subsampled mechanism in terms of (ε, δ)-
DP.

(c)Efficient collapsed Gibbs sampling

CGS is a widely used method to train the LDA
model. However, the complexity of traditional
CGS is O(NZ), which is a large number, where
N and Z are the total number of words and latent
topics in text corpus. To improve the efficiency
of traditional CGS, some efficient CGS algorithms
(Porteous et al., 2008)(Yao et al., 2009)(Li et al.,
2014)(Yuan et al., 2015)(Hu et al., 2017) have been
proposed recently. FastLDA (Porteous et al., 2008)
reduces operations per sample to improve the effi-
ciency of CGS. Yao et al. (Yao et al., 2009) obtain
better efficiency of CGS by reducing the complex-
ity O(NZ) of traditional CGS to O(N(Zw +Zd)),
where Zw and Zd are the numbers of distinct topics
that are assigned to a word w and a document d,



145

respectively. Usually, Zw + Zd is much smaller
than Z. Li et al. (Li et al., 2014) utilize the
sparsity in the topic model and reduce the com-
plexity from O(NZ) to O(NZd) by combining
Metropolis–Hasting sampling and the alias table
method (Walker, 1977). Yuan et al. (Yuan et al.,
2015) propose a compute-and-memory efficient
distributed LDA implementation, called LightLDA.
The complexity of LightLDA is O(N). Hu et al.
(Hu et al., 2017) observe that topic distributions
of words are skewed, and only a subset of docu-
ments can approximately represent the semantics
of the whole corpus. They reduce N via approx-
imate semantics and reduce Z via skewed topic
distribution.

3 Preliminaries

3.1 Latent Dirichlet Allocation and Collapsed
Gibbs Sampling

The LDA model is widely used to discover the la-
tent structures of text corpus datasets. The latent
structures are depicted as probability distributions
with prior and obtained posterior distributions after
training via Bayes rules. Text corpus is consid-
ered a mixture of K different latent topics, and
each document m in text corpus is represented by
a K-dimensional document-topic distribution θm.
Moreover, each latent topic k is represented by a
V -dimensional topic-word distribution φk where V
is the total number of unique words in text corpus.

The CGS training process aims to discover topic-
word distribution φk. For each word wi, CGS sam-
ples a new topic zi based on the following full
conditional distribution:

p (zi = k | ~z¬i, ~w) ∝
ntk + β∑V

t=1

(
ntk + β

) · nkm + τ∑K
k=1 (nkm + τ)

(1)

where ¬i denotes the whole words in text corpus
without the absence of word wi, nkm is the count
of topic k that appeared in document m, and ntk
is the count of topic k assigned to word t. τ is
the document-topic prior hyper-parameter and β is
the topic-word prior hyper-parameter. CGS runs
over three periods: initialization, burn-in, and es-
timation. During initialization, each word w in
text corpus is randomly assigned to a topic k ∈ K.
Then, the document-topic count nkm and topic-word
count ntk are obtained. In the subsequent burn-in

process, the topic assignment for each wordw is up-
dated via sampling from a multinomial distribution
P = [p1, . . . , pk, . . . , pK ], where pk is calculated
according to equation (1). After a series of itera-
tions, the burn-in process ends and we can estimate
φtk by

E
[
φtk | z,w

]
=

ntk + β∑V
t=1

(
ntk + β

) (2)

More details about LDA and CGS can be
found in (Porteous et al., 2008)(Xiao and Sti-
bor, 2010)(MacKay and Mac Kay, 2003)(Carlo,
2004)(Liu, 2008).

Since counting ntk needs to touch original
dataset, ntk is considered as sensitive information
and thus needs to be protected. HDP-LDA (Zhao
et al., 2020) suggests adding noise, for example,
Laplace noise, to each ntk independently in each
iteration of CGS. Thus, even the adversary can
monitor the whole training process of CGS, ntk in
each iteration could be protected.

3.2 Poisson Subsampled Rényi Differential
Privacy

In this subsection, we introduce background on
DP, RDP, Poisson subsampling, and its privacy-
amplification effects.

DP has been embraced by multiple research com-
munities as a standard principle of privacy for algo-
rithms. DP bounds a shift in the output distribution
of a randomized algorithm when a small change is
induced in its input.

