
Findings of the Association for Computational Linguistics: EMNLP 2021, pages 1473–1482
November 7–11, 2021. ©2021 Association for Computational Linguistics

1473

An Edge-Enhanced Hierarchical Graph-to-Tree Network
for Math Word Problem Solving

Qinzhuo Wu, Qi Zhang∗, Zhongyu Wei
Shanghai Key Laboratory of Intelligent Information Processing,
School of Computer Science, Fudan University, Shanghai, China

(qzwu17,qz,zywei)@fudan.edu.cn

Abstract

Math word problem solving has attracted con-
siderable research interest in recent years. Pre-
vious works have shown the effectiveness of
utilizing graph neural networks to capture the
relationships in the problem. However, these
works did not carefully take the edge label
information and the long-range word relation-
ship across sentences into consideration. In
addition, during generation, they focus on the
most relevant areas of the currently generated
word, while neglecting the rest of the prob-
lem. In this paper, we propose a novel Edge-
Enhanced Hierarchical Graph-to-Tree model
(EEH-G2T), in which the math word problems
are represented as edge-labeled graphs. Specif-
ically, an edge-enhanced hierarchical graph
encoder is used to incorporate edge label infor-
mation. This encoder updates the graph nodes
hierarchically in two steps: sentence-level ag-
gregation and problem-level aggregation. Fur-
thermore, a tree-structured decoder with a split
attention mechanism is applied to guide the
model to pay attention to different parts of the
input problem. Experimental results on the
MAWPS and Math23K dataset showed that
our EEH-G2T can effectively improve perfor-
mance compared with state-of-the-art meth-
ods. 1

1 Introduction

Math word problem solving is an important natural
language processing (NLP) task that has recently
been attracting increasing research interests. Math
word problems are narrative text that describe
a scene with several math variables and ask a
question about an unknown quantity. A simple
example is illustrated in Figure 1. Based on the
given problem, the target is to infer the difference
between the number of boxes of apples and pears.

∗ Corresponding author.
1Code is available at https://github.com/

qinzhuowu/EEH_G2T

Problem: Store sold 360 kilograms of apples ,

240 kilograms of pears .

If a box of fruit weighs 24 kilograms ,

how many boxes of pears are less than apples ?

Expression: (360 / 24) – (240 / 24)

- / 240 24 / 360 34 - / 360 24 / 240 24

(a) Graph2Tree (b) EEH-G2T

neighbor neighbor

nmod

same
category

category

category

pear boxes

240/24

apple boxes

360/24

–

/

24240

/

24360

–

/

24360

/

24240

Figure 1: An example of a math word problem. The
top part of the figure shows the different types of edges
connected to the word “pear” in the graph. The bottom
part of the figure shows the expressions generated by
Graph2Tree (Zhang et al., 2020b) and EEH-G2T.

Previous works (Wang et al., 2017; Huang
et al., 2018; Wang et al., 2019) used sequence-
to-sequence (seq2seq) methods with an attention
mechanism (Bahdanau et al., 2014) to generate
math expression sequences from math word prob-
lems. To capture the structural information of math
expressions, many works (Liu et al., 2019; Xie
and Sun, 2019; Zhang et al., 2020a) treat math
expressions as binary trees and propose several
sequence-to-tree (seq2tree) frameworks. These
tasks are designed to obtain the pre-order sequence
of the expression tree, and they generate the current
node based on its parent node and sibling node
at each time step. Some works that represent
problems as graphs also show better performance.
Graph2Tree (Zhang et al., 2020b) connects each
number in the problem with its nearby nouns to
enrich the quantity representations. KA-S2T (Wu

https://github.com/qinzhuowu/EEH_G2T
https://github.com/qinzhuowu/EEH_G2T

1474

(a) Graph2Tree (b) EEH-G2T

Figure 2: The attention matrices of Graph2Tree and
EEH-G2T. Each row corresponds to a word in the
problem, and each column corresponds to a word in
the expression. The darker areas of the matrix indicate
higher attention scores.

et al., 2020) connects words with its category in the
external knowledge base to capture common sense
information.

Although these methods report promising results,
several challenges still remain. 1) Long-range word
relationships across sentences should be taken into
consideration. As shown in Figure 1, the word
“pear” in the second sentence should be associated
to the word “pear” in the last sentence. Without
long-range relationships, it is difficult for the model
to connect these two words that are 15 steps apart.
2) Previous methods did not carefully take the
edge label information into consideration. In
figure 1, the label on the edge between “kilograms”
and “pear” is nmod (noun compound modifier),
while the label “category” on the edge between
“apples” and “pears” means they belong to the
same category in the external knowledge base.
Such edge labels can also provide rich syntactic
and semantic information. 3) When generating
expressions, previous methods tend to focus on
the areas in the problem that are most relevant
to the currently generated words, and ignore the
semantic clues provided by the rest of the problem.
As shown in Figure 2, to generate “360” instead
of “240” at time step 3, the model needs to pay
attention to the entire problem to obtain important
clues that the current sub-expression “/360 24” is
the number of apple boxes and 360 is the weight
of the apples. However, previous methods focused
on the problem areas that are most relevant to the
currently generated word (i.e., the number 360

itself), without noticing the rest of the problem.
To tackle these challenges, we propose a novel

