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Abstract

Change captioning is to describe the difference
in a pair of images with a natural language
sentence. In this task, the distractors, such
as the illumination or viewpoint change, bring
the huge challenges about learning the differ-
ence representation. In this paper, we propose
a semantic relation-aware difference represen-
tation learning network to explicitly learn the
difference representation in the existence of
distractors. Specifically, we introduce a self-
semantic relation embedding block to explore
the underlying changed objects and design a
cross-semantic relation measuring block to lo-
calize the real change and learn the discrimina-
tive difference representation. Besides, relying
on the POS of words, we devise an attention-
based visual switch to dynamically use visual
information for caption generation. Extensive
experiments show that our method achieves
the state-of-the-art performances on CLEVR-
Change and Spot-the-Diff datasets 1.

1 Introduction

Change Captioning aims to describe a seman-
tic change between a pair of “before” and “af-
ter” images, which has many practical applica-
tions such as facility monitoring (Sakurada and
Okatani, 2015), medical imaging (Patriarche and
Erickson, 2004), and aerial photography (Gueguen
and Hamid, 2015).

The previous work (Jhamtani and Berg-
Kirkpatrick, 2018) introduced this task with an
ideal assumption that there is a semantic change
between a completely-aligned image pair. How-
ever, there is always illumination change in a dy-
namic world, and same or similar scenes are prone
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The tiny cylinder 

has disappeared.

<Before> <After> <Change Caption>

A person on the 

far corner of the 

sidewalk is now 

gone.

Figure 1: Two examples of change captioning with and
without a viewpoint change.

to shoot under different viewpoints. Compared
to semantic changes, both illumination and view-
point changes are irrelevant distractors, so realistic
change captioning requires a model: 1) distinguish-
ing semantic changes (e.g., an object has moved)
from distractors (e.g., a viewpoint change) and 2)
conveying the detected change in a logically and
grammatically accurate sentence. To this end, re-
cent works (Park et al., 2019; Shi et al., 2020)
focused on addressing change captioning in the
presence of distractors.

Despite the progress, there are still two limi-
tations for their approaches. First, the semantic
difference was modeled only relying on the seman-
tic features of objects, while ignoring their self-
semantic relations. Hence, the feature difference is
hard to capture the tiny change. As shown in Fig-
ure 1, compared with many unchanged objects, the
dropped object is tiny and easy to ignore. Differ-
ently, if one of the objects has changed, especially
number or position change (e.g., “add”, “drop”,
or “move”), the semantic relations surrounding it
would change as well, which would be beneficial to
explore the underlying objects that have changed.
Second, due to the existing of irrelevant distractors,
the model would capture the semantic difference

https://github.com/tuyunbin/SRDRL
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with noises and thus learn a wrong difference repre-
sentation. However, both distractors are irrelevant
to the semantics of image contents. Therefore, the
cross-semantic relation between the captured se-
mantic difference and the image pair is beneficial
to judge whether the semantic change has actually
happened, and further learn the difference represen-
tation in the “before” and “after” images.

Besides, during caption generation, previous
works exploited visual information to generate each
word, which is unnecessary or even misleading
(Lu et al., 2017; Song et al., 2017). As words
with different part-of-speech (POS) information
not only play different grammatical roles in a sen-
tence (Wang et al., 2019), but also have different re-
lationships with the visual information in an image.
As shown in the first example of Figure 1, some
words (e.g., “tiny”, “cylinder” and “disappeared”)
belong to adjective, noun and verb words, which
denote the size, category, and state of the visual
object, while the word (i.e.,“the”) is a determiner
word which does not have corresponding canoni-
cal visual signals. Thus, it is useful to introduce
the POS of words for switching visual information
during change caption generation.

In this paper, we propose a Semantic Relation-
aware Difference Representation Learning (SR-
DRL) network to localize the semantic change
in the presence of distractors, and introduce an
Attention-based Visual Switch (AVS) to dynami-
cally decide when to use visual information during
change caption generation. Specifically, first, a
Self-Semantic Relation Embedding block (SSRE)
builds semantic relations of objects for each image
in the “before”/“after” pair via the self-attention
mechanism. The built relations are embedded into
image features for computing a relation-embedded
feature difference. Second, a Cross-Semantic Re-
lation Measuring block (CSRM) leverages the ob-
tained difference to query the underlying “candi-
date change” in the each image. Further, CSRM
uses the difference to generate an attention gate
measuring its cross-semantic relations with respect
to each image. Subsequently, the attention gate
is applied to the candidate change to distinguish
semantic change from the viewpoint/illumination
change. Third, the change localizer is introduced to
learn the accurate difference representation in the
image pair under the guidance of a prior knowledge
(the above distinguished information).

