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Abstract

Given a video, video grounding aims to re-
trieve a temporal moment that semantically
corresponds to a language query. In this work,
we propose a Parallel Attention Network with
Sequence matching (SeqPAN) to address the
challenges in this task: multi-modal represen-
tation learning, and target moment boundary
prediction. We design a self-guided parallel
attention module to effectively capture self-
modal contexts and cross-modal attentive in-
formation between video and text. Inspired
by sequence labeling tasks in natural language
processing, we split the ground truth moment
into begin, inside, and end regions. We then
propose a sequence matching strategy to guide
start/end boundary predictions using region la-
bels. Experimental results on three datasets
show that SeqPAN is superior to state-of-the-
art methods. Furthermore, the effectiveness of
the self-guided parallel attention module and
the sequence matching module is verified.1

1 Introduction

Video grounding is a fundamental and challenging
problem in vision-language understanding research
area (Hu et al., 2019; Yu et al., 2019; Zhu and
Yang, 2020). It aims to retrieve a temporal video
moment that semantically corresponds to a given
language query, as shown in Figure 1. This task re-
quires techniques from both computer vision (Tran
et al., 2015; Shou et al., 2016; Feichtenhofer et al.,
2019), natural language processing (Yu et al., 2018;
Yang et al., 2019), and more importantly, the cross-
modal interactions between the two. Many existing
solutions (Chen et al., 2018; Liu et al., 2018a; Xu
et al., 2019) tackle video grounding problem with
proposal-based approach. This approach generates
proposals with pre-set sliding windows or anchors,
computes the similarity between the query and each

1https://github.com/IsaacChanghau/SeqPAN
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Figure 1: The overview of our procedures for video ground-
ing, with an example of retrieving the temporal moment from
an untrimmed video by a given language query.

proposal. The proposal with highest score is se-
lected as the answer. These methods are sensitive to
the quality of proposals and are inefficient because
all proposal-query pairs are compared. Recently,
several one-stage proposal-free solutions (Chen
et al., 2019; Lu et al., 2019a; Mun et al., 2020) are
proposed to directly predict start/end boundaries of
target moments, through modeling video-text inter-
actions. Our solution, SeqPAN, is a proposal-free
method; hence our key focuses are video-text inter-
action modeling and moment boundary prediction.

Video-text interaction modeling. In order to
model video-text interaction, various attention-
based methods have been proposed (Gao et al.,
2017; Yuan et al., 2019a; Mun et al., 2020). In
particular, transformer block (Vaswani et al., 2017)
is widely used in vision-language tasks and proved
to be effective for multimodal learning (Tan and
Bansal, 2019; Lu et al., 2019b; Su et al., 2020; Li
et al., 2020). In video grounding task, fine-grain
scale unimodal representations are important to
achieve good localization performance. However,
existing solutions do not refine unimodal represen-
tations of video and text when doing cross-modal
reasoning, and thus limit the performance.

To better capture informative features for multi-
modalities, we encode both self-attentive contexts
and cross-modal interactions from video and query.
That is, instead of solely relying on sophisticated
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Figure 2: An example of the annotations in NER, where
“ORG” is for “Organization”, “B”, “I” and “E” denote the
begin, inside and end of the organization entity, respectively.

cross-modal learning as in most existing studies,
we learn both intra- and inter-modal representations
simultaneously, with improved attention modules.
Moment boundary prediction. In terms of the
length, target moment is usually a very small por-
tion of the video, making positive (frames in target
moment) and negative (frames not in target mo-
ment) samples imbalanced. Further, we aim to pre-
dict the exact start/end boundaries (i.e., two video
frames2) of the target moment. If we view from
the space of video frames, sparsity is a major con-
cern, e.g., catching two frames among thousands.
Recent studies attempt to address this issue by aux-
iliary objectives, e.g., to discriminate whether each
frame is foreground (positive) or background (neg-
ative) (Yuan et al., 2019b; Mun et al., 2020), or to
regress distances of each frame within target mo-
ment to ground truth boundaries (Lu et al., 2019a;
Zeng et al., 2020). However, the “sequence” nature
of frames or videos is not considered.

We emphasize the “sequence” nature of video
frames and adopt the concept of sequence label-
ing in NLP to video grounding. We use named
entity recognition (NER) (Lample et al., 2016; Ma
and Hovy, 2016) as an example sequence labeling
task for illustration in Figure 2. Video grounding
is to retrieve a sequence of frames with start/end
boundaries of target moment from video. This is
analogous to extract a multi-word named entity
from a sentence. The main difference is that, words
are discrete, so word annotations (i.e., B, I, E, and
O tags) in sentence are discrete. In contrast, video
is continuous and the changes between consecutive
frames are smooth. Hence, it is difficult (and also
not necessary) to precisely annotate each frame.
We relax the annotations on video sequence by
specifying video regions, instead of frames. With
respect to the target moment, we label B, I, E and
O (BIEO) regions on video (see Figure 3) and in-
troduce label embeddings to model these regions.
Our contributions. In this research, we propose a
Parallel Attention Network with Sequence match-

2The “frame” is a general description, which can refer to a
frame in a video sequence or a unit in the corresponding video
feature representation.

ing (SeqPAN) for video grounding task. We first
design a self-guided parallel attention (SGPA) mod-
ule to capture both self- and cross-modal attentive
information for each modality simultaneously. In
SGPA module, a cross-gating strategy with self-
guided head is further used to fuse self- and cross-
modal representations. We then propose a sequence
matching (sq-match) strategy, to identify BIEO re-
gions in video. The label embeddings are incorpo-
rated to represent label of frames in each region
for region recognition. The sq-match guides Se-
qPAN to search for boundaries of target moment
within constrained regions, leading to more precise
localization results. Experimental results on three
benchmarks demonstrate that both SGPA and sq-
match consistently improve the performance; and
SeqPAN surpasses the state-of-the-art methods.