Edge-Enhanced Hierarchical Graph-to-Tree frame-
work (EEH-G2T) for math word problem solving.
EEH-G2T represents each math word problem
as a graph in which the nodes are connected
by labeled edges. To obtain the edge-aware
problem representations, we propose an edge-
enhanced hierarchical graph encoder that explicitly
incorporates edge label information. In addition,
the hierarchical encoder updates the nodes in two
steps: sentence-level aggregation and problem-
level aggregation. This hierarchical structure can
first capture the local relations between words
within the sentence and then capture the long-range
dependencies between words across sentences.
Further, we use a split attention mechanism to
guide the decoder to pay attention to different
parts of the entire input problem, not just the most
relevant part of the currently generated word.

The main contributions of this paper can be
summarized as follows:

• We propose an edge-enhanced hierarchical
graph encoder to incorporate edge label infor-
mation. Additionally, the encoder updates the
graph nodes in two steps, namely sentence-
level aggregation and problem-level aggrega-
tion.

• We propose a split attention mechanism to
guide the decoder to pay attention to different
parts of the entire input problem during the
generation.

• We conducted experiments on two commonly
used math word problem solving datasets,
MAWPS and Math23K. Experimental results
prove that our approach can effectively im-
prove the performance compared with state-
of-the-art methods.

2 Models

2.1 Problem Formulation

In this work, we focus on generating math expres-
sions for the given math word problems. We denote
the text of a math word problem as a sequence of
words and number symbols. X=(x1, x2, . . . , xm)
is a math word problem with m words. Our
model aims to generate a math expression Y=
(y1, y2, . . . , yT). Here, Y is a pre-order traversal

1475

apple pear

fruit

vegetable

food

store market

place

Dependency Tree from Stanford Parser Entity Relationship from Knowledge Base

Store sold 360 kilograms of apples , 240 kilograms of pears .

If a box of fruit weighs 24 kilograms , how many boxes of pears are less than apples ?

Math Word Problem Sequence

Math Word Problem Graph

Storesold

360

kilograms of apples

, 240

kilograms of pears

.

If

a

box of fruit weighs

kilograms

24

, how

many

boxes of pears are

less than

apples ?
same

same
samesame

selfself

neighbor

neighbor

nsubj

nummod
obj

nmod
nmod

category

sentence 1 sentence 3 sentence 2 sentence 4

self node neighbor node dependency category same wordEdge Types:

Figure 3: The procedure for construction of a edge-labeled graph is described here. For brevity, we omit some
self-node edges and the labels of some neighbor edges and dependency edges. Given a math word problem, we
first use the Stanford Corenlp toolkit to parse it into a dependency tree, and extract the relationships between nouns
from the external knowledge bases. Based on these, we construct the edge-labeled graph, as shown in the bottom
part of the figure (See Section 2.2 for more details).

sequence of a math expression tree, which can be
executed to generate the answer to problem X.

Formally, math word problem X can be repre-
sented by a graph G = (V, E), where V and E are the
set of nodes xi and the set of edges eij . Here, each
node in the graph is associated with a word xi in
the problem. eij ∈ E denotes that there is an edge
between the node pair (xi, xj). L(eij) denotes
the label of edge eij (e.g., self-node, category,
neighbor), see section 2.2 for more details.

2.2 Edge-labeled Graph

2.2.1 Graph Construction
This section introduces how to construct an edge-
labeled graph that contains both the local relations
between nodes within a sentence and the long-
range relations between nodes across sentences.
Our model extracts these relations from the prob-
lem’s dependency tree and external knowledge
base. We use the Stanford Corenlp toolkit 2

(Manning et al., 2014) to parse each math word
problem into a dependency tree. The toolkit
analyzes the grammatical structure of a sentence
and establishes relationships between “head” words
and words which modify those heads. In addition,
inspired by Wu et al. (2020), we collected word

2https://stanfordnlp.github.io/CoreNLP/

category information from external knowledge
bases. An illustrative example is shown in Figure
3. Specifically, given a math word problem X, its
dependency tree, and word category information,
our model constructs a graph according to the
following steps.

• Self node & Neighbor: We define each word
xi in the problem X as a node. Each word
node xi is connected to its adjacent word
nodes (xi−1, xi+1) in the problem. These
edges are labeled as “neighbor”. Also, to
incorporate the node’s own information into
the problem representations, we connect each
node to itself and label the edge as “self node”.

