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Abstract

A critical point of multi-document summariza-
tion (MDS) is to learn the relations among var-
ious documents. In this paper, we propose a
novel abstractive MDS model, in which we
represent multiple documents as a heteroge-
neous graph, taking semantic nodes of different
granularities into account, and then apply a
graph-to-sequence framework to generate sum-
maries. Moreover, we employ a neural topic
model to jointly discover latent topics that can
act as cross-document semantic units to bridge
different documents and provide global infor-
mation to guide the summary generation. Since
topic extraction can be viewed as a special
type of summarization that “summarizes” texts
into a more abstract format, i.e., a topic dis-
tribution, we adopt a multi-task learning strat-
egy to jointly train the topic and summariza-
tion module, allowing the promotion of each
other. Experimental results on the Multi-News
dataset demonstrate that our model outperforms
previous state-of-the-art MDS models on both
Rouge metrics and human evaluation, mean-
while learns high-quality topics.

1 Introduction

Multi-document summarization (MDS) is the task
to create a fluent and concise summary for a collec-
tion of thematically related documents. Compared
to single document summarization, it requires the
ability to incorporate the perspective from multiple
sources and therefore is arguably more challenging
(Lin and Ng, 2019). Broadly, existing studies can
be classified into two categories: extractive and ab-
stractive. Extractive approaches directly select im-
portant sentences from the input documents, which
is usually regarded as a sentence labeling (Nallapati
et al., 2016; Zhang et al., 2018; Dong et al., 2018)
or sentence ranking task (Narayan et al., 2018). By
contrast, abstractive models typically use the nat-
ural language generation technology to produce
a word-by-word summary. In general, extractive

methods are more efficient and can avoid gram-
matical errors (Cui et al., 2020), while abstractive
methods are more flexible and human-like because
they can generate absent words(Lin and Ng, 2019).

Recently, with the development of representa-
tion learning for NLP (Vaswani et al., 2017; De-
vlin et al., 2018) and large-scale datasets (Fabbri
et al., 2019), some studies have achieved promis-
ing results on abstractive MDS (Liu and Lapata,
2019; Jin et al., 2020). Nevertheless, we found
there are two limitations that have not been ad-
dressed by previous studies. First, some works
simply concatenate multiple documents into a flat
sequence and then apply single-document summa-
rization approaches (Liu et al., 2018; Fabbri et al.,
2019). However, this paradigm fails to consider
the hierarchical document structures, which plays
a key role in MDS task (Jin et al., 2020). Also,
the concatenation operation inevitably produces
a lengthy sequence, and encoding long texts for
summarization is a challenge (Cohan et al., 2018).

Second, when dealing with multiple documents,
a critical point is to learn the cross-document rela-
tions. Some studies address this problem by mining
the co-occurrence words or entities (Wang et al.,
2020a), which can hardly capture implicit asso-
ciations due to the diverse language expressions.
Some other studies (Jin et al., 2020; Liu and Lap-
ata, 2019) first generate low-dimensional vectors
in sentence- or paragraph-level and then build in-
teraction based on these highly compressed repre-
sentations. These methods inevitably result in the
loss of large amounts of fine-grained interaction
features and would damage the interpretability of
models. Therefore, how to learn the relation across
documents effectively remains an open question.

To shed lights on these missing points, this pa-
per proposes a novel abstractive MDS model that
marries topic modeling into abstractive summary
generation. The motivation is that both tasks aim
to distil salient information from massive text and
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therefore could provide complementary features
for each other. Concretely, we jointly optimize
a neural topic model (NTM) (Miao et al., 2017;
Srivastava and Sutton, 2017) that learns topic distri-
bution of source documents and corpus-level topic
representations, and an abstractive summarizer that
incorporates latent topics to summary generation
process. In the encoding process, we represent
multiple documents as a heterogeneous graph con-
sisting of word, topic, and document nodes and en-
code it with a graph neural network to capture the
interactions among different semantic units. In the
decoding process, we devise a topic-aware decoder
that leverages learned topics to guide the summary
generation. We train the two modules with a multi-
task learning framework, where an inconsistency
loss is applied to penalize the difference between
the topic distribution of source documents and that
of generated summaries. It encourages the sum-
marizer to generate a summary that is thematically
consistent with its source documents and also helps
the two modules learn from each other. In this man-
ner, our model is learned such that better topics can
yield better summaries and vice versa.