2 Related Work

Existing solutions to video grounding are roughly
categorized into proposal-based and proposal-free
frameworks. In proposal-based framework, com-
mon structures include ranking and anchor-based
methods. Ranking-based methods (Liu et al.,
2018b; Hendricks et al., 2017, 2018; Chen and
Jiang, 2019; Ge et al., 2019; Zhang et al., 2019b)
solve this task with two-stage propose-and-rank
pipeline, which first generates proposals and then
uses multimodal matching to retrieve most similar
proposal for a query. Anchor-based methods (Chen
et al., 2018; Yuan et al., 2019a; Zhang et al., 2019c;
Wang et al., 2020b) sequentially assign each frame
with multiscale temporal anchors and select the
anchor with highest confidence as the result. How-
ever, these methods are sensitive to the proposal
quality; and comparison of all proposal-query pairs
is computational expensive and inefficient.

Proposal-free framework includes regression
and span-based methods. Regression-based meth-
ods (Yuan et al., 2019b; Lu et al., 2019a; Chen
et al., 2020a,b) tackle video grounding by learn-
ing cross-modal interactions between video and
query, and directly regressing temporal time of tar-
get moments. Span-based methods (Ghosh et al.,
2019; Rodriguez et al., 2020; Zhang et al., 2020a;
Lei et al., 2020; Zhang et al., 2021) address video
grounding by borrowing the concept of extractive
question answering (Seo et al., 2017; Huang et al.,
2018), and to predict the start and end boundaries
of target moment directly.

In addition, there are several works (He et al.,
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Figure 3: The architecture of the Parallel Attention Network with Sequence Matching (SeqPAN) for video grounding.

2019; Wang et al., 2019; Cao et al., 2020; Hahn
et al., 2020; Wu et al., 2020a,b) that formulate this
task as a sequential decision-making problem and
adopt reinforcement learning to observe candidate
moments conditioned on queries. Other methods,
e.g., weakly supervised learning methods (Mithun
et al., 2019; Lin et al., 2020; Wu et al., 2020a), 2D
map model of temporal relations between video
moments (Zhang et al., 2020b), ensemble of top-
down and bottom-up methods (Wang et al., 2020a),
joint learning video-level matching and moment-
level localization (Shao et al., 2018), have also
been explored. Some works (Shao et al., 2018; Cao
et al., 2020; Liu et al., 2020; Wang et al., 2020a)
use either additional resources/features or different
evaluation metrics, so their results are not directly
comparable with many others, including ours.

3 Proposed Method

Let V = [ft]
T−1
t=0 be an untrimmed video with T

frames; Q = [qj ]
M−1
j=0 be a language query with

M words; ts and te denote start and end time
point of ground-truth temporal moment. We de-
fine and tackle video grounding task in feature
spaces. Specifically, we split the given video V
into N clip units, and use pre-trained feature ex-
tractor to encode them into visual features V =
[vi]

N−1
i=0 ∈ Rdv×N , where dv is visual feature di-

mension. Then the ts(e) are mapped to the cor-
responding indices is(e) in the feature sequence,
where 0 ≤ is ≤ ie ≤ N − 1. For the query Q,
we encode words with pre-trained word embed-
dings as Q = [wj ]

M−1
j=0 ∈ Rdw×M , where dw is

word dimension. Given the pair of (V ,Q) as in-
put, video grounding aims to localize a temporal
moment starting at is and ending at ie.

3.1 The SeqPAN Model
The overall architecture of the proposed SeqPAN
model is shown in Figure 3. Next, we present each
module of SeqPAN in detail.

3.1.1 Encoder Module
Given visual features V ∈ Rdv×N of the video and
word embeddings Q ∈ Rdw×M of the language
query, we map them into the same dimension d
with two FFNs3, respectively. The encoder module
mainly encodes the individual modality separately.
As position encoding offers a flexible way to em-
bed a sequence, when the sequence order matters,
we first incorporate a position embedding to every
input of both video and query sequences. Then, we
adopt stacked 1D convolutional block to learn rep-
resentations by carrying knowledge from neighbor
tokens. The encoded representations are written as:

V ′ = ConvBlock(FFNv(V ) +Ep)

Q′ = ConvBlock(FFNq(Q) +Ep)
(1)

where V ′ ∈ Rd×N and Q′ ∈ Rd×M ; Ep denotes
the positional embeddings. Both position embed-
dings and convolutional block are shared by the
video and text features.

3.1.2 Self-Guided Parallel Attention Module
A self-guided parallel attention (SGPA) module
(see Figure 4) is proposed to improve multimodal
representation learning. Compared with standard
transformer (TRM) encoder, SGPA uses two par-
allel multi-head attention blocks to learn both uni-
modal and cross-modal representations simultane-
ously, and merge them with a cross-gating strategy4.

3We denote the single-layer feed-forward network as FFN
(FFN(X) = W ·X + b) in this work.

4A detailed comparison of SGPA and standard TRMs is
summarized in Appendix.
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Taking video modality as an example, the attention
process is computed as:

V̂S = VV · σs
(Q>VKV√

d

)
V̂C = VQ · σs

(Q>VKQ√
d

) (2)

where σs denotes Softmax function; QV , KV and
VV are the linear projections of V ′; QQ, KQ and
VQ are linear projections of Q′; V̂S encodes the
self-attentive contexts within video modality; and
V̂C integrates information from query modality ac-
cording to cross-modal attentive relations. The self-
and cross-modal representations are then merged
together by a cross-gating strategy:

V̂ = σ
(
FFN(V̂C)

)
� V̂S +σ

(
FFN(V̂S)

)
� V̂C (3)

where σ denotes Sigmoid function and � repre-
sents Hadamard product. The cross-gating explic-
itly interacts features obtained from the self- and
cross-attention encoders to ensure both are fully
utilized, instead of relying on only one of them.
Finally, we employ a self-guided head to implic-
itly emphasize the informative representations by
measuring the confidence of each element in V̂ as:

V̄ = σ
(
FFNσ(V̂ )

)
� FFN(V̂ ) (4)

The refined representations Q̄ for the query
modality are obtained in a similar manner (e.g.,
swapping visual and query features).