• Dependency (edges within sentences): The
dependency tree is a structured representa-
tion that contains various grammatical rela-
tionships between word pairs. Following
Zhang et al. (2020b), we prune the output
dependency tree to remove unimportant com-
ponents, that is, remove edges connected
to conjunctions, prepositions or punctuation.
Based on the dependency tree, we estab-
lish relationships between nodes within the
sentence, and keep the edge labels (e.g.,
nmod, nummod, appos). For example, “360”

1476

Store sold 360 kilograms of apples ,

240 kilograms of pears . …

neighbor
kilograms

pears

of

kilograms

of

apples
neighbor

neighbor

neighbor

same

category

nmod nmod

self self

self
selfself

self

sentence 2 sentence 1

… …

Graph Construction

𝐡𝐢−𝟏
𝟎

𝐡𝐢
𝟎

𝐡𝐢+𝟏
𝟎

𝐡𝐣−𝟏
𝟎

𝐡𝐣
𝟎

𝐡𝐣+𝟏
𝟎

Sentence-level Aggregation

𝐡𝐢−𝟏
𝟏

𝐡𝐢
𝟏

𝐡𝐢+𝟏
𝟏

𝐡𝐣−𝟏
𝟏

𝐡𝐣
𝟏

𝐡𝐣+𝟏
𝟏

Problem-level Aggregation

𝐞𝐢,𝐢−𝟏
𝟎

𝐞𝐢,𝐢+𝟏
𝟎

𝐞𝐢−𝟏,𝐢+𝟏
𝟎

𝐞𝐣,𝐣+𝟏
𝟎

𝐞𝐣−𝟏,𝐣+𝟏
𝟎

𝐞𝐣,𝐣−𝟏
𝟎

𝐞𝐢−𝟏,𝐣−𝟏
𝟎𝐞𝐢−𝟏,𝐢−𝟏

𝟎

𝐞𝐢+𝟏,𝐢+𝟏
𝟎

𝐞𝐢,𝐢
𝟎 𝐞𝐣,𝐣

𝟎

𝐞𝐣+𝟏,𝐣+𝟏
𝟎

𝐞𝐣−𝟏,𝐣−𝟏
𝟎

𝐞𝐢+𝟏,𝐣+𝟏
𝟎

Bi-LSTM

x1 x2 xi xi+1 xm

Embedding

𝐡𝟏 𝐡𝟐 𝐡𝐢 𝐡𝐢+𝟏 𝐡𝐦

Expression Aggregation

& Copy Mechanism

y2y1 y3 y4

Generated expression

- / 240 24

y1

y2y2

y4y3

y1

y2y2

y3

y1

y2y2y1
- - / - / 240 - / 240 24

Split Attention Mechanism

overall attention

𝐡𝟏 𝐡𝟐 𝐡𝐢 𝐡𝐢+𝟏 𝐡𝐦

𝐡𝟏 𝐡𝟐 𝐡𝐢 𝐡𝐢+𝟏 𝐡𝐦

split

attention k

𝐡𝐦−𝟏

𝐬𝐭 𝐫𝐭 𝒄𝐭

Split Attention Mechanism

split

attention 1
split

attention K

Edge-labeled Graph

(a) Edge-Enhanced Hierarchical Graph Encoder (b) Tree-structured Decoder

self node

neighbor node

dependency

category

same word

Figure 4: Main structure of our proposed EEH-S2T model. In Section 2.2, we first introduce how to construct
and initialize an edge-labeled graph for a math word word problem. The left side of this figure shows (a) an edge-
enhanced hierarchical graph encoder that updates the graph nodes in two steps, namely sentence-level aggregation
and problem-level aggregation (Section 2.3). The right side of this figure shows (b) a tree-structured decoder. The
decoder uses a split attention mechanism to guide the decoder to pay attention to different parts of the entire input
problem during generation (Section 2.4).

and “kilograms” are connected by the edge
“nummod” in Figure 3.

• Same & Category (edges across sentences):
To further capture the connection across sen-
tences, if the same word exists in two sen-
tences and it is a noun, then we connect these
two nodes and label the edge as “same”. If
two words belong to the same category in
the external knowledge base, we also add a
connection for their nodes and label the edge
as “category”. For example, “apples” and
“pears” are connected by the edge “category”
in Figure 3.

2.2.2 Graph Initialization

To initialize the node representations of the graph,
we use a BiLSTM (Hochreiter and Schmidhu-
ber, 1997) to encode the words in the math
word problem X=(x1, x2, . . . , xm). Here, H0 =
(h0

1,h
0
2, . . . ,h

0
m) ∈ Rm∗d is the initial node

representations of its graph G, where m is the
number of nodes and d is the dimension of the node
representation. The representation h0

i of node xi is

calculated as follows:

h0
i = BiLSTM(Embed(xi),h

0
i−1), (1)

where Embed(·) is an embedding layer.
For each edge eij , we initialize the edge repre-

sentation e0ij based on the edge embedding and its
neighbor node representations h0

i ,h
0
j :

e0ij = We[Embed(eij) : h
0
i : h0

j], (2)

where We is a weight matrix and [:] is the
concatenation operation.