We conduct throughout experiments on the re-
cently released Multi-News dataset (Fabbri et al.,
2019). The results demonstrate the effectiveness
and superiority of our model. To sum up, the con-
tributions of this paper are threefolds:

1) To the best of our knowledge, we carry out
the first systematic study on jointly modeling topic
inference and abstractive MDS and demonstrate
the positive mutual effect between the two tasks.

2) We propose a novel MDS model that joint
optimizes a neural topic model and an abstractive
summarizer. We propose an inconsistency loss to
penalize the disagreement between the two mod-
ules and help them learn from each other.

3) Experimental results on the Multi-News
dataset demonstrate that our model achieves the
state-of-the-art performance on both Rouge scores
and human evaluation, meanwhile learns high-
quality topics.

2 Related Work

Multi-document summarization is a challenging
subtask of text summarization with a long history.
Many previous methods are extractive partly due
to the lack of sufficient training data. These meth-
ods usually compute sentence salience over graph
structures (Mihalcea and Tarau, 2004; Wang et al.,

2020a). Abstractive MDS studies have been fueled
by the recent development of large-scale datasets
(Fabbri et al., 2019) and representation learning of
NLP (Vaswani et al., 2017). Among them, hierar-
chical networks (Liu and Lapata, 2019) and graph
neural networks (Jin et al., 2020) are widely used
to capture the cross-document relations. However,
most of them build interaction based on word- or
paragraph-level representations, which are not flex-
ible or straightforward. In comparison, we propose
to model multiple documents more effectively by
mining their subtopics.

Datasets for multi-document summarization Re-
cently, Fabbri et al. (2019) released the first large-
scale news dataset for MDS. Each article is col-
lected from real-life scenarios and the golden sum-
maries are written by human, which ensures the
data quality. Prior to them, some studies tried to
construct dataset in automatic manners. For exam-
ple, Liu et al. (2018) and Liu and Lapata (2019)
built datasets based on Wikipedia pages, regarding
the first section as the summary and others as dif-
ferent documents. However, modeling the relations
among different documents is a different task from
modeling that of paragraphs from a same document.
Therefore, the generalization ability of models built
on such data could be questionable. For this reason,
we do not consider such auto-constructed datasets
but focus on the Multi-News dataset curated by
human.

Topic modeling for text summarization Topic
model is widely used for document modeling. Nev-
ertheless, few studies have applied it in summa-
rization task. Previous studies regarded topical dis-
tributions as additional features to enrich word or
sentence representations (Wei, 2012; Narayan et al.,
2018; Wang et al., 2020b). However, these meth-
ods use a pipeline process where topic extraction
and summary generation are separately performed.
In comparison, we adopt a multi-task learning strat-
egy so that the two tasks can learn complemen-
tary features from each other. Recently, Cui et al.
(2020) has applied NTM to extractive summariza-
tion. Though inspired by it, the motivation and
proposed method of this study differ from it by a
large margin. Cui et al. (2020) use latent topics
to preselect salient sentences, while we use them
to capture cross-document relations for abstractive
MDS. Besides, Cui et al. (2020) solely explores the
effect of topic modeling on summarization, while
we systematically explore their interplay.
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Figure 1: An illustration of the proposed model (TG-MultiSum). The summarizer consists of a document graph
encoder (left bottom) to encode the source documents and a topic-aware decoder (bottom right) to generate
summary words. A neural topic model (top) is applied to provide topical information as guidance signals. The two
parts are jointly trained with an inconsistency loss to penalize their disagreement.

3 Model

This section describes our model, named as
topic-guided multi-document summarization (TG-
MultiSum). The overall architecture is pre-
sented in Figure 1. Given a set of documents
{D1, D2, ..., DN}, the goal of our model is to gen-
erate a word sequence S = {y1, y2, ..., ys} as the
summary. Our model consists of three major com-
ponents: 1) the neural topic model aims to learn
the topical information of source documents; 2) the
document graph encoder builds the interaction
among different documents and various semantic
units. 3) the topic-aware decoder generates sum-
mary words based on the learned node representa-
tions. The entire model is trained in an end-to-end
manner. We explain each part below.