Definition 3.1((ε, δ)-DP) (Dwork et al., 2014).
A randomized mechanism f : G 7→ R offers (ε, δ)-
DP if for any adjacent G,G′ ∈ G and R ∈ R
Pr[f(G) ∈ R] ≤ eε Pr [f (G′) ∈ R] + δ.

This definition restrains an adversary’s ability to
infer whether the input dataset is G or G′. RDP is
a refinement of DP. RDP utilizes Rényi-divergence
as a distance metric instead of sup-divergence in
DP.

Definition 3.2((α, ε)-RDP) (Mironov, 2017). A
randomized mechanism f : G 7→ R is said to have
ε-RDP of order α, abbreviated as (α, ε)-RDP, if
for any adjacent G,G′ ∈ G it holds that Rényi-
divergence Dα (f(G)‖f (G′)) ≤ ε.

Recent works have often adopted privacy am-
plification by subsampling in differentially private
machine learning. Applying a randomized mech-
anism to a subsampled dataset always produces a
lower bound on privacy loss, that is, privacy is am-
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plified. RDP is a useful technique for analyzing
how much the privacy loss is improved by the sub-
sampling operation (Zhu and Wang, 2019)(Wang
et al., 2019)(Mironov et al., 2019). Before intro-
ducing the subsampled RDP privacy amplification
theorem, we first introduce Poisson subsampling.

Definition 3.3(Poisson subsampling). Given a
dataset G, the procedure Poisson subsampling out-
puts a subset {gi|σi = 1, i ∈ [n]} of the original
dataset G by sampling σi ∼ Ber(γ) independently
for i = 1, 2, ..., n.

Zhu and Wang (Zhu and Wang, 2019) give a
tight bound to the privacy loss of the Poisson sub-
sampling mechanism when noise is drawn indepen-
dently from Gaussian or Laplace distribution.

Theorem 3.1(Privacy amplification theorem for
subsampled RDP). Let M be a randomized al-
gorithm that obeys (α, ε(α))-RDP whose ran-
domness comes from Gaussian or Laplace noise.
Let γ be the Poisson subsampling probability.
M ◦ PoissonSubsample (G) denotes the compo-
sition function M( PoissonSubsample (G)) and
εM◦PoissonSubsample(α) is the privacy loss of M ◦
PoissonSubsample (G). Then,

εMoPoissonSubsample(α)
= 1

α−1 log
{

(1− γ)α−1(αγ − γ + 1)

+
∑α

`=2

(
α
`

)
(1− γ)α−`γ`e(`−1)ε(`)

}
.

(3)
εMoPoissonSubsample(α) is simplified to

εsubsample(α) in the following sections.

4 Framework of SUB-LDA

In this section, we introduce our algorithm SUB-
LDA, which achieves better privacy guarantee and
efficiency than HDP-LDA. SUB-LDA is presented
in Algorithm 1. Given document corpus G, SUB-
LDA first preprocesses the corpus and randomly
allocates topics to each word in the corpus. Then,
SUB-LDA conducts CGS on a subset of words in
each document produced by the Poisson subsam-
pling process. When the convergence condition is
satisfied or the amount of accumulative iterations
reach maximum value ITER, then the burn-in pe-
riod of CGS is stopped. Since SUB-CGS touches
only a subset of sensitive words in each document
during each iteration, privacy is amplified by Theo-
rem 3.1. We present additional discussions about
privacy and efficiency.

4.1 Privacy Amplification and Efficiency
Improvement

Algorithm 1 SUB-LDA
Input: Document corpus G, Prior parameters
τ ,β, Subsampling ratio γ, Topic numberK, Clip-
ping bound clip
Output: Trained document-topic distribution Θ,
topic-word distribution Φ, accumulate privacy
loss ε = T · εsubsample(α)
// Initialization
for dm ∈ G do

for w = t ∈ dm do
Sample topic: k ∼Mult

(
1
K · IK

)
Initialize word count ntk and nkm

end for
end for
// Collapsed Gibbs Sampling
Set Iter = 0
while not convergent or Iter <= ITER do

for dm ∈ G do
Take a batch of word Wt from dm accord-
ing to subsampling ratio γ
for w = t ∈Wt do