3.1.3 Video-Query Integration Module
This module further enhances the cross-modal
interactions between visual and textual features.
It utilizes context-query attention (CQA) strat-
egy (Yu et al., 2018) and aggregates text infor-
mation for each visual element5 (see Figure 3).
Given V̄ and Q̄, CQA first computes the similari-
ties, S ∈ RN×M , between each pair of V̄ and Q̄

5We provide a detailed computation process in appendix.

features. Then two attention weights are derived by
AVQ = Sr · Q̄> and AQV = Sr · S>c · V̄ >, where
Sr/Sc are row-/column-wise normalization of S by
Softmax. The query-aware video representations
V Q is computed by:

V Q = FFN
(
[V̄ ;A>VQ; V̄ �A>VQ; V̄ �A>QV]

)
(5)

where V Q ∈ Rd×N . Similarly, video-aware query
representations QV ∈ Rd×M can be derived by
swapping visual and textual inputs in CQA module.
Then we encodeQV into sentence representation q
with additive attention (Bahdanau et al., 2015) and
concatenate it with each element of V Q as H =
[h1, . . . ,hn], where hi = [vQi ; q]. Finally, the
query-attended visual representation is computed
as H̄ = FFN(H) ∈ Rd×N .

3.1.4 Sequence Matching Module
As illustrated in Figure 3, we considers the frames
within ground truth moment and several neighbor-
ing frames as foreground, while the rest as back-
ground. Then, we split the foreground into Begin,
Inside, and End regions. For simplicity, we assign
each region a label, i.e., “B-M” for begin, “I-M”
for inside, “E-M” for end region, and “O” for back-
ground. B-M/E-M explicitly indicate potential po-
sitions of the start/end boundaries. We also specify
orthogonal label embeddings Elab ∈ Rd×4 to rep-
resent those labels, and to infuse label information
into visual features after region label predictions.

Note our approach is different from Lin et al.
(2018) on temporal action proposal generation task,
where the target proposal is split into start, centre,
and end regions. The probability of a frame belong-
ing to each of three regions is predicted separately
in a regression manner, leading to three separate
probability sequences, one for each region. The
maximum probabilities in the sequences are used to
guide proposal generations. In contrast, we formu-
late matching process as a multi-class classification
problem and predict a concrete region label for
each frame, i.e., same as a sequence labeling task
in NLP. Label embeddings are then assigned to the
frames based on the labels of the predicted region.

A straightforward solution to predict the confi-
dence of an element belonging to each region is
multi-class classifier:

Hseq = FFNseq(H̄), Sseq = σs(Hseq) ∈ R4×N

(6)
where Sseq encodes the probabilities of each visual
element in different regions. Then label index with
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highest probability from Sseq is selected to repre-
sent the predicted label for each visual element:

Llab = [argmax(Sjseq)]
N−1
j=0 ∈ RN (7)

However, a major issue here is that Eq. 7 needs
to sample from a discrete probability distribution,
which makes the back-propagation of gradients
through Sseq in Eq. 6 infeasible for optimizer. To
make back-propagation possible, we adopt the
Gumbel-Max (Gumbel, 1954; Maddison et al.,
2014) trick to re-formulate Eq. 7 as:

L̂lab =
[
Onehot(argmax(Hj

seq + g))
]N−1
j=0

(8)

where L̂lab ∈ R4×N . Then, we utilize the Gumbel-
Softmax (Jang et al., 2017; Maddison et al., 2017)
to relax the argmax so as to make Eq. 8 being
differentiable6. Formally, we use Eq. 9 to approxi-
mate Eq. 8 as:

L̄lab = σs
(
(Hseq + g)/τ

)
∈ R4×N (9)

where τ is annealing temperature. As τ → 0+,
L̄lab ≈ L̂lab, while τ → ∞, each element in L̄lab
will be the same and the approximated distribu-
tion will be smooth. Note we use Eq. 8 during
forward pass while Eq. 9 for backward pass to al-
low gradient back-propagation. As the result, the
embedding lookup process is differentiable and the
label-attended visual representations is derived as:

H̃ = Elab · L̂lab + H̄ (10)

The training objective is defined as:

Lseq = fXE(L̄lab,Ylab) + ‖E>labElab � (1− I)‖2F
(11)

where Ylab denotes the ground truth sequence la-
bels, 1 is the matrix with all elements being 1 and I
is the identity matrix. The second term in Eq. 11 is
the orthogonal regularization (Brock et al., 2019),
which ensures Elab to keep the orthogonality.

3.1.5 Localization Module
Finally, we present a conditioned localizer to pre-
dict the start and end boundaries of the target mo-
ment. The localizer consists of two stacked trans-
former blocks and two FFNs. The scores of start
and end boundaries are calculated as:

Hs = TRMs(H̃), Ss =Ws[Hs; H̃] + bs

He = TRMe(Hs), Se =We[He; H̃] + be
(12)

6More details about Gumbel Tricks are in Appendix.

where Ss/e ∈ RN . Ws/e and bs/e are the weight
and bias of start/end FFNs, respectively. Note the
representations of end boundary (He) are condi-
tioned on that of start boundary (Hs) to ensure
the predicted end boundary is always after start
boundary. Then, the probability distributions of
start/end boundaries are computed by Ps/e =

Softmax(Ss/e) ∈ RN . The training objective is:

Lloc =
1

2
×
[
fXE(Ps,Ys) + fXE(Pe,Ye)

]
(13)

where fXE is cross-entropy function, Ys/e is one-
hot labels for start/end (is/ie) boundaries.