Finally, according to POS information of words,

an Attention-based Visual Switch (AVS) is devised
and incorporated into the caption generator to dy-
namically control visual information when predict-
ing the next word. Extensive experiments show
that our approach outperforms the state-of-the-art
change captioning models with a large margin.

In summary, the contributions of this work have
threefold: (1) We propose SRDRL that explicitly
learns the semantic difference representation in the
image pair by embedding self-semantic relations
into object features of each image and further mea-
suring the cross-semantic relations between the
image pair and their difference. (2) Both SSRE and
CSRM blocks are designed to help the change lo-
calizer to accurately focus on the changed objects.
(3) An AVS is customized to dynamically utilize
visual information for caption generation based on
the POS information of words.

2 Related Work

Different from conventional image (Liu et al., 2020,
2019; Li et al., 2020; Yan et al., 2019, 2020a, 2021)
or video captioning (Deng et al., 2021; Zhang et al.,
2017; Tu et al., 2017, 2020; Yan et al., 2020b),
change captioning addresses two-image captioning,
especially to describe their difference. Jhamtani
et al. (Jhamtani and Berg-Kirkpatrick, 2018) is
the first work for change captioning. However, it
is built upon an ideal situation by assuming there
are no distractors (illumination/viewpoint change)
between a pair of images. To make this task more
close to our dynamic world, Park et al. and Shi et
al. (Park et al., 2019; Shi et al., 2020) both aimed
to address change captioning in the existence of
distractors. On one hand, Park et al. directly con-
catenated the coarse feature difference with the
image pair to operate spatial attention to localize
the change. However, due to the existing of dis-
tractors, when the captured feature difference is
not what the model really expects, the spatial at-
tention module could be misled to give fallacious
results. On the other hand, Shi et al. first exploited
a cross-attention mechanism to search the most sim-
ilar patches between the image pair and they are
regarded as the unchanged representation. Then,
they subtracted them from the original image to
get the difference representation. However, as our
aforementioned, the changed object is tiny and easy
to ignore, so it is insufficient to capture the differ-
ence representation only at feature level.

Different from the above state-of-the-art meth-
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Figure 2: The architecture of the proposed semantic relation-aware difference representation learning (SRDRL)
network and an attention-based visual switch (AVS). The SRDRL consists of a self-semantic relation embedding
block (SSRE), a cross-semantic relation measuring block (CSRM) and a prior knowledge-guided change localizer.
The AVS is incorporated into the caption generator and guided by a POS predictor.

ods, we first use SSRE to improve the fine-grained
representation ability of object features by embed-
ding the self-semantic relations among them. Then,
we exploit CSRM to distinguish the actual seman-
tic change from irrelevant distractors via measuring
cross-semantic relations between the captured can-
didate difference and the original images. Finally,
we use POS information to devise an attention-
based visual switch that dynamically determines
not only when to use visual information, but also
which to use ( e.g., “before” and “after”). Com-
pared to the aforementioned methods, our method
not only can learn discriminative difference repre-
sentation, but also can describe it using an accurate
natural language sentence.

3 Methodology

We present a semantic relation-aware difference
representation learning (SRDRL) network for
change localization and devise an attention-based
Visual Switch (AVS) under the guidance of POS
information for caption generation. When a pair of
“before” and “after” images are given (denoted as
Ibef and Iaft), our SRDRL first detects what (po-
sition, number, attribute, or nothing) has changed
in a scene and further decides where to localize on
both Ibef and Iaft. Then, during caption genera-
tion, the AVS is able to dynamically decide when
to use visual information and which to use (e.g.,

“before” and “after”).