2.3 Edge-Enhanced Hierarchical Graph
Encoder

After initializing the graph, EEH-G2T uses an edge-
enhanced hierarchical graph encoder to obtain the
edge-aware problem representations. It hierarchi-
cally updates the nodes in two steps: sentence-level
aggregation and problem-level aggregation. We
divide math word problems into short sentences
based on commas and periods. For example, the
problem in Figure 1 has four sentences.
Sentence-level Aggregation.

1477

To capture the local relations between words,
EEH-G2T first recursively aggregate the node
representation with its related nodes within the
sentence. Let A denote the local relationship
matrix, where Aij ∈ {0, 1} denotes whether there
is an edge between xi and xj . Formally, Aij = 1 if
eij ∈ E and xi, xj in the same sentence, otherwise
Aij = 0. The initial node representations H0 =
(h0

1,h
0
2, . . . ,h

0
m) are aggregated with a two-layer

graph convolutional network (GCN) (Kipf and
Welling, 2017). The aggregation functions are as
follows:

H1 = σ(A H0Wg). (3)

Here, Wg is a weight matrix and σ is a relu
activate function. After sentence-level aggrega-
tion, we obtain the node representations H1 =
(h1

1,h
1
2, . . . ,h

1
m).

Problem-level Aggregation.
Then, EEH-G2T use an attentive problem-level

aggregation to capture long-range dependencies
across sentences. Inspired by GAT (Veličković
et al., 2018), we use the multi-head attention in
GAT with M independent attention mechanisms:

βij = σ(wT
a [Wah

l
i : Wbh

l
j : Wce

0
ij]),

αij =
exp(βij)∑

eij∈E exp(βij)
,

hi = ||
1,...,M

∑
eij∈E

αijWjh
1
j .

(4)

Here, wT
a , Wa,Wb,Wc,Wj are weight vector and

matrices. σ is a LeakyRelu activate function (Xu
et al., 2015). || is the concatenation operation.
αij is the normalized attention weight of the node
xj for node xi via the softmax function. After
problem-level aggregation, we obtain the final
problem representations H = (h1,h2, . . . ,hm).

2.4 Tree-structured Decoder
The structure of the decoder is similar to other state-
of-the-art Seq2Tree models (Xie and Sun, 2019;
Zhang et al., 2020b; Wu et al., 2020). The decoder
is an attention-based Gated Recurrent Unit (GRU)
(Chung et al., 2014) whose goal is to generate pre-
order traversal of expression trees. The hidden state
st is updated as follows:

st+1 = BiLSTM([Embed(yt) : ct : rt], st).
(5)

At time step 1, we use the last problem represen-
tations hm to initialize the decoder hidden state

s1. Here, Embed(yt) denotes the embedding of the
last generated word yt; ct denotes the context state
of the problem representations, and rt denotes the
context state of the currently generated expression.
Split Attention Mechanism.

Figure 4 shows the input of our proposed split
attention mechanism, which is the final problem
representations of the graph encoder. EEH-G2T
first uses an attention mechanism to compute
the overall attention vector α̂ on the problem
representations. Then, EEH-G2T divides the
input math word problem into K parts, conducts
attention operations on each part, and obtains K
split attention vectors (α1, α2, . . . , αK). The size
of each split attention vector is R(m/K). In Figure
1, when the decoder generates y3=360, EEH-G2T
notices that the word most relevant to the current
decoder state is “360” in the first sentence. At
the same time, EEH-G2T obtains crucial semantic
clues from the other parts, that is, the problem asks
how many pear boxes are less than the apple boxes.
Based on K attention vectors, the problem context
state ct is calculated as follows:

α̂ti = softmax(Ws[st : rt] +Whhi),

αk
ti = softmax(Ws[st : rt] +Whhi+km

K
),

ct =

m∑
i=1

α̂tihi +

K∑
k=1

m/K∑
i=1

αk
tihi+km

K
,

(6)

where Ws,Wh are the weight matrices. αk
ti denotes

the attention distribution on the k-th part of the
problem representations at time step t.
Expression Aggregation Mechanism.

Following (Wu et al., 2020), we use a state
aggregation mechanism to compute the expression
context state rt:

rt+1 = σ(Wr[rt : rt,p : rt,l : rt,r]), (7)

σ is a sigmoid function and Wr is a weight matrix.
At time step 1, we use the decoder state s1 to
initialize expression context state r1. For each node
in the currently generated expression tree, rt,p, rt,l
and rt,r represent the expression context state of
the parent node, left child node, and right child
node of the current node. If the current node does
not have parent or child node at this time step, we
pad it with a PAD vector.

Finally, we use a copying mechanism (Gulcehre
et al., 2016) so that the model either generate a
word from the vocabulary or copy a word from

1478

the input problem X. At time step t, based on
the decoder state st, the problem context state
ct and the expression context state rt , EEH-
G2T calculates a copy gate value gt ∈ (0, 1) to
determine whether the word yt is generated or
copied:

gt = σ(Wsst +Wcct +Wrrt),

Pc(yt) =
∑
yt=xi

α̂ti,

Pg(yt) = softmax(Wg[st : ct : rt]),

P(yt|y<t,X) = gtPc(yt)+(1−gt)Pg(yt).