3.2 Training and Inference
The overall training loss of SeqPAN is: L =
Lloc + Lseq, to be minimized during the training
process. During inference, the predicted start and
end boundaries of a given video-query pair are gen-
erated by maximizing the joint probability as:

(̂is, îe) = argmax
âs,âe

Ps(â
s)× Pe(âe)

s.t.: 0 ≤ îs ≤ îe ≤ N − 1
(14)

where îs and îe are the best start and end boundaries
of predicted moment for the given video-query pair.
Let T be the duration of given video, the predicted
start/end time are computed by t̂s(e) = îs(e)/(N −
1) × T . With the predicted (t̂s, t̂e) and ground
truth (ts, te) time intervals, the measure, temporal
intersection over union (IoU), is computed as:

IoU = max
(
0,
temin − tsmax

temax − tsmin

)
∈ [0, 1] (15)

where ts(e)min /max = min /max(t̂s(e), ts(e)).

4 Experiments

4.1 Experimental Setting
Datasets. We conduct the experiments on three
benchmark datasets: Charades-STA (Gao et al.,
2017), ActivityNet Captions (Krishna et al., 2017)
and TACoS (Regneri et al., 2013). Charades-STA,
collected by Gao et al. (2017) from Charades (Sig-
urdsson et al., 2016) dataset, contains 16, 128 an-
notations (i.e., moment-query pairs), where 12, 408
and 3, 720 annotations are for train and test. Activi-
tyNet Captions (ANetCaps) contains 20K videos
taken from ActivityNet (Heilbron et al., 2015)
dataset. We follow the setup in (Chen et al.,
2020a; Lu et al., 2019a; Wu et al., 2020b; Yuan
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Methods R@1, IoU = µ mIoU
µ = 0.3 µ = 0.5 µ = 0.7

DEBUG 54.95 37.39 17.69 36.34
ExCL 61.50 44.10 22.40 -
MAN - 46.53 22.72 -
SCDM - 54.44 33.43 -
CBP - 36.80 18.87 -
GDP 54.54 39.47 18.49 -
2D-TAN - 39.81 23.31 -
TSP-PRL - 45.30 24.73 40.93
TMLGA 67.53 52.02 33.74 -
VSLNet 70.46 54.19 35.22 50.02
DRN - 53.09 31.75 -
LGI 72.96 59.46 35.48 -
SeqPAN 73.84 60.86 41.34 53.92

Table 1: Comparison with SOTA methods on Charades-STA.

et al., 2019b; Zhang et al., 2020a) with 37, 421 and
17, 505 annotations for train and test. TACoS con-
tains 127 cooking activities videos from Rohrbach
et al. (2012). We follow Gao et al. (2017) with
10, 146, 4, 589, and 4, 083 annotations are used for
train, validation, and test, respectively.
Evaluation Metric. (i) “R@n, IoU=µ”, which de-
notes the percentage of test samples that have at
least one result whose IoU with ground-truth is
larger than µ in top-n predictions; (ii) “mIoU”,
which denotes the average IoU over all test sam-
ples. We set n = 1 and µ ∈ {0.3, 0.5, 0.7}.
Implementation Details. We follow (Ghosh et al.,
2019; Mun et al., 2020; Rodriguez et al., 2020;
Zhang et al., 2020a) and use 3D ConvNet pre-
trained on Kinetics dataset (Carreira and Zisserman,
2017) to extract RGB visual features from videos;
then we downsample the feature sequence to a fixed
length. The query words are lowercased and initial-
ized with GloVe (Pennington et al., 2014) embed-
ding. We set hidden dimension d to 128; SGPA
blocks to 2; annealing temperature to 0.3; and
heads in multi-head attention to 8; Adam (Kingma
and Ba, 2015) optimizer with batch size of 16 and
learning rate of 0.0001 is used for training.

More details of dataset statistics and the hyper-
parameter settings are summarized in Appendix.

4.2 Comparison with State-of-the-Arts

We compare SeqPAN with the following state-of-
the-arts. 1) Proposal-based methods: TGN (Chen
et al., 2018), ACL (Ge et al., 2019), CBP (Wang
et al., 2020b), SCDM (Yuan et al., 2019a),
MAN (Zhang et al., 2019a); 2) Proposal-free meth-
ods: DEBUG (Lu et al., 2019a), ExCL (Ghosh
et al., 2019), VSLNet (Zhang et al., 2020a),
GDP (Chen et al., 2020a), LGI (Mun et al., 2020),

Methods R@1, IoU = µ mIoU
µ = 0.3 µ = 0.5 µ = 0.7

DEBUG 55.91 39.72 - 39.51
ExCL 63.00 43.60 24.10 -
SCDM 54.80 36.75 19.86 -
CBP 54.30 35.76 17.80 -
GDP 56.17 39.27 - 39.80
2D-TAN 59.45 44.51 27.38 -
TSP-PRL 56.08 38.76 - 39.21
TMLGA 51.28 33.04 19.26 -
VSLNet 63.16 43.22 26.16 43.19
DRN - 45.45 24.36 -
LGI 58.52 41.51 23.07 -
SeqPAN 61.65 45.50 28.37 45.11

Table 2: Comparison with SOTA methods on ANetCaps.

Methods R@1, IoU = µ mIoU
µ = 0.3 µ = 0.5 µ = 0.7

TGN 21.77 18.90 - -
ACL 24.17 20.01 - -
DEBUG 23.45 11.72 - 16.03
SCDM 26.11 21.17 - -
CBP 27.31 24.79 19.10 21.59
GDP 24.14 13.90 - 16.18
TMLGA 24.54 21.65 16.46 -
VSLNet 29.61 24.27 20.03 24.11
DRN - 23.17 - -
SeqPAN 31.72 27.19 21.65 25.86
2D-TAN 37.29 25.32 - -
SeqPAN 48.64 39.64 28.07 37.17

Table 3: Comparison with SOTA methods on TACoS.

TMLGA (Rodriguez et al., 2020), DRN (Zeng
et al., 2020); 3) Others: TSP-PRL (Wu et al.,
2020b) and 2D-TAN (Zhang et al., 2020b). The
best results are in bold and the second bests are in
italic. In all result tables, the scores of compared
methods are reported in the corresponding works.