Add noise to each ntk independently:
ntk ← ntk + η

Clip:
(
ntk
)temp ← min

{
ntk, clip

}
Compute sampling distribution p:

pk ∝
(ntk)

temp
+β∑V

t=1(ntk+β)
· nkm+τ∑K

k=1(nkm+τ)
Sample topic and update ntk and nkm via
p̃

end for
end for
Iter ← Iter + 1

end while
Output Trained document-topic distribution Θ,
topic-word distribution Φ, accumulate privacy
loss ε = Iter · εsubsample(α)

Given privacy budget ε(α) of RDP in each iter-
ation, noise η is drawn independently from Gaus-
sian distribution N

(
0, σ2

)
, where σ2 = α

2ε(α) .
Since SUB-LDA conducts Poisson subsampling
before counting and noise injection, privacy budget
εsubsample(α) in each iteration is obtained by equa-
tion (3) and εsubsample(α). Intuitively, the smaller
the γ, the better the privacy amplification.

To discuss the efficiency improvement, we dis-
cover that the running time of each iteration is pro-
portional to the sum of sampling times for each
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Symbol Meaning
τ , β Hyper-parameters of Dirichlet distribution
G Text corpus

nkm, ntk Count of topic k in document m and count of word t in topic k
K Topic amount
V Amount of unique words in corpus
γ Subsampling ratio
M A randomized mechanism

M ◦ PoissonSubsample A randomized mechanism equipped with Poisson Subsampling
ε(α) RDP privacy loss of order α of a randomized mechanism in one iteration

εsubsample(α) RDP privacy loss of order α of a randomized mechanism equipped with Poisson Subsampling in one iteration
Nd The length of document d
t Running time of one CGS step for a single word
I Efficiency-privacy function

Table 1: Notations for SUB-LDA

document d in each iteration. Let Nd be the length
of document d and t be the time of conducting one
CGS for a single word. Then, the total average
time T of each iteration of CGS is

T = t ·
D∑
d=1

Ndγ (4)

Obviously, smaller γ induces shorter total time;
thus, CGS is more efficient. To evaluate privacy
amplification and efficiency improvement syntheti-
cally, we propose the efficiency–privacy function
I , which is defined as follows:

I = T · e(α−1)εsubsample (α). (5)

For a given text corpus dataset, a smaller value
of I indicates better efficiency and privacy ampli-
fication. In the following analysis, we omit the
constant t ·

∑D
d=1Nd, and I is simplified as the

following kernel:

I = γ · e(α−1)εsubsample (α). (6)

We find an important property of I , which is
expressed in Lemma 4.1.

Lemma 4.1. There exists a γ0 ∈ (0, 1], where
efficiency–privacy function I is monotonically in-
creasing in (0, γ0] and monotonically decreasing in
(γ0, 1].

Lemma 4.1 indicates that we could improve effi-
ciency and amplify privacy simultaneously by de-
creasing the value of γ in a certain range of subsam-
pling ratio γ. The proof of Lemma 4.1 is presented
in the appendix.

We plot properties of efficiency–privacy func-
tion I in Figure 1. We observe an extremum of
efficiency–privacy function I . Moreover, the value

(a) image of I (b) extremum of I
w.r.t α

(c) extremum of I
w.r.t σ

Figure 1: Properties of Efficiency Function I

of the extremum increases when order α increases.
However, the value of the extremum is unchanged
when noise scale σ increases.

4.2 Subsampling actually amplifies privacy?

Does Poisson subsampling actually amplify the pri-
vacy of HDP-LDA? The answer could be yes or no.
If we concentrate on one single iteration and fix the
total iteration number ITER, the privacy budget
actually shrinks, and we can conclude that Poisson
subsampling amplifies privacy. If we concentrate
on the whole training process of SUB-LDA, we
cannot reach the exact same conclusion. Poisson
subsampling actually amplifies privacy of each it-
eration of HDP-LDA. Nevertheless, the efficiency
improvement is at the cost of more iterations to
reach convergence (as the latent topics are updated
for a subset of words in a document). Thus, the
accumulated privacy loss ε = Iter · εsubsample(α)
of SUB-LDA may increase. We show results in our
experiments.