3.1 Semantic Relation-aware Difference
Representation Learning Network

3.1.1 Self-Semantic Relation Embedding
Formally, given a pair of Ibef and Iaft, we first
use pre-trained CNN model to extract object-level
features and denote them as Xbef and Xaft, where
Xi ∈ RC×H×W ; C, H, W indicate the number
of channels, height, and width. However, These
original object features are independent, and there
exist semantic relations among them (Huang et al.,
2020; Wu et al., 2019; Yin et al., 2020). Inspired
by the self-attention (Vaswani et al., 2017) using
in machine translation, the self-semantic relation
embedding block (SSRE) relies on it to implicitly
model the semantic relations among objects in each
image. Specifically, we first reshape Xi to Xi ∈
RN×C (N = HW ), where i ∈ (bef, aft). Then,
given (key, value), SSRE exploits the scaled dot-
product attention on queries Q by:

SSRE(Q,K, V ) = softmax

(
QKT

√
dk

)
V. (1)

In our case, the queries, keys and values are all
projections of the object features of Xi:

(Q,K, V ) =
(
XiW

Q, XiW
K , XiW

V
)
. (2)
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Though the SSRE, the semantic relations are em-
bedded in the original object features; both Xbef

andXaft can be updated toX ′bef andX ′aft. Finally,
we subtract X ′bef from X ′aft to capture the seman-
tic difference X ′diff in the both object feature and
relation aspects.

3.1.2 Cross-Semantic Relation Measuring

Due to the existing of distractors, the resulting
X ′diff would include some irrelevant information,
which would be noises for the accurate difference
representation learning on both X ′bef and X ′aft.
Thus, we propose a cross-semantic relation mea-
suring block (CSRM) to distinguish the semantic
change from the irrelevant illumination or view-
point change by measuring the cross-semantic re-
lation between the X ′diff and X ′bef (X ′aft). Con-
cretely, the CSRM utilizes the X ′diff to first query
the possible “candidate change” Cbef on the X ′bef ,
and then generates an “attention gate” Abef mea-
suring its semantic relations with respect to X ′bef .
These are defined by using two separate non-linear
transformations:

Cbef = φ
(
X ′diffW

i
q +X ′befW

i
v + bi

)
,

Abef = σ
(
X ′diffW

g
q +X ′befW

g
v + bg

)
,

(3)

where W i
q ,W

i
v,W

g
q ,W

g
v ∈ RC×C , bi, bg ∈ RC ,

and C is the dimension of X ′diff and X ′bef ; σ and
φ denote the sigmoid and tanh function. The value
in the “attention gate” indicates the semantic rel-
evance between the “candidate change” and the
“before”. Thus, the more information in the “candi-
date change” passes through the “attention gate”,
the more X ′diff is relevant to X ′bef .

Next, the CSRM applies the Abef to the Cbef to
filter all the underlying change information and fo-
cus on only the information about semantic change
via element-wise multiplication:

C ′bef = Abef � Cbef . (4)

Besides, the information about semantic change
C ′aft is computed via the similar operation between
the X ′diff and X ′aft :

Caft = φ
(
X ′diffU

i
q +X ′aftU

i
v + zi

)
,

Aaft = σ
(
X ′diffU

g
q +X ′aftU

g
v + zg

)
,

C ′aft = Aaft � Caft.

(5)

3.1.3 Prior Knowledge-guided Change
Localizer

After obtaining the C ′bef and C ′aft, we use them as
the prior knowledge to guide the change localizer
to learn the difference representation. Specifically,
the change localizer first predicts two separate at-
tention maps under the guidance of C ′bef and C ′aft,
respectively:

X ′′bef = [X ′bef ;X
′
diff ;C

′
bef ] ,

abef = σ (conv2 (ReLU (conv1 (X
′′
bef )))) ,

X ′′aft = [X ′aft ;X
′
diff ;C

′
aft ] ,

aaft = σ (conv2 (ReLU (conv1 (X
′′
aft)))) ,

(6)
where [; ], conv, and σ indicate concatenation, con-
volutional layer, and element-wise sigmoid, respec-
tively. After that, the difference representation fea-
tures lbef and laft are attended to by applying abef
and aaft to the input image features X ′bef and X ′aft :

lbef =
∑

H,W abef �X ′bef , lbef ∈ RC ,

laft =
∑

H,W aaft �X ′aft, laft ∈ RC .
(7)

3.2 Change Caption Generation
3.2.1 POS Predictor
Inspired by POS used in machine translation (Yin
et al., 2019), we dynamically predict POS tags 1 of
target words based on the previous hidden states
h
(t−1)
c of the caption generator. The predicted tags

help the captioning model use visual information
in a dynamic way.