The results on the Charades-STA are summa-
rized in Table 1. SeqPAN surpasses all baselines
and achieves the highest scores over all metrics.
Observe that the performance improvements of
SeqPAN are more significant under more strict
metrics. The results show that SeqPAN can pro-
duce more precise localization results. For instance,
compared to LGI, SeqPAN achieves 5.86% abso-
lute improvement by “R@1, IoU=0.7”, and 1.40%
by “R@1, IoU=0.5”. Table 2 reports the results on
ANetCaps. SeqPAN is superior to baselines and
achieves the best performance on “R@1, IoU=0.7”
and mean IoU. As reported in Table 3, similar ob-
servations hold on TACoS. Note 2D-TAN (Zhang
et al., 2020b) pre-processes the TACoS dataset,
making it is slightly different from the original one.
We also conduct experiments on their version for
a fair comparison. SeqPAN outperforms the base-
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Methods R@1, IoU = µ
µ = 0.3 µ = 0.5 µ = 0.7

Charades-STA
Se-TRM 68.84 (0.46) 51.92 (0.54) 34.58 (0.18)
Co-TRM 69.03 (0.49) 52.34 (0.50) 35.07 (0.32)
SGPA 69.47 (0.32) 54.63 (0.43) 36.36 (0.24)

ActivityNet Captions
Se-TRM 57.64 (0.38) 40.76 (0.35) 25.10 (0.30)
Co-TRM 57.39 (0.29) 40.55 (0.45) 24.85 (0.47)
SGPA 58.40 (0.31) 41.72 (0.19) 26.07 (0.16)

Table 4: SGPA vs. standard transformers on Charades-STA
and ANetCaps. Se-TRM is the transformer block with single
modality inputs, and Co-TRM (Tan and Bansal, 2019; Lu
et al., 2019b; Lei et al., 2020; Li et al., 2020) is with dual
modality inputs. Scores in brackets are standard deviation.

1 2 3 4 5
NSGPA

38.5
39.0
39.5
40.0
40.5
41.0
41.5

R
@

1,
 Io

U
=0

.7
 (%

)

39.30

41.02
40.74

40.67

40.85

1 2 3 4 5
NSGPA

51.0
51.5
52.0
52.5
53.0
53.5
54.0

m
ea

n 
Io

U
 (%

)

52.27

53.19
52.76

52.49

52.89

(a) Charades-STA

1 2 3 4 5
NSGPA

26.0

26.5

27.0

27.5

28.0

28.5

R
@

1,
 Io

U
=0

.7
 (%

)

27.06

27.97
27.64

27.36

26.75

1 2 3 4 5
NSGPA

43.0

43.5

44.0

44.5

45.0

m
ea

n 
Io

U
 (%

)

44.01

44.77

44.06

43.54
43.39

(b) ActivityNet Captions

Figure 5: The impact of SGPA block numbers (NSGPA) on
Charades-STA and ANetCaps.

lines over all evaluation metrics on both versions.

4.3 Discussion and Analysis
We perform in-depth ablation studies to analyze
the effectiveness of the SeqPAN. We run all the
experiments 5 times and report 5-run average.
Analysis on Self-Guided Parallel Attention. The
SGPA (see Figure 4) is a variant of transformer
(TRM), designed for learning cross-modality in-
teractions between visual and text features. Here,
we compare SGPA with standard TRMs. To bet-
ter reflect the performance of different TRMs, we
remove the sequence matching component and
only use a single block (i.e., NSGPA = 1) in this
experiment. The results are reported in Table 4.
Observe that SGPA is superior to TRMs on both
datasets. Co-TRM performs better on Charades-
STA but worse on ANetCaps comparing with Se-
TRM. Compared to Se-TRM and Co-TRM, SGPA
learns both self-modal contexts and cross-modal
interactions, which is approximately equivalent to
parallel connection of two modules.
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Figure 6: The impact of annealing temperature τ in sequence
matching on Charades-STA and ANetCaps.
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Figure 7: Plots of the number of predicted test samples within
different IoU ranges on Charades-STA and ANetCaps.

Impact of SGPA block numbers NSGPA. We
now study the impact of SGPA block numbers on
Charades-STA and ANetCaps. We evaluate five
different values of NSGPA from 1 to 5. The per-
formance across the number of SGPA blocks in
SeqPAN are plotted in Figures 5(a) and 5(b). Best
performance is achieved at NSGPA = 2 on both
datasets. In general, along with increasing NSGPA,
the performance of SeqPAN first increases and then
gradually decreases, on both datasets. We also note
that performance on Charades-STA is not very sen-
sitive to the setting of NSGPA.

Analysis on Sequence Matching. The conven-
tional matching strategy (Yuan et al., 2019b; Lu
et al., 2019a; Mun et al., 2020) (denoted by fb-
match) is to predict whether a frame is inside or
outside of target moment, i.e., foreground or back-
ground. In SeqPAN, we predict begin-, inside- and
end-regions, and introduce label embeddings (Elab)
to represent each region. The prediction process
also uses the Gumbel-Max trick. In this experi-
ment, we analyze the effects of label embeddings
and Gumbel-Max trick in sequence matching.