5 Experiment results

This section reports on our evaluation of SUB-
LDA. We implement our method on three real-
word datasets: 20 Newsgroups dataset (Lang,
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(a) 20Newsgroups (b) NIPS (c) ENRON

Figure 2: Speed-up Ratio with Respect to Subsampling Ratio

(a) 20Newsgroups (b) NIPS (c) ENRON

Figure 3: Perplexity Ratio with Respect to Subsampling Ratio

1995), NIPS1, and ENRON2. The statistics of these
datasets are shown in Table 2.

Dataset Amount of words Amount of unique words Amount of documents
20Newsgroups 908,262 138,203 9,740

NIPS 1,900,000 12,419 1,500
ENRON 6,400,000 28,102 37,861

Table 2: Statistics of Datasets

K = 100 SUB-LDA
Subsampling ratio Iter εsubsample(α) ε = Iter · εsubsample(α)

0.1 92 0.05 4.6
0.3 83 0.73 59.86
0.5 70 1.18 82.6
0.7 66 1.48 97.86
0.9 61 1.63 99.43
1 42 2 84

Table 3: Privacy Guarantee Difference under Conver-
gence (NIPS)

5.1 Efficiency improvement of SUB-LDA

In our experiments, we set the order α of RDP as
14 and the original privacy budget ε(α) = 2. We
vary the subsampling ratio γ from 0.1 to 0.9 with
the step being 0.2. Obviously, when γ = 1, SUB-
LDA is simply HDP-LDA. The topic amount varies
from 20 to 100 with the step being 20. We omit the
convergence condition and use ITER = 100 to
stop the iterations. We record the average running

1https://archive.ics.uci.edu/ml/datasets/bag+of+words
2https://archive.ics.uci.edu/ml/datasets/bag+of+words

time tsub of each SUB-LDA iteration and the aver-
age running time thdp of each HDP-LDA iteration.
The speed-up ratio is calculated as follows:

Speed-up ratio =
|tsub − thdp|

thdp
. (7)

The results are shown in Figure 2. We conclude
that SUB-LDA would have better efficiency if we
choose a smaller subsampling ratio. The amount of
topicK indicates the complexity of the LDA model.
Larger K often results in better efficiency improve-
ment, which indicates that SUB-LDA could be suit-
able for a complex LDA model.

5.2 Effectiveness difference between
SUB-LDA and HDP-LDA

We choose perplexity to evaluate the model’s utility.
We focus on the impacts of Poisson subsampling
of SUB-LDA on perplexity. After ITRE = 100
iterations, we record the perplexity persub of SUB-
LDA and the perplexity perhdp of HDP-LDA. We
utilize the perplexity ratio in equation (8) to show
the difference of effectiveness between SUB-LDA
and HDP-LDA. Lower perplexity always indicates
better generalization ability of the LDA model.
Subsampling has non-negligible impacts on the
model’s perplexity. Figure 3 shows that perplexity
would have a smaller difference when the value
of the subsampling ratio is larger. Furthermore,
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(a) 20Newsgroups (b) NIPS (c) ENRON

Figure 4: Convergence of SUB-LDA

(a) 20Newsgroups (b) NIPS (c) ENRON

Figure 5: Changes of Perplexity

we conclude that the effectiveness difference be-
tween SUB-LDA and HDP-LDA may be related to
the complexity of the LDA model. More complex
models often have bigger differences of perplexity.

Perplexity ratio =
|persub − perhdp|

perhdp
. (8)

5.3 Convergence difference between
SUB-LDA and HDP-LDA

In this subsection, we fix the topic amount as 100
and track the changes of perplexity during iter-
ations. The results are shown in Figure 4. A
smaller subsampling ratio results in higher perplex-
ity. Moreover, the convergence of SUB-LDA is
influenced by subsampling. Often SUB-LDA with
a larger subsampling ratio has a faster convergence
rate.