3.1 Neural Topic Model

One innovation of this study is that it incorporates
topical information into summarization explicitly.
Based on the current development of topic model-
ing, we employ a VAE-based neural topic model
proposed in Miao et al. (2017) to discover latent
topics. Compared with conventional LDA-style
topic models, it can be trained together with neu-
ral networks and therefore has better adaptability

(Zeng et al., 2018; Cui et al., 2020).
Similar to LDA, NTM assumes the existence of

K underlying topics throughout the corpus. Each
document can be represented as a K-dim topic
mixture, and each topic can be represented as a
distribution over the vocabulary. NTM learns the
topics through an encoding–decoding process. Let
xbow ∈ R|V | denote the bag-of-word term vector
of input documents, where |V | is the vocabulary
size. We first use an MLP encoder to estimate its
exclusive priors σ and µ, which are used to generate
the topic distribution through a Gaussian softmax,
as shown in the following:

σ = fσ(xbow), µ = fµ(xbow), (1)

z ∼ N(σ, µ2), θx = softmax(z), (2)

where f∗(·) is a neural perceptron with ReLU acti-
vation. z, θx ∈ RK are the latent variable and topic
distribution of input documents, respectively.

Then, we use a softmax layer to reconstruct
the input text, i.e., x

′
bow = softmax(Wφθx). In

particular, the weight matrix Wφ ∈ R|V |×K can be
regarded as the unnormalized topic–word distribu-
tions, where Wφ

i,j indicates the relevance between
the i-th word and j-th topic.
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3.2 Document Graph Encoder
Graph Construction Inspired by the assump-
tion of LDA, we view the input documents as a
three-layer graph consisting of document, topic,
and word units. Formally, let G = (V,E) denote
the constructed graph. The node set V consists of
N document nodes {vd1 , vd2 , ..., vdN},K topic nodes
{vt1, ..., vtK}, and M word nodes {vw1 , ..., vwM}.
The edge set is defined as E = ED,T ∪ ET,W ,
where ED,T = {e1,1, ..., eN,K} represents the doc-
ument–topic edges, and ED,T = {e1,1, ..., eK,M}
represents the topic–word edges.
Graph Initialization To capture the contex-
tual information, we use a shared BERT en-
coder to encode each document independently,
which has been proved effective in summariza-
tion task. The output states of each word HW =
{h11, ..., h1|D1|, ..., h

N
1 , ..., h

N
|DN |} are used as the

initial word node representations, and those of
[CLS] tokens HD = {h1CLS , ..., hNCLS} are used
as the initial document node representations.

As for the topic nodes, we use the weight ma-
trix Wφ learned from NTM as raw features and
transform it to low-dim topic representations via
HT = fφ(Wφ), where fφ(·) is a Tanh-activated
neural perceptron. Each row of HT ∈ RK×d is a
topic vector with predefined dimension d.
Graph Propagation Given the constructed
graph and its initial node representations, we then
use a graph neural network to capture the relations
among different semantic units. Here we present
a single Document Graph Encoder (DGE) layer.
Multiple DGE layers are stacked in our experi-
ments.

Let uli be the i-th node representation in the l-th
layer. The updating process of u(i)i is denoted as
follows:

ũli =Wl
1Relu(W

l
2u
l
i + bl1) + bl2, (3)

zli,j =LeaklyReLU(Wl
3[ft(ũ

l
i); ft(ũ

l
j)]), (4)

αli,j =
exp(zli,j)∑

k∈Ni
exp(zli,k)

, (5)

~uli =||Mm=1

∑
j∈Ni

tanh(αl,mi,j W
m
4 ~u

l
j), (6)

where W∗ and b∗ denote trainable parame-
ters. Eqs.4–6 are the graph attention network
(GAT)(Velickovic et al., 2018) which updates each
node by aggregating its neighbor nodes N∗.

Note that the vanilla graph attention network is
designed for homogeneous graphs. However, in

our task, word, document, and topic nodes should
be considered different semantic units. Therefore,
we make a modification in Eq.4 by adding a node-
type function ft(·). It uses exclusive parameters for
different node types to project them into a common
vector space where the attention score is calculated.