Summarized in Table 5, both Gumbel-Max trick
(denoted by G) and label embeddings contribute
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Method sq-match Charades-STA ActivityNet Captions
R@1, IoU = µ mIoU R@1, IoU = µ mIoU

G Elab µ = 0.3 µ = 0.5 µ = 0.7 µ = 0.3 µ = 0.5 µ = 0.7
SeqPAN w/ fb-match - - 70.27(0.75) 56.96(0.46) 38.95(0.27) 51.84(0.40) 59.99(0.25) 43.71(0.19) 26.72(0.29) 43.23(0.23)
SeqPAN w/o sq-match 8 8 69.62(0.54) 55.29(0.30) 36.71(0.48) 51.13(0.25) 59.03(0.35) 42.65(0.32) 26.29(0.13) 42.51(0.36)
SeqPAN w/ Gumbel 4 8 71.64(0.64) 57.61(0.26) 39.26(0.31) 52.15(0.45) 59.74(0.42) 43.85(0.35) 27.12(0.20) 43.69(0.24)
SeqPAN 4 4 72.70(0.51) 60.15(0.50) 41.02(0.36) 53.19(0.38) 61.12(0.39) 45.09(0.37) 27.97(0.27) 44.77(0.23)

Table 5: Ablation studies of sequence matching strategy in SeqPAN, where the values in bracket denote standard deviation.

to the grounding performance improvement. In
addition, consistent improvements are observed by
incorporating G and Elab into the model. SeqPAN
is superior to SeqPAN w/ fb-match over all evalua-
tion metrics. The performance improvements are
more significant under more strict metrics. The
results show that sq-match is more effective than
the fb-match strategy. Regional indication of po-
tential positions of start/end boundaries does help
the model to produce accurate predictions.
Impact of Annealing Temperature τ . We then
analyze the impact of annealing temperature τ of
Gumbel-Softmax in sequence matching module.
Gumbel-Softmax distributions are identical to a cat-
egorical distribution when τ → 0+. With τ →∞,
its distribution is smooth. We evaluate 11 different
τ values from 0.01 to 1.0, where 0.01 is used to ap-
proximate 0.0 since 0.0 is not divisible. The results
are compared against vanilla Softmax as a baseline.
For vanilla Softmax, we multiply the probability
distribution of labels with Elab, to aggregate label
information into the visual representations.

Figure 6 plots the results of different τ ’s on
Charades-STA and ANetCaps, respectively. We
observe similar patterns on the four sets of results.
The best performance is achieved when τ = 0.3
over both metrics on both datasets. From Fig-
ure 6(a), when τ is too small or too large (i.e., the
probability distribution from Gumbel-Softmax be-
comes too sharp or too smooth), Gumbel-Softmax
performs poorer than vanilla Softmax. This result
suggests that a proper annealing temperature τ is
crucial to achieve good performance. Similar ob-
servations hold on ANetCaps (see Figure 6(b)).

4.4 Qualitative Analysis

Figure 7 shows the number of predicted test sam-
ples within different IoU ranges on Charades-STA
and ANetCaps. Here, we compare SeqPAN with
two of its variants: (i) removal of sequence match-
ing module, and (ii) replacement of sequence
matching with fb-match. All three variants show
similar patterns. Nevertheless, within the higher

Ground Truth 45.92s~121.91s

GSL

SeqPAN w/o sq-match

PSL

SeqPAN 41.75s~121.91s

45.09s~143.62s

Query: The woman shows how to adjust exercise equipment then climbs on top and begins using it.

Query: The woman is seen sitting in front of various ingredients and mixing them together into a bowl.

Ground Truth 40.03s~97.02s

GSL

SeqPAN w/o sq-match
PSL

SeqPAN 34.85s~94.99s

24.43s~74.64s

B-M: Begin of Moment I-M: Inside of Moment E-M: End of Moment O: Background

Figure 8: Qualitative results of SeqPAN and SeqPAN w/o
sq-match on ANetCaps. “GSL” is the ground truth sequence
labels; “PSL” is the predicted labels by sq-match of SeqPAN.

IoU ranges, e.g., IoU ≥ 0.5 on both datasets, Se-
qPAN and the variant with fb-match outperform
the variant without sequence matching. The results
show that having auxiliary objectives (e.g., fore-
ground/background or sequential regions) is help-
ful in video grounding task. Results in Figure 7
also show that our sequence matching is more effec-
tive than fb-match, for highlighting the correction
regions for predicting start/end boundaries.

Figure 8 depicts two video grounding examples
from the ANetCaps dataset. From the two exam-
ples, the moments retrieved by SeqPAN are closer
to the ground truth than that are retrieved by Seq-
PAN without utilizing the sq-match strategy. Be-
sides, the start and end boundaries predicted by
SeqPAN are roughly constrained within the pre-set
potential start and end regions. In addition, the
predicted sequence labels (PSL) in Figure 8 also
reveal the weakness of sq-match strategy. The pre-
dicted labels by sq-match strategy are not continu-
ous, where multiple start, inside, and end regions
are generated. In consequence, the localizer may
be affected by wrongly predicted regions and leads
to inaccurate results. To further constrain the gen-
erated regions is part of our future work.
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5 Conclusion

In this work, we propose a Parallel Attention Net-
work with Sequence matching (SeqPAN) to address
the language query-based video grounding prob-
lem. We design a parallel attention module to im-
prove the multimodal representation learning by
capturing both self- and cross-modal attentive in-
formation simultaneously. In addition, we propose
a sequence matching strategy, which explicitly in-
dicates the potential start and end regions of the
target moment to allow the localizer precisely pre-
dicting the boundaries. Through extensive experi-
mental studies, we show that SeqPAN outperforms
the state-of-the-art methods on three benchmark
datasets; and both the proposed parallel attention
and sequence matching modules contribute to the
grounding performance improvement.
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This appendix contains two sections. Section A
provides (A.1) a detailed comparison between the
proposed SGPA and standard transformer blocks,
(A.2) technical details of the video-query integra-
tion module, and (A.3) categorical reparameter-
ization used in the sequence matching module.
Section B describes statistics on the benchmark
datasets and parameter settings in our experiments.

A Additional Comparison and Technical
Details

A.1 SGPA versus Standard Transformers

Two ways are mainly used to adopt the transformer
block for multi-modal representation learning:

• Transformer block with the self-attention (Se-
TRM), which encodes visual and textual inputs
in separate streams, shown in Figure 9(a).

• Transformer block with the cross-attention (Co-
TRM), which encodes both visual and textual
inputs with interactions through co-attention,
shown in Figure 9(b).