Specifically, at time t, h(t−1)c is first fed into
a single hidden layer with the ReLU activation
function:

dpt = ReLU
(
W (1)

p h(t−1)c + b(1)p

)
, (8)

where W (1)
p ∈ RM×M and b(1)p ∈ RM , and M is

the dimension of the hidden state in caption gener-
ator. Then, a POS tag probability is predicted by a
linear transformation with a softmax function:

wp
t = softmax

(
W (2)

p dpt + b(2)p

)
, (9)

where W (2)
p ∈ RM×n and b

(2)
p ∈ Rn, and n is

the number of POS tag. After obtaining wp
t , we

represent the POS tag of the target word wt using
a semantic representation pt:

pt = Epw
p
t , (10)

whereEp ∈ Rn×N is a POS embedding matrix and
N is the dimension of the POS representation.

1The POS tags of words in ground truth are processed by
Stanford Log-linear Part-Of-Speech Tagger (Toutanova et al.,
2003).



67

3.2.2 Attention-based Visual Switch
Visual Attention. We first use a visual attention
module to select a candidate feature from lbef , laft,
or ldiff (laft - lbef ), which could be relevant to the
target word:

l
(t)
dyn =

∑
i

α
(t)
i li, (11)

where i ∈ ( bef, diff, aft ). α(t)
i are current visual

attention weights and they are computed by an
attention LSTMa:

v = ReLU (Wd1 [lbef ; ldiff ; laft] + bd1)

u(t) =
[
v;h

(t−1)
c

]
h
(t)
a = LSTMa

(
h
(t)
a | u(t), h(0:t−1)a

)
α
(t)
i ∼ Softmax

(
Wd2h

(t)
a + bd2

) (12)

whereWd1 , bd1 ,Wd2 , and bd2 are learnable parame-
ters. h(∗)a and h(∗)c are hidden states of the attention
module LSTMa and the caption generator LSTMc,
respectively.

Visual Switch. Then, we exploit a visual switch
to decide whether to rely on visual information to
predict the next word based on the predicted POS
information pt. At time step t, the visual switch βt
is defined as:

mt =
[
pt;h

t−1
c ; l

(t)
dyn

]
,

βt = σ(Ws2(ReLU(Ws1mt))),
(13)

where σ is the sigmoid function and Ws∗ are the
learnable parameters. The range of βt is [0,1] and
the value of it indicates how much visual informa-
tion to use when predicting the target word. Then,
we apply this switch to attended visual feature l(t)dyn

to control the use of visual information:

L
(t)
dyn = βt � l(t)dyn. (14)

3.2.3 Caption generator
After the proper visual information is obtained, we
use it and the previous word wt−1 (ground-truth
word during training, predicted word during infer-
ence) to the caption generator LSTMc to predict a
series of distributions over the next word:

c(t) =
[
E [wt−1] ;L

(t)
dyn

]
,

h
(t)
c = LSTMc

(
h
(t)
c | c(t), h(0:t−1)c

)
,

wt ∼ Softmax
(
Wch

(t)
c + bc

)
,

(15)

where E is a word embedding matrix; Wc and bc
are learnable parameters.

3.3 Joint Training
We jointly train the POS predictor and the caption
generator end-to-end by maximizing the likelihood
of the observed POS and word sequence. For the
POS predictor, given the target ground-truth POS
tags (wp

1, . . . , w
p
m), we minimize its negative log-

likelihood loss:

Lpos(θp) = −
m∑
t=1

log p
(
wp
t | w

p
<t; θp

)
, (16)

where θp are the parameters of the POS predictor
and m is the length of the POS tag.

For the caption generator, given the target
ground-truth caption words (wc

1, . . . , w
c
m), we min-

imize its negative log-likelihood loss:

Lcap(θc) = −
m∑
t=1

log p (wc
t | wc

<t; θc) , (17)

where θc are the parameters of the caption generator
and m is the length of the caption. Thus, the final
loss function is optimized as follows:

L(θ) = Lpos + Lcap (18)

4 Experiments

4.1 Datasets
CLEVR-Change. This dataset (Park et al., 2019)
is a large scale dataset with a set of basic geometry
objects, which consists of 79,606 image pairs and
493,735 captions. The change types consist of five
cases, i.e., “Color”, “Texture”, “Add”, “Drop”, and
‘’Move”. We use the official split with image pairs
of 67,660 for training, 3, 976 for validation and
7,970 for testing.

Spot-the-Diff. This dataset (Jhamtani and Berg-
Kirkpatrick, 2018) contains 13,192 real image pairs
which are well aligned image pairs, with one or
more changes between the images (but no distrac-
tors). Similar to (Park et al., 2019), we only evalu-
ate our model in a single change setting and split it
into training, validation, and test sets with a ratio
of 8:1:1.