To construct deep networks, we further add a
residual connection and layer normalization Ba
et al. (2016) to connect adjacent DGE layers.

ul+1
i = LayerNorm(uli +Dropout(~uli)). (7)

3.3 Topic-Aware Decoder

To better utilize the guidance effect of latent topics,
our decoder, being topic-aware, adopts a two-step
decoding process. In each step, it first decodes the
current topic, and then generates summary words
correspondingly.
Topic-level decoding The topic context cTi in
i-th step is conditioned on the previous decoded
words Y<i = {y1, y2, ..., yi−1} and the topic repre-
sentations HT output from the graph encoder, as
shown as follows:

ui−1 =MHAttn(ei−1,E<i−1,E<i−1), (8)

cTi =MHAttn(ui,HT,HT), (9)

where MHAttn(Q,K,V) denotes the multi-head
attention introduced in Vaswani et al. (2017). The
first attention layer is used to capture contextual
feature of decoded sequence, while the second is
to incorporate topical information.

In effect, cTi can be viewed as a topic pointer
that indicates which topics should be discussed in
the current step.
Word-level decoding We then use the gener-
ated cTi to guide the word prediction. Another
MHAttn layer is first applied to select relevant
parts of source word sequence HW with cTi as the
query, followed by a neural perceptron to inject the
current topic focus.

vi = MHAttn(cTi ,H
W,HW), (10)

oi = tanh(Wo[vi; c
T
i ] + bo), (11)

where oi is the final output representation in i-th
step of the decoder.

The predicted word distribution over the vocab-
ulary is computed through a softmax layer, i.e.,
pgi = softmax(Wgoi−1 + bg). To alleviate the
out-of-vocabulary (OOV) problem, we employ the
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copy mechanism (See et al., 2017) to allow the gen-
erator to copy words from source documents. The
copy distribution pci is computed as follows.

εt =softmax(H
Wot), (12)

pct =
∑
i≤N

∑
j≤|Di|

εtzi,j , (13)

where εt is the attention weight of source words,
and zi,j is the one-hot indicator vector for word
wi,j . The final generation distribution is the linear
combination of pgi and pci , as shown as follows:

pi = ηi ∗ pci + (1− ηi) ∗ pgi , (14)

ηi = σ(Wηoi + bη), (15)

where σ indicates sigmoid function and ηi is the
copy weight.

3.4 Joint Learning with Inconsistency Loss
Since text summarization and topic modeling both
aim to distill salient information from input doc-
uments, we jointly train the two modules to help
them learn complementary information from each
other. The loss function of our model consists of
three parts. The summary generation loss Lgen is
defined as the negative log-likelihood of ground-
truth words, i.e.,

Lgen =
∑
c∈C

∑
w∈yc

logp(w). (16)

The NTM loss LNTM is based on the evidence
lower bound, i.e.,

LNTM = KL(p(z) ‖ q(z|x))− Eq(z)[p(x|z)],
(17)

where the first term is the KL divergence, and the
second term indicates the construction loss. p(·)
and q(·) are the encoder and decoder networks de-
scribed in § 3.1, respectively.

We also devise an inconsistency loss Linc to
penalize the disagreement between the topic dis-
tribution of generated summary and that of source
documents, as shown as follows:

Linc = KL(θx||
∑

1≤i≤L
θidec), (18)

where θx is the document topic mixture learned
from NTM(Eq.2), and θidec is the topic distribution
of i-th decoding step computed in Eq.9.

The final loss is the linear combination of the
three parts, i.e., L = Lgen+ γ ∗LNTM + τ ∗Linc,
where γ and τ are hyperparameters.

# of source Freq Prop # of source Freq Prop
2 23,894 53.1% 7 382 0.8%
3 12,707 28.3% 8 209 0.5%
4 5,022 11.2% 9 89 0.2%
5 1,873 4.2% 10 33 0.1%
6 763 1.7%

Table 1: The distribution of the number of source docu-
ments in the Multi-News dataset.