Several works (Lu et al., 2019a; Chen et al.,
2020a; Zhang et al., 2020a) adopt Se-TRM to learn
visual and textual representations in video ground-
ing task. Se-TRM separately encodes each modal-
ity, it focuses on learning the refined unimodal
representations within each modality for video and
text respectively. Without any connection between
two modalities, Se-TRM cannot use information
from other modality to improve the representations.

Co-TRM7 is commonly used as a basic compo-
nent in various vision-language methods (Tan and
Bansal, 2019; Lu et al., 2019b; Lei et al., 2020).
Co-TRM relies on co-attention to learn the cross-
modal representations for both visual and textual
inputs. However, Co-TRM lacks the ability to en-
code self-attentive context within each modality.

The cascade of Se-TRM and Co-TRM is also
used in recent vision-language models (Tan and
Bansal, 2019; Lu et al., 2019b; Zhu and Yang, 2020;
Lei et al., 2020) to learn both unimodal and cross-
modal representations. In general, there are two
cascade forms: 1) stacking Co-TRM upon Se-TRM
(SeCo-TRM) in Figure 10(a); and 2) stacking Se-
TRM upon Co-TRM (CoSe-TRM) in Figure 10(b).
These stacked TRMs learn the unimodal and cross-
modal information in a sequence manner. Hence,

7It is also known as co-attentional, multi-modal or cross-
modal transformer block in different works.

Methods R@1, IoU = µ
µ = 0.3 µ = 0.5 µ = 0.7

Charades-STA
Se-TRM 68.84 (0.46) 51.92 (0.54) 34.58 (0.18)
Co-TRM 69.03 (0.49) 52.34 (0.50) 35.07 (0.32)
SeCo-TRM 69.11 (0.24) 52.63 (0.49) 35.17 (0.22)
CoSe-TRM 69.08 (0.26) 52.82 (0.43) 35.09 (0.50)
PA 69.21 (0.27) 54.37 (0.46) 36.22 (0.49)
SGPA 69.47 (0.32) 54.63 (0.43) 36.36 (0.24)

ActivityNet Captions
Se-TRM 57.64 (0.38) 40.76 (0.35) 25.10 (0.30)
Co-TRM 57.39 (0.29) 40.55 (0.45) 24.85 (0.47)
SeCo-TRM 57.47 (0.38) 40.70 (0.24) 25.07 (0.21)
CoSe-TRM 57.72 (0.41) 40.85 (0.17) 25.16 (0.15)
PA 58.27 (0.13) 41.59 (0.24) 25.88 (0.28)
SGPA 58.40 (0.31) 41.72 (0.19) 26.07 (0.16)

Table 6: Comparison between SGPA with standard trans-
former blocks on Charades-STA and ANetCaps, where PA is
the SGPA without self-guided head (i.e., replaced by FFN)
The scores in bracket denotes standard deviation.

their final outputs focus more on either the self-
attentive contexts or cross-modal interactions. Our
SGPA combines advantages of both Se-TRM and
Co-TRM, but not through cascade. As shown in
Figure 9(c), SGPA contains two parallel multi-head
attention blocks. One block takes single modality
as input and the other takes both modalities as in-
puts. Thus, SGPA is able to learn both unimodal
and cross-modal representations simultaneously.
Then, a cross-gating strategy is designed to fuse
the self- and cross-attentive representations. We
also employ a self-guided head to replace the feed
forward layer in transformer block. This design
implicitly emphasizes informative representations
by measuring the confidence of each element.

Table 6 reports the performance of SGPA and
standard TRMs on Charades-STA and ANetCaps
datasets. Here, we regard both SeCo-TRM and
CoSe-TRM as single block. The results show that
both PA (a SGPA variant without self-guided head)
and SGPA are superior to standard TRMs.

A.2 Video-Query Integration Computation

This section presents the detailed computation pro-
cess of video-query integration (see Section 3.1.3).

Given two inputsX ∈ Rd×Nx and Y ∈ Rd×Ny ,
the context-query attention first computes similar-
ities between each pair of X and Y elements as:

S =X> ·W · Y (16)

where W ∈ Rd×d and S ∈ RNx×Ny . Then X-to-
Y and Y -to-X attention weights are computed by:
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Figure 9: The structures of standard transformer blocks and self-guided parallel attention module. Top: the structure of
each module; Bottom: the parallel streams of encoding visual and textual inputs. (a) The standard transformer block with
self-attention; (b) The standard transformer block with cross-attention; (c) The self-guided parallel attention (SGPA) module.
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Figure 10: The structures of SeCo-TRM and CoSe-TRM.

AXY = Sr · Y > ∈ RNx×d

AYX = Sr · S>c ·X> ∈ RNx×d
(17)

where Sr and Sc are the row- and column-wise
normalization of S by Softmax function. The final
output of context-query attention is calculated as:

XY = FFN
(
[X;A>XY;X �A>XY;X �A>YX]

)
(18)

where � denotes element-wise multiplication, “;”
represents concatenation operation, and XY ∈
Rd×Nx . In this way, the information of Y is prop-
erly fused intoX .

By setting X = V̄ ∈ Rd×N and Y = Q̄ ∈
Rd×M , we can derive the query-aware video rep-
resentations V Q ∈ Rd×N . Similarly, the video-
aware query representations QV ∈ Rd×M is ob-
tained by settingX = Q̄ and Y = V̄ .

Next, we encode QV = [qV0 , . . . , q
V
M−1] into

sentence representation q with additive attention:

α = Softmax
(
Wα ·QV )

)
∈ RM

q =
M−1∑
i=0

αi × qVi ∈ Rd
(19)

where Wα ∈ R1×d. The q is then concatenated
with each element of V Q asH = [h1, . . . ,hn] ∈
R2d×N , where hi = [vQi ; q]. Finally, the query-
attended visual representation is computed as

H̄ =Wh ·H + bh (20)

where Wh ∈ Rd×2d and bh ∈ Rd denote the learn-
able weight and bias, and H̄ ∈ Rd×N .