(8)

Ws,Wc,Wr and Wg are weight matrices. α̂ti

is the overall attention vector in the split atten-
tion mechanism. The probability distribution
P(yt|y<t,X) of generating yt is calculated over the
copy distribution Pc(yt) and generate distribution
Pg(yt).

2.5 Training
We train the model with the cross-entropy loss,
defined as:

L = −
T∑
t=1

logP(yt|y<t,X). (9)

During the inference, we use beam search to
generate final expression. At time step t, if yt is an
operator, the current node is an internal node, and
the model continues to generate its child nodes. If
yt is a number, it represents a leaf node with no
child node. Once the children of all the internal
nodes have been generated, the generated expres-
sion sequence Y= {y1, y2, . . . , yT } is transformed
into an expression tree, and the decoding process
is terminated.

3 Experiments

3.1 Datasets
We evaluated our model on two commonly used
math word problem datasets, MAWPS (Koncel-
Kedziorski et al., 2016) with 2,373 problems and
Math23K (Wang et al., 2017) with 23,162 prob-
lems. We adopt the data preprocessing provided by
Wu et al. (2020). Following previous studies (Xie
and Sun, 2019; Li et al., 2020; Wu et al., 2020), we
use the same data split for the train/dev/test set.

The Stanford CoreNLP toolkit is used for depen-
dency parsing. Hownet (Dong et al., 2010) and
Cilin (Mei, 1985) are used as external knowledge

bases. We choose words that appear more than 5
times in the training set or appear as edge labels
to build a vocabulary, and replace words that are
not in the vocabulary with a UNK token. We use
answer accuracy as the evaluation metric.

3.2 Implementation Details

We used Pytorch for our implementation 3. We
used 300-dimensional Glove word embeddings
(Pennington et al., 2014). The hidden size is 512.
The batch size is 64. The number of heads M in
problem-level aggregation is 8. The number K of
split attention vectors is 2. We set the learning rate
of the Adam optimizer (Kingma and Ba, 2014) to
0.001, and the dropout is 0.5.

During training, it took 120 epochs to train the
model. During decoding, we used a beam search
with a beam size of 5. We used the same parameter
settings for both Math23K and MAWPS datasets.
The hyper-parameters are tuned on the valid set.

3.3 Baselines

We compare the performance of our model with the
following baselines: DNS (Wang et al., 2017) is a
seq2seq model that consists of a two-layer GRU
encoder and a two-layer LSTM decoder. Math-
EN (Wang et al., 2018) is a seq2seq model with
a bidirectional LSTM encoder and an attention
mechanism. Recu-RNN (Wang et al., 2019) uses
recursive neural networks on the predicted tree
structure templates. Tree-Dec (Liu et al., 2019) is
a seq2tree model with a tree-structured decoder,
which generates each node based on its parent
and sibling node. GTS (Xie and Sun, 2019) is
a seq2tree model that generates expression trees
in a goal-driven manner. It generates each node
based on its parent node and its left sibling subtree
embedding. KA-S2T (Wu et al., 2020) is a graph-
to-tree model with commonsense knowledge from
the external knowledge base. It uses a state
aggregation mechanism to recursively aggregate
neighbors of each node in the expression tree.
Graph2Tree (Zhang et al., 2020b) is a graph-to-
tree model that leverages the nouns nearby the
numbers to enrich the quantity representations in
the problem.

3.4 Results Analysis

Table 1 summarizes the performance of our EEH-
G2T in comparison with other baselines. We

3https://pytorch.org/

1479

Models MAWPS Math23K
DNS 59.5% 58.1%
Math-EN 69.2% 66.7%
Recu-RNN 66.8% 66.9%
Tree-Dec - 69.0%
GTS 82.6% 75.6%
KA-S2T - 76.3%
Graph2Tree 83.7% 77.4%
EEH-G2T 84.8% 78.5%

Table 1: Answer accuracy of EEH-G2T and other
state-of- the-art models on the MAWPS and Math23K
datasets.

Models Math23K
EEH-G2T (full model) 78.5%

only sentence-level aggregation 77.4%
only problem-level aggregation 77.8%
remove graph structure 76.5%
remove edge label information 78.1%
remove split attention mechanism 77.7%

Table 2: Ablation analysis of edge-enhanced hierarchi-
cal graph encoder and split attention mechanism used
in EEH-G2T.

can observe that: 1) Two graph-to-tree model,
KA-S2T and Graph2Tree, performed significantly
better than the Seq2Tree model GTS, showing that
the graph structure in the encoder is effective in
enriching the problem representations. 2) Our
proposed EEH-G2T outperformed all the other
baselines, which proved the effectiveness of using
an edge-enhanced hierarchical graph encoder and
split attention mechanism.