5.4 Privacy guarantee difference between
SUB-LDA and HDP-LDA under
convergence

In this subsection, the topic amount is fixed as
100. We utilize the convergence condition to stop
the burn-in process. Given i-th iteration, peri de-
notes the perplexity of this iteration. The difference
value of perplexity of the i-iteration is defined as
Di = |peri − peri−1|. Given a threshold D̂, we
consider that SUB-LDA reaches convergence if the

following condition is satisfied for some value T
and s:

Di ≤ D̂, i = T, T + 1, . . . , T + s. (9)

We use theorem 6 in (Zhu and Wang, 2019) to
approximate εsubsample(α) in each iteration. We
then calculate the accumulative privacy budget of
SUB-LDA, and the results of NIPS are shown in Ta-
ble 3. Unsurprisingly, εsubsample(α) shrinks when
the subsampling ratio decreases, but we obtain a
larger value of Iter. From Table 3, we observe
that the accumulative privacy losses of SUB-LDA
with a subsampling ratio of 0.9 and 0.7 are greater
than those with subsampling ratio of 1. The results
of Table 3 is to provide insights on the synthetical
impacts of iterations and subsampling ratio towards
privacy guarantee. Thus, in practice, we can find a
suitable subsampling ratio not the smallest ratio to
provide a rigorous privacy guarantee.

5.5 Relationship between efficiency–privacy
function and perplexity

Obviously, it is difficult to analyze properties of per-
plexity. Nevertheless, we discover that efficiency–
privacy function I tends to have similarities to per-
plexity. We show the values of perplexity with
respect to each dataset in Figure 5 after SUB-LDA
terminates. In Figure 1, we discover that the gra-
dient of I first increases and then decreases. The
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(a) 20Newsgroups (b) NIPS (c) ENRON

Figure 6: Perplexity Produced by AS Method

change rate (absolute value) of perplexity displayed
in Figure 5 also tends to increase first and then
decrease(these curves are concave first and then
convex). This is reasonable in practice, since the
improvements of efficiency and privacy are usu-
ally at the cost of variation of the model’s utility.
This indicates that analysis of perplexity could be
substituted for analysis of the efficiency–privacy
function.

5.6 An effective method to improve model’s
utility in practice

In our subsampling experiments, we discover that
the model’s perplexity produced by SUB-LDA usu-
ally tends to have few changes when the subsam-
pling ratio is small (e.g., γ = 0.1). To improve
utility in this case, we propose an AS method. The
AS method is based on the fact that a small subset
of frequent words has much higher probabilities
than the other words given a certain topic k. Thus,
we can increase the subsampling ratio of frequent
words of topic k while decreasing the subsampling
ratio of infrequent words. Give corpus dataset
G, we denote G = {N1, . . . , Nk, . . . NK}Kk=1

as the partition of G in terms of topics in the
i-th iteration. For each Nk =

∑V
t=1 n

t
k, the

AS method first constructs a frequent word sub-
set, namely,

{
t ∈ {1, 2, ..., V } :

∑
t n

t
k ≥ qNk

}
,

where q is fixed beforehand. For n-th wordwm,n =
t with topic zm,n = k in document dm, AS sets the
subsampling ratio as follows:

γit
∣∣
wm,n=t,zm,n=k

=

{
vγ
(

1
γ > v > 1

)
, t ∈

{
t :
∑

t n
t
k ≥ qNk

}
0, t /∈

{
t :
∑

t n
t
k ≥ qNk

}
(10)

Denote
∣∣Gsub∣∣ and

∣∣Ḡsub∣∣ as the size of the word
subset produced by the conventional subsampling
method (we call this a uniform subsample) and the

AS method. Then, we have

E
(∣∣Gsub∣∣)

E
(∣∣Ḡsub∣∣) =

1

vq
= η. (11)

Var
(∣∣Gsub∣∣)

Var
(∣∣Ḡsub∣∣) =

1− γ
qv(1− vγ)

. (12)

The AS method takes η as input. We apply the
AS method to each dataset under topic k = 20
and γ = 0.1. The results are shown in Figure
6. We observe that prominent improvements of
utility are achieved for NIPS and ENRON. For
20Newsgroups, we achieve similar utility, since the
scale of 20Newsgroups is small compared to NIPS
and ENRON.

Privacy guarantees for the uniform subsample
and the adaptive subsample are provided in Lemma
5.1.