4 Experimental Setup

4.1 Dataset

We conduct experiments on the recently con-
structed dataset Multi-News (Fabbri et al., 2019).
The standard split contains 44972/5622/5622 in-
stances for training, validation, and test. Each in-
stance consists of a set of news articles paired with
a human-written summary. The average summary
length and article cluster length are 264 and 2103,
respectively. In Table 1, we present the distribu-
tion of the number of source articles per summary.
As shown, nearly half of the summaries are paired
with at least three source articles, which highly de-
mands the ability to process multi-source informa-
tion. The average input length (2103) also brings
difficulty for the encoder network. These charac-
teristics make the dataset a good challenge for the
MDS task.

4.2 State-of-the-art Baselines

We compare our model with the state-of-the-art
extractive and abstractive models. The abstractive
baselines are as follows.
PGN (See et al., 2017), pointer-generator network
extends the standard seq2seq framework with copy
and coverage mechanism.
Hi-MAP (Fabbri et al., 2019) extends PGN into a
hierarchical structure and integrates a MMR mod-
ule to minimize redundancy.
CopyTransformer (Gehrmann et al., 2018) ran-
domly chooses one of the attention heads of Trans-
former as the copy distribution.
MGSum-abs (Jin et al., 2020) is a state-of-the-
art abstractive MDS model. It designs an interac-
tion network to integrate information from different
granularities.

We also compare with the following extractive
baselines:
HiBERT (Zhang et al., 2019) modifies the standard
BERT to a hierarchical structure. We migrate it to
MDS by concatenating the input documents.
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model R-1 R-2 R-SU
Non-Neural methods

Lead-3† 39.41 11.77 14.51
LexRank† 38.27 12.70 13.20
TextRank† 38.44 13.10 13.50

MMR† 38.77 11.98 12.91
Neural-based Extractive Models

Hi-BERT 43.86 14.62 18.34
MGSum-ext 44.75 15.75 19.30

HeterGraphSum 46.05 16.35 17.81
MatchSum 46.20 16.51 20.05

Abstractive Models
PGN 41.85 12.91 16.46

Hi-Map 43.47 14.89 17.41
Copy Transformer 43.57 14.03 17.37

Hi-Transformer 43.85 15.60 18.80
MGSum-abs 46.00 16.81 20.09

Ours
TG-MultiSumpip 46.04 16.43 19.82

TG-MultiSum 47.10 17.55 20.73

Table 2: Rouge F1 score of different models. We also
report the results (†) of several non-neural methods cited
from Fabbri et al. (2019).

Hi-Transformer(Liu and Lapata, 2019) adds addi-
tional attention heads to the Transformer to share
the information across documents.
HeterGrapSum (Wang et al., 2020a) uses a het-
erogeneous graph neural network to encode word,
sentence, and document nodes.
MatchSum (Zhong et al., 2020) regards content se-
lection as a text matching problem. It has reported
the state-of-the-art results on Multi-News dataset.
MGSum-ext (Jin et al., 2020) is the extractive ver-
sion of MGSum-abs.

4.3 Implementation Details

We choose “bert-base-uncased” as our pre-trained
BERT. For the NTM, we set the topic number
K=50 and prune the vocabulary to 50,000. For
the graph encoder, we set its layer number to 3.
The dimension size of nodes representations is set
to 768. For the decoder, we set the head of attention
number to 6. γ and τ is set to 0.8 and 0.3 to balance
different losses. We train our model for up to 1000
epoch with a small batch size of 8. The experiments
are based on 2 NVIDIA V100 cards. During the
training, an early stop strategy is applied when the
loss on validation set does not decrease for three
consecutive epochs. We select the hyperparameters
with grid search based on the Rouge-2 score on
the validation set. In the summary generation, we
adopt the beam search strategy with a search size
of 5. We report the average results on 3 runs.
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Figure 2: Relationship between number of source doc-
uments (x-axis) and model performance R̃ (y-axis),
which is the mean of R-1, R-2, and R-SU.

5 Results and Analysis

5.1 Automatic Evaluation

Overall Performance Table 2 presents the per-
formance (Rouge) of our model against recently
released methods on Multi-News. For ours, TG-
MultiSum represents our jointly trained model,
while TG-MultiSumpip is a pipeline version that
separately trains the NTM and the summarizer. We
use it to verify whether joint topic inference can
bring positive effect on summarization.