3.5 Ablation Study

Effect of Hierarchical Graph Encoder.
As shown in Table 2, we estimate the ef-

fectiveness of the proposed hierarchical graph
encoder. From the results, both sentence-level ag-
gregation and problem-level aggregation improve
the performance. Removing the sentence-level
aggregation reduces answer accuracy by 1.1%, and
removing the problem-level aggregation reduces
answer accuracy by 0.7%. When we remove
the both aggregation mechanisms and use the
initial node representations as the final problem
representations, the answer accuracy decreases by
2.0%. We believe that the superior performance
of the hierarchical graph encoder is because it
captures both the local relations between words

Models Math23K
EEH-G2T (full model) 78.5%

- self node 64.2%
- neighbor node 77.4%
- dependency 76.9%
- category 77.6%
- same word 76.0%

Table 3: Ablation analysis on reducing the edge
categories used in EEH-G2T.

Num Math23K
K=0 77.7%
K=1 78.1%
K=2 78.5%
K=3 77.5%
K=4 76.2%
K=5 74.8%

Table 4: The performance of EEH-G2T with different
number of split vectors on the Math23K valid set.

within a sentence and the long-range relations
between words across sentences.
Effect of Edge Label Information and Split
Attention Mechanism.

To prove the effectiveness of edge label informa-
tion and split attention mechanism in the proposed
EEH-G2T, we conduct ablation experiments on the
Math23K dataset as shown in Table 2. We observe
a slight accuracy drop by 0.4% after removing the
edge label information, demonstrating that edge
labels provides syntactic and semantic information
to enrich the problem representations. Moreover,
removing the split attention mechanism leads to a
drop by 0.8%, which verifies the effectiveness of
using a split attention mechanism.
Effect of Different Edge Categories.

Table 3 shows the performance when removing
one edge category at a time. We can see that
all the edge categories have positive effects on
the model performance. The performance of the
model without “self node” edges drops the most,
because “self node” allows the model to keep
the information of the node itself. Additionally,
removing “category” and “neighbor node” edges
will slightly reduce model performance. Without
“dependency” and “same word” edges, model
accuracy will drop to 76.9 % and 76.0%.
Split Number in Split Attention Mechanism.

To explore the impact of the number K of split
vectors, we conduct the parameter experiment on

1480

Problem 1: In a library, science books account for 20\% of the collection,

story books account for 1/3 of the collection, and there are 500 fewer science

books than story books. How many total books are there in the library?

Graph2Tree: / 500 - 20% (1/3) EEH-G2T: / 500 - (1/3) 20%

Problem 2: Alan produced 648 machine parts in 8 hours , Ben produced 72

machine parts in 4 hours. How many more parts does Alan produce per hour

than Ben?

Graph2Tree: - / 72 4 / 648 8 EEH-G2T: - / 648 8 / 72 4

Problem 1 Problem 2

(a) Graph2Tree (b) EEH-G2T (a) Graph2Tree (b) EEH-G2T

Figure 5: Two examples of generated expressions by
Graph2Tree (Zhang et al., 2020b) and EEH-G2T.

the Math23K valid set by varying the split number
K from 0 to 5. As shown in Table 4, when
the number K increases from 0 to 2, noticeable
improvements are remarked on answer accuracy.
These result once again confirms the effectiveness
of the split attention mechanism because it allows
the model to pay attention to different parts of the
input problem. The performance starts to drop
since K ≥ 3. This is probably because more splits
means that the problem is split into more parts,
so that the model can obtain more information.
However, too many splits may break the problem
into small fragments, leading to noise. We set the
number K of split vectors to 2 in other experiments.

3.6 Case Study

Figure 5 lists two examples generated by
Graph2Tree and our EEH-G2T model. In Problem
1, Graph2Tree missed the information that there
are fewer science books than story books, and
incorrectly generated “- 20% (1/3)”. With split
attention mechanism, EEH-G2T can better capture
this information from the enatire problem. In
Problem 2, Graph2Tree incorrectly uses Ben’s
production speed to subtract Alan’s production
speed. With hierarchical graph encoder, EEH-G2T
can build long-range relations across sentences and
therefore generate correct results.

4 Related Work

Math Word Problem Solving: Solving math
word problems has long been a very popular task
and various methods have been proposed in the

past few years (Ling et al., 2017; Wang et al., 2017,
2018). Previous methods usually treated the math
word problem as a sequence, and use the same
linear encoder to encode math word problems (Liu
et al., 2019; Xie and Sun, 2019). Recently, many
works that treat math word problems as graphs have
shown better performance. Zhang et al. (2020b)
connects each number in the problem with nearby
nouns to enrich the problem representations. Wu
et al. (2020) connects words that belong to the
same category in the external knowledge base
to capture common sense information. Li et al.
(2020) construct an input graph from both the math
problem and its corresponding dependency tree
to incorporate structural information. However,
these methods only capture the local neighbor
information of nodes as additional features to
enrich the problem representations and ignore the
long-range relations across sentences.