A.3 Categorical Reparameterization
This section provides a brief introduction of the
categorical reparameterization strategy used in se-
quence matching module (see Section 3.1.4).

Categorical reparameterization, e.g., reinforce-
based approaches (Sutton et al., 2000; Schulman
et al., 2015), straight-through estimators (Bengio
et al., 2013) and Gumbel-Softmax (Jang et al.,
2017; Maddison et al., 2017), is a strategy that
enables discrete categorical variables to back-
propagate in neural networks. It aims to estimate
smooth gradient with a continuous relaxation for
categorical variable. In this work, we use Gumbel-
Softmax to approximate the sequence labels from
a probability distribution. Then those labels are
applied to lookup the corresponding embeddings
for region representation in the sequence matching
module of SeqPAN.
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Dataset Domain NV (train/val/test) NA (train/val/test) N̄A/V NVocab L̄V (s) L̄Q L̄M (s)

Charades-STA Indoors 5, 338/-/1, 334 12, 408/-/3, 720 2.42 1, 303 30.59 7.22 8.22

ActivityNet Captions Open 10, 009/-/4, 917 37, 421/-/17, 505 3.68 12, 460 117.61 14.78 36.18

TACoS (Gao et al., 2017) Cook 75/27/25
10, 146/4, 589/4, 083 148.17 2, 033 287.14 10.05 5.45

TACoS (Zhang et al., 2020b) 9, 790/4, 436/4, 001 143.52 1, 983 287.14 9.42 25.26

Table 7: Statistics of the evaluated video grounding benchmark datasets, where NV is number of videos, NA is number of
annotations, N̄A/V denotes the average number of annotations per video, NVocab is the vocabulary size of lowercase words, L̄V

denotes the average length of videos in seconds, L̄Q denotes the average number of words in the sentence queries and L̄M

represents the average length of temporal moments in seconds.

Let x = (x1, . . . , xl) be a categorical distribu-
tion, where l is the number of categories, xc is the
probability score of category c and

∑l
c=1 xc = 1.

Given the i.i.d. Gumbel noise g = (g1, . . . , gl)
from Gumbel(0, 1) distribution8, the soft categori-
cal sample can be computed as:

y = Softmax
(
(log(x) + g)/τ

)
(21)

where τ > 0 is annealing temperature, and Eq. 21
is referred as Gumbel-Softmax operation on x.
As τ → 0+, y is equivalent to the Gumbel-Max
form (Gumbel, 1954; Maddison et al., 2014) as:

ŷ = Onehot
(
argmax(log(x) + g)

)
(22)

where ŷ is an unbiased sample from x and thus
we can draw differentiable samples from the dis-
tribution during training. Note, when input x is
unnormalized, the log(·) operator in Eq. 21 and 22
shall be omitted (Jang et al., 2017; Dong and Yang,
2019). During inference, discrete samples can be
drawn with the Gumbel-Max trick directly.

B Dataset and Parameter Settings

B.1 Dataset Statistics

The statistics of the evaluated benchmark datasets
are summarized in Table 7. Charades-STA dataset
consists of 6, 672 videos and 16, 128 annotations
(i.e., moment-query pairs) in total. ActivityNet
Captions (ANetCaps) dataset is taken from the
ActivityNet (Heilbron et al., 2015). The average
duration is about 120 seconds and each video con-
tains 3.68 annotations on average. TACoS dataset
contains 127 cooking activities videos with average
duration of 4.79 minutes, and 18, 818 annotations
in total. We follow the same train/val/test split as
Gao et al. (2017). Besides, Zhang et al. (2020b)

8The Gumbel(0, 1) distribution can be sampled using in-
verse transform sampling by drawing u ∼ Uniform(0, 1) and
computing g = − log(− log(u)) (Jang et al., 2017).

pre-processes the TACoS dataset, hence their ver-
sion is slightly different from the original version.
Detailed statistics are summarized in Table 7.

B.2 Hyper-Parameter Settings
We follow (Ghosh et al., 2019; Mun et al., 2020;
Rodriguez et al., 2020; Zhang et al., 2020a) and use
3D ConvNet pre-trained on Kinetics dataset (i.e.,
I3D9) (Carreira and Zisserman, 2017) to extract
visual features from videos. The maximal visual
feature sequence lengths are set to 64, 100, and
256 for Charades-STA, ActivityNet Captions, and
TACoS, respectively. This setting is based on the
average video lengths in the three datasets. The fea-
ture sequence length of a video will be uniformly
downsampled if it is larger than the pre-set thresh-
old, or zero-padding otherwise. For the language
queries, we lowercase all the words and initialize
them with GloVe (Pennington et al., 2014) embed-
dings10. The word embeddings and extracted visual
features are fixed during training.

For other hyper-parameters, we use the same set-
tings for all datasets. The dimension of the hidden
layers is 128; the head number in multi-head atten-
tion is 8; the number of SGPA blocks (NSGPA) is
2; the annealing temperature τ of Gumbel-Softmax
is 0.3; The Dropout (Srivastava et al., 2014) is
0.2. The maximal training epochs E = 100 is
used, with batch size of 16 and early stopping tol-
erance of 10 epochs. We adopt Adam (Kingma
and Ba, 2015) optimizer, with initial learning rate
of β0 = 0.0001, weight decay 0.01, and gradient
clipping 1.0, to train the model. The learning rate
decay strategy is defined as βe = β0 × (1 − e

E ),
where e denotes the e-th training epoch.

The SeqPAN is implemented using TensorFlow
1.15.0 with CUDA 10.0 and cudnn 7.6.5.
All the experiments are conducted on a workstation
with dual NVIDIA GeForce RTX 2080Ti GPUs.

9https://github.com/deepmind/kinetics-i3d
10http://nlp.stanford.edu/data/glove.840B.300d.zip