As shown, our pipeline version shows compet-
itive results against strong baselines and our full
model achieves state-of-the-art performance on the
Multi-News dataset, indicating topical information
is an effective feature for summarization. Com-
pared to TG-MultiSumpip, our full model achieves
1.06/1.12/0.91 improvements on R-1, R-2, and R-
SU. This proves that joint topic inference is ef-
fective for abstractive MDS. We also observe that
several graph-based models, such as MGSum and
HeterGraphSum, achieve promising results com-
pared to the "flat" models, such as PGN, and Copy-
Transformer, implying that graph structure is an
effective way to model multiple documents for
MDS task. Among the non-neural methods, Lead-
3 serves as a simple but effective method. This
is because that news articles tend to present key
points in the beginning.
Results on varying document numbers We
also investigate how the source document number
influences the model performance. To this end, we
first divide the test set of Multi-News into differ-
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Figure 3: Human evaluation results of different abstrac-
tive models. Golden lines represent the scores of refer-
ence summary

ent intervals based on the number of source docu-
ments and discard those with less than 100 exam-
ples. Then, we take Hi-Map2 as the baseline and
compare the results on different parts.

As shown in Figure 2, the Rouge declines with
the increasing of document number, indicating that
summarizing multiple documents is more challeng-
ing. Nevertheless, our two models show better
robustness than Hi-Map on increasing document
numbers. And joint training can further enhance
this ability. Such observation verifies our assump-
tion that latent topics can act as relay nodes to help
capture cross-document relations for MDS.

5.2 Human Evaluation
To evaluate the linguistic quality of generated sum-
maries in better granularity, we conduct a human
evaluation for the abstractive models based on three
aspects: (1) Fluency measures whether the sum-
mary is coherent and grammatically correct. (2)
Informativeness focuses on whether the summary
covers the salient information of original docu-
ments. (3) Non-redundancy reflects whether the
summary avoids repeated expressions. We sample
100 instances from the test set and generate sum-
maries using different models. Then, we employ
five graduates to rate the generated summaries.

As shown in Figure 3, our model beats all base-
lines in three indicators, especially in informative-
ness, implying that latent topics are indicative fea-
tures for capturing salient information. Surpris-
ingly, our model also shows promising improve-
ment in non-redundancy score. This positive effect
is probably attributed to the topic context cT∗ (Eq.9)
learned in the decoder. It can adaptively decide
the current topic focus based on previous decoded
words and therefore avoid generating repetitive con-
tents of the same topic.

We also present the human ratings of reference
2We obtain similar results from other abstractive baselines.

Ablated Models R-1 R-2 R-SU
Our full model 47.10 17.55 20.73
w/o Linc 46.69 17.04 20.15
w/o topic nodes 46.48 17.11 20.08
w/o topic pointer 46.32 16.97 19.73
w/o DGE 46.08 16.19 19.72
w/o NTM 45.83 16.02 19.45
w/o BERT 45.67 16.13 19.27

Table 3: Performance of different ablated variants
against our full model) compared with our full model.

summaries (golden lines). As can be seen, despite
the promising improvements of our model, there is
a large gap between the quality of model-generated
summaries and reference summaries, implying that
abstractive MDS remains a challenge.

5.3 Ablation Study

To analyze the relative contributions of different
components to the model performance, we com-
pare our full model with the following ablated vari-
ants: (1) w/o Linc removes the inconsistency loss
(Eq.18). (2) w/o topic nodes builds the document
graph solely with word and document nodes. (3)
w/o topic pointer removes the topic pointer (Eq.9)
in the decoder. (4) w/o DGE removes the document
graph encoder described in § 3.3. (5) w/o NTM re-
moves the NTM module described in § 3.1. For
compensation, we use a pre-trained LDA to pro-
vide word-topic matrix. (6) w/o BERT removes the
BERT encoder and initialize word and document
nodes with trainable embeddings.