In this paper, we propose an edge-enhanced
hierarchical graph encoder that captures both the
local relations between words within a sentence
and the long-range relations between words across
sentences. To further guide the decoder to pay
attention to different parts of the entire input
problem, we propose a split attention mechanism.
Graph Neural Networks: Many works on graph
neural networks (GNNs) have been applied to
a variety of tasks in recent years, such as node
classification (Veličković et al., 2018; Klicpera
et al., 2019), relation extraction (Zhang et al.,
2018; Sahu et al., 2019), and code summarization
(Zügner et al., 2021; Liu et al., 2021). Sahu et al.
(2019) proposed a labeled edge graph convolutional
neural network model on a document-level graph
for inter-sentence relation extraction. (Cui et al.,
2020) simultaneously exploits syntactic structure
and typed dependency labels to improve neural
event detection. Inspired by such works, we
also leverage edge label information to enrich the
problem representations.

5 Conclusion

In this study, we proposed a novel edge-enhanced
hierarchical graph-to-tree model called EEH-G2T
for the math word problem solving task. We
used an edge-enhanced hierarchical graph encoder
that updates the graph nodes in two steps, namely
sentence-level aggregation and problem-level ag-
gregation. Additionally, edge label information
was incorporated into the model to enrich the

1481

problem representations. We proposed a split
attention mechanism to guide the decoder to pay
attention to different parts of the entire input
problem during generation. Experimental results
confirmed that the proposed model, EEH-G2T,
outperformed other state-of-the-art models.

Acknowledgments

The authors wish to thank the anonymous reviewers
for their helpful comments. This work was partially
funded by China National Key R&D Program
(No. 2018YFB1005104), National Natural Science
Foundation of China (No. 62076069, 61976056),
Shanghai Municipal Science and Technology Ma-
jor Project (No.2021SHZDZX0103).

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation
of gated recurrent neural networks on sequence
modeling. In NIPS 2014 Workshop on Deep
Learning, December 2014.

Shiyao Cui, Bowen Yu, Tingwen Liu, Zhenyu Zhang,
Xuebin Wang, and Jinqiao Shi. 2020. Edge-
enhanced graph convolution networks for event
detection with syntactic relation. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 2329–2339, Online. Association for
Computational Linguistics.

Zhendong Dong, Qiang Dong, and Changling Hao.
2010. HowNet and its computation of meaning. In
Coling 2010: Demonstrations, pages 53–56, Beijing,
China. Coling 2010 Organizing Committee.

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Point-
ing the unknown words. In Proceedings of
the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 140–149, Berlin, Germany. Association for
Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9:1735–
80.

Danqing Huang, Jin-Ge Yao, Chin-Yew Lin, Qingyu
Zhou, and Jian Yin. 2018. Using intermediate
representations to solve math word problems. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 419–428, Melbourne, Australia.
Association for Computational Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Thomas N Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In International Conference on Learning
Representations.

Johannes Klicpera, Stefan Weiß enberger, and Stephan
Günnemann. 2019. Diffusion improves graph
learning. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates,
Inc.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini,
Nate Kushman, and Hannaneh Hajishirzi. 2016.
MAWPS: A math word problem repository. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1152–1157, San Diego, California. Association for
Computational Linguistics.

Shucheng Li, Lingfei Wu, Shiwei Feng, Fangli Xu,
Fengyuan Xu, and Sheng Zhong. 2020. Graph-to-
tree neural networks for learning structured input-
output translation with applications to semantic
parsing and math word problem. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 2841–2852, Online. Association for
Computational Linguistics.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil
Blunsom. 2017. Program induction by rationale
generation: Learning to solve and explain algebraic
word problems. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 158–167,
Vancouver, Canada. Association for Computational
Linguistics.

Qianying Liu, Wenyv Guan, Sujian Li, and Daisuke
Kawahara. 2019. Tree-structured decoding for
solving math word problems. In Proceedings of the
2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2370–2379, Hong Kong,
China. Association for Computational Linguistics.

Shangqing Liu, Yu Chen, Xiaofei Xie, Jing Kai
Siow, and Yang Liu. 2021. Retrieval-augmented
generation for code summarization via hybrid
{gnn}. In International Conference on Learning
Representations.

Christopher D. Manning, Mihai Surdeanu, John
Bauer, Jenny Finkel, Steven J. Bethard, and David
McClosky. 2014. The Stanford CoreNLP natural
language processing toolkit. In Association for
Computational Linguistics (ACL) System Demon-
strations, pages 55–60.

Jiaju Mei. 1985. Tongyi ci cilin. Shangai cishu
chubanshe.