Lemma 5.1. Suppose a randomized mechanism
M satisfies (ε, δ)-DP. M equipped with uniform
subsampling satisfies (ε′, δ′)-DP. M equipped with
adaptive subsampling satisfies (ε̄, δ̄)-DP. Then,

ε̄ ≤ ε′ − log(ηq), δ̄ ≤ γ

ηq
δ. (13)

6 Conclusion and Future Works

In this study, we combine Poisson subsampling
with HDP-LDA to improve efficiency and amplify
privacy in LDA model training. We find that sub-
sampling naturally improves efficiency. Moreover,
we propose a metric to evaluate the efficiency–
privacy improvement via efficiency–privacy func-
tion I . We discuss the properties of I . We then
conduct comprehensive experiments to evaluate
the efficiency improvements and privacy amplifica-
tion effects. In future works, we plan to combine
SUB-LDA with distributed CGS algorithms that
satisfy local DP to boost the efficiency and privacy
guarantee.
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A Appendix

Proof of Lemma 4.1. Let D and D′ be two
neighboring datasets where D′ = D ∪ {dn+1}
is satisfied. Denote µ1 = M(D) and µ2 =
M(D′). Given subsampling ratio γ and sup-
posing that p = M◦ PoissonSubsample (D)
and q = M◦ PoissonSubsample (D′), we have
e(α−1)·εsubsample(α) = Eq [(p/q)α]. Meanwhile,

Eq [(p/q)α] = Eµ0 [((1− γ) + γµ1/µ0)
α] .

(14)
Then,

I = γ · Eµ0 [((1− γ) + γµ1/µ0)
α] . (15)

We obtain the first derivative of I .

∂I
∂γ = Eµ0

[
1− γ + γ µ1µ0

]α
+αγEµ0

[(
µ1
µ0
− 1
)(

1− γ + γ µ1µ0

)α−1]
= Eµ0

[
1− γ + γ µ1µ0

]α
+ αEµ0

[
1− γ + γ µ1µ0

]α
−αEµ0

[
1− γ + γ µ1µ0

]α−1
(16)

Suppose that γ0 satisfy ∂I
∂γ0

= 0. To analyze
∂2I
∂γ20

, let

gα(γ) = Eµ0
[
1− γ + γ

µ1
µ0

]α
. (17)

Then,

(1 + α)gα (γ0) = αgα−1 (γ0) . (18)

We need the following lemma to decide the sign
of ∂2I

∂γ20
.

Lemma. For all integers α > 1, gα(γ) ≥
[gα−1(γ)]

α
α−1 .

Proof: Due to the convexity of f(x) =

x
α
α−1 (α > 1), we have

gα(γ) = Eµ0
[
1− γ + γ µ1µ0

]α
= Eµ0

([
1− γ + γ µ1µ0

]α−1) α
α−1

≥
(
Eµ0

[
1− γ + γ µ1µ0

]α−1) α
α−1

= [gα−1(γ)]
α
α−1

In particular, gα(γ) ≥ [g1(γ)]α. Moreover,

g1(γ) = Eµ0
[
1− γ + γ µ1µ0

]1
= 1. Thus,

gα(γ) ≥ [g1(γ)]α = 1.
We now decide the sign of ∂2I

∂γ20
.

∂2I

∂γ20

=
α(α− 1)

γ0
[gα (γ0)− 2gα−1 (γ0) + gα−2 (γ0)]−

2

γ
gα (γ0)

≤ α(α− 1)

γ0

[
gα (γ0)− 2gα−1 (γ0) + [gα−1 (γ0)]

α−2
α−1

]
− 2

γ
gα (γ0)

=
α(α− 1)

γ0
[gα (γ0)− (2− c)gα−1 (γ0)]−

2

γ
gα (γ0)

.

where c = [gα−1(γ)]
−1
α−1 . We have c ≥ 1. To-

gether with equation (14), we have
∂2I
∂γ20

= gα(γ0)
γ0

[
(1− c)α2 − α+ c− 2

]
.

Let h(α) = (1− c)α2−α+ c−2. When c ≥ 1,
h(α) ≤ h(2) = −3c < 0. Thus, ∂2I

∂γ20
< 0. This

proves Lemma 4.1.
Proof of Lemma 5.1. According to Theorem 13

in (Balle et al., 2020), we have

ε′ = log (1 + γ (eε − 1)) , δ′ ≤ γδ. (19)

ε̄ = log (1 + vγ (eε − 1)) , δ̄ ≤ vγδ. (20)

For ε′ and ε̄, we have
ε′ − ε̄ = log 1+γ(eε−1)

1+vγ(eε−1) ≥ log 1
v = log qη.

Thus,

ε̄ ≤ ε′ − log(ηq), δ̄ ≤ γ

ηq
δ. (21)

.