From Table 3, We can obtain the following obser-
vations: (1) The removal of topic nodes and topic
pointer both lead to performance drops, indicating
that latent topics are effective features for both en-
coding and decoding process. (2) The document
graph encoder plays a necessary role in our model
since it can aggregate information from different
granularities and documents. (3) NTM serves as a
better topic learner than LDA in our experiments,
and the inconsistency loss demonstrates its effec-
tiveness. We conjecture that NTM can adaptively
learn topics that are suitable for summarization
under a multi-task setting where Linc is applied,
while the topics learned by LDA keep unchanged as
external features (Cui et al., 2020). (4) The perfor-
mance declines dramatically when removing BERT.
This shows that BERT can provide necessary con-
textual information to better initialize the graph.
Similar results have been observed in GNN-based
extractive summarization (Wang et al., 2020a).
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Figure 4: Impact of topic number (left) and graph itera-
tion number (right) on model performance (Rouge-2).

5.4 Impact of Hyperparameters

We further conduct experiments on the validation
set of Multi-News to probe into the impact of two
important parameters, i.e., the topic number K and
the graph iteration number L. The results are pre-
sented in Figure 4.
Impact of topic number As can be seen, with a
particular range where K is relatively small, more
topics produce better performance. However, such
increasing trend will reach a saturation when K
exceeds a threshold (50 in our experiments). It
worth noting that the joint model consistently beat
the pipeline model under all different K, implying
that joint training can help the NTM adaptively
adjust learned topics for better summarization.
Impact of graph iteration number Figure 4
(right) presents the relationship between graph iter-
ation number with model performance. We can see
that the two curves show a similar trend. In particu-
lar, the performance is dramatically boosted when
L goes from 0 to 3. However, such increasing trend
is not always monotonous, and a larger L will dam-
age the performance. A possible reason lies in that
deep networks could lead to overfit, although we
add a residual connection between adjacent layers.

5.5 Topic Quality Analysis

We have shown the effect of latent topics on MDS
task. In this subsection, we conduct experiments
whether summary generation can in turn help in
producing better topics.

We refer NTMsum as our jointly trained topic
model and consider three baselines for compar-
isons. (1) LDA (Blei et al., 2003) is a widely used
topic model based on Bayesian graphical models.
(2) BTM (Yan et al., 2013) is an enhanced topic
model for short text modeling. (3) GSM (Miao
et al., 2017) is the model used in our method. Dif-
ferent with NTMsum, it is separately trained on
VAE loss. We use it to show the effect of joint
summary generation on topic modeling.

Models Cv Sample Topics

LDA 0.442
sport NBA green champion watch
deal guard brand speak commercial

BTM 0.431
balls sport fight basketball year
violence foul superbowl fail crazy

GSM 0.370
player sport eye football national
word halftime answer playing day

NTMsum 0.496 sport quarterback scores NBA show
play reporter winner Olympic medal

Table 4: Coherence score Cv and inferred topic (sport)
of different topic models. Off-topic words are under-
lined and in red.

The three comparison models are all trained on
the Multi-News dataset. We run 1,000 Gibbs sam-
pling for LDA and BTM to ensure the convergence.
For GSM, we use the same settings described in
§ 4.3 to make the results comparable.
Topic Coherence Following previous studies
(Zeng et al., 2018; Wang et al., 2019), we use the
coherence score Cv (Röder et al., 2015) to quan-
titatively evaluate inferred topics, which has been
proved highly consistent with human evaluation.
We can see from Table 4 that the separately trained
GSM performs rather poorly compared with two
traditional models. However, the performance is
significantly improved when it is jointly trained
with the summarizer. This proves that a joint sum-
marization task can in turn help in topic modeling
because a summary usually reflects the major top-
ics of its source document(s).
Sample Topics To obtain a more intuitive com-
parison of the topic quality learned by different
models, we present top 10 representative words of
the topic "sport" inferred by different models. As
can be seen from Table 4, there are mixed off-topic
words in three baselines. Besides, compared with
them, our inferred topic looks more coherent. For
example, it includes less half-related words, such as
"commercial" (LDA), "fail" (BTM), and "national"
(GSM).

6 Conclusion and Future Work

This study proposes a novel abstractive MDS
model that integrates a joint NTM to discover latent
topics. Experimental results demonstrate that our
model not only achieves the-state-of-the art results
on summarization but also produce high-quality
topics. Further discussions show that topic infer-
ence and summary generation can promote each
other. In the future, we will explore how to apply
latent topics in controllable summarization.
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