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1412.3555v1
https://arxiv.org/abs/1412.3555v1
https://arxiv.org/abs/1412.3555v1
https://doi.org/10.18653/v1/2020.findings-emnlp.211
https://doi.org/10.18653/v1/2020.findings-emnlp.211
https://doi.org/10.18653/v1/2020.findings-emnlp.211
https://www.aclweb.org/anthology/C10-3014
https://doi.org/10.18653/v1/P16-1014
https://doi.org/10.18653/v1/P16-1014
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/P18-1039
https://doi.org/10.18653/v1/P18-1039
https://arxiv.org/abs/1412.6980v5
https://arxiv.org/abs/1412.6980v5
https://openreview.net/pdf?id=SJU4ayYgl
https://openreview.net/pdf?id=SJU4ayYgl
https://openreview.net/pdf?id=SJU4ayYgl
https://proceedings.neurips.cc/paper/2019/file/23c894276a2c5a16470e6a31f4618d73-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/23c894276a2c5a16470e6a31f4618d73-Paper.pdf
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/2020.findings-emnlp.255
https://doi.org/10.18653/v1/2020.findings-emnlp.255
https://doi.org/10.18653/v1/2020.findings-emnlp.255
https://doi.org/10.18653/v1/2020.findings-emnlp.255
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/D19-1241
https://doi.org/10.18653/v1/D19-1241
https://openreview.net/forum?id=zv-typ1gPxA
https://openreview.net/forum?id=zv-typ1gPxA
https://openreview.net/forum?id=zv-typ1gPxA
http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010

1482

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Sunil Kumar Sahu, Fenia Christopoulou, Makoto
Miwa, and Sophia Ananiadou. 2019. Inter-
sentence relation extraction with document-level
graph convolutional neural network. In Proceedings
of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4309–4316,
Florence, Italy. Association for Computational
Linguistics.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In International
Conference on Learning Representations.

Lei Wang, Yan Wang, Deng Cai, Dongxiang Zhang,
and Xiaojiang Liu. 2018. Translating a math word
problem to a expression tree. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 1064–1069,
Brussels, Belgium. Association for Computational
Linguistics.

Lei Wang, Dongxiang Zhang, Jipeng Zhang, Xing
Xu, Lianli Gao, Bing Tian Dai, and Heng Shen.
2019. Template-based math word problem solvers
with recursive neural networks. Proceedings of the
AAAI Conference on Artificial Intelligence, 33:7144–
7151.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
845–854, Copenhagen, Denmark. Association for
Computational Linguistics.

Qinzhuo Wu, Qi Zhang, Jinlan Fu, and Xuanjing
Huang. 2020. A knowledge-aware sequence-to-tree
network for math word problem solving. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
7137–7146, Online. Association for Computational
Linguistics.

Zhipeng Xie and Shichao Sun. 2019. A goal-driven
tree-structured neural model for math word prob-
lems. In Proceedings of the Twenty-Eighth Inter-
national Joint Conference on Artificial Intelligence,
IJCAI-19, pages 5299–5305. International Joint
Conferences on Artificial Intelligence Organization.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li.
2015. Empirical evaluation of rectified activa-
tions in convolutional network. arXiv preprint
arXiv:1505.00853.

Jipeng Zhang, Roy Ka-Wei Lee, Ee-Peng Lim, Wei
Qin, Lei Wang, Jie Shao, and Qianru Sun. 2020a.

Teacher-student networks with multiple decoders
for solving math word problem. In Proceedings
of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI-20, pages 4011–
4017. International Joint Conferences on Artificial
Intelligence Organization. Main track.

Jipeng Zhang, Lei Wang, Roy Ka-Wei Lee, Yi Bin, Yan
Wang, Jie Shao, and Ee-Peng Lim. 2020b. Graph-
to-tree learning for solving math word problems.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
3928–3937, Online. Association for Computational
Linguistics.

Yuhao Zhang, Peng Qi, and Christopher D. Manning.
2018. Graph convolution over pruned dependency
trees improves relation extraction. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 2205–2215,
Brussels, Belgium. Association for Computational
Linguistics.

Daniel Zügner, Tobias Kirschstein, Michele Catasta,
Jure Leskovec, and Stephan Günnemann. 2021.
Language-agnostic representation learning of source
code from structure and context. In International
Conference on Learning Representations.

https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/P19-1423
https://doi.org/10.18653/v1/P19-1423
https://doi.org/10.18653/v1/P19-1423
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.18653/v1/D18-1132
https://doi.org/10.18653/v1/D18-1132
https://doi.org/10.1609/aaai.v33i01.33017144
https://doi.org/10.1609/aaai.v33i01.33017144
https://doi.org/10.18653/v1/D17-1088
https://doi.org/10.18653/v1/2020.emnlp-main.579
https://doi.org/10.18653/v1/2020.emnlp-main.579
https://doi.org/10.24963/ijcai.2019/736
https://doi.org/10.24963/ijcai.2019/736
https://doi.org/10.24963/ijcai.2019/736
https://arxiv.org/abs/1505.00853
https://arxiv.org/abs/1505.00853
https://doi.org/10.24963/ijcai.2020/555
https://doi.org/10.24963/ijcai.2020/555
https://doi.org/10.18653/v1/2020.acl-main.362
https://doi.org/10.18653/v1/2020.acl-main.362
https://doi.org/10.18653/v1/D18-1244
https://doi.org/10.18653/v1/D18-1244
https://openreview.net/forum?id=Xh5eMZVONGF
https://openreview.net/forum?id=Xh5eMZVONGF