4.2 Evaluation Metrics
We use five standard metrics to evaluate the qual-
ity of generated sentences, i.e., BLEU-4 (Papineni
et al., 2002), METEOR (Banerjee and Lavie, 2005),
ROUGE-L (Lin, 2004), CIDEr (Vedantam et al.,
2015) and SPICE (Anderson et al., 2016). We
get all the results in this paper according to the
Microsoft COCO evaluation server (Chen et al.,
2015).
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Table 1: Ablation studies on CLEVR-Change in terms of total performance,
where B-4, M, R, C, and S are short for BLEU-4, METEOR, ROUGE-L, CIDEr,
and SPICE, respectively.

Total
Method BLEU-4 METEOR ROUGE-L CIDEr SPICE
Baseline 53.1 37.3 70.6 115.6 31.2

SSRE 54.2 39.2 72.2 120.1 32.0
CSRM 53.7 38.5 71.6 118.0 32.0
SRDRL 54.8 40.1 73.2 121.0 32.6

AVS 53.2 38.5 71.3 115.7 31.6
SRDRL+AVS 54.9 40.2 73.3 122.2 32.9

Table 2: Ablation studies on CLEVR-Change in terms of different settings.

Scene Change None-scene Change
Method B-4 M R C S B-4 M R C S
Baseline 50.9 33.0 65.3 100.9 27.7 62.0 50.0 75.9 116.1 34.7

SSRE 51.7 35.0 67.7 111.2 29.3 62.0 51.2 76.8 115.6 34.8
CSRM 51.8 34.6 67.3 106.5 29.4 61.4 49.9 75.9 115.5 34.7
SRDRL 52.0 35.8 68.9 112.3 30.3 62.1 52.0 77.5 116.3 34.9

AVS 50.9 34.2 66.5 103.6 28.8 60.3 50.5 76.1 113.5 34.4
SRDRL+AVS 52.7 36.4 69.7 114.2 30.8 62.2 51.3 76.9 117.0 34.9

4.3 Implementation Details

To extract image features, we use ResNet-101 (He
et al., 2016) pre-trained on the Imagenet dataset
(Russakovsky et al., 2015). We use features from
the convolutional layer with dimensionality of 1024
× 14 × 14. The hidden size is set to 512 and the
number of attention heads in SSRE is set to 4. The
words are represented by trainable 300D word em-
bedding features. POS tags are divided into 16 cat-
egories. In the training phase, on CLEVR-Change
and Spot-the-Diff, we respectively set the mini-
batch size as 128 and 96. We use Adam optimizer
(Kingma and Ba, 2014) with the learning rate of 1
× 10−3 and 5 × 10−4, respectively. At inference,
greedy decoding strategy is used to generate target
captions. Both training and inference are imple-
mented with PyTorch (Paszke et al., 2019) on a
TITAN Xp GPU.

4.4 Ablation studies

In order to figure out the contribution of each mod-
ule, we carry out the following ablation studies on
CLEVR-Change: (1) Baseline which is based on
DDUA (Park et al., 2019); (2) SSRE which only
embeds the self-semantic relations of objects into
their representations; (3) CSRM which only mea-
sures the cross-semantic relations between the cap-

tured candidate difference and the original images,
and the learned discriminative difference represen-
tation is used as a prior knowledge to guide the
change localizer; (4) SRDRL which is the combi-
nation of (2) and (3); (5) AVS which only relies
on the POS information to determine when to use
visual information and which of them should be
used; (6) SRDRL+AVS which is the combination
of (4) and (5).

The Evaluation on Total Performance. We
frist study the total performance of each block of
the proposed method under the whole dataset, in-
cluding scene change and none-scene change. Ex-
perimental results are shown in Table 1. We can
observe that each module of the proposed method
improves the total performance of the baseline.
Moreover, the best performance is achieved when
putting them together, which indicates each block
not only plays its unique role, but also can be a sup-
plementary role for the others. This global statisti-
cal performance validates the generalization ability
of the proposed method, that is, it not only can
explicitly judge whether there is a semantic change
between a pair of unaligned images, but also can
describe the change using an accurate sentence.

The Evaluation on Scene Change and None-
scene Change. The experimental results are shown
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Table 3: Comparing with state-of-the-art methods on CLEVR-Change in Total Perfor-
mance. RL is short for reinforcement learning training strategies.

Total
Method RL B-4 M R C S

Capt-Dual (Park et al., 2019) × 43.5 32.7 - 108.5 23.4
DDUA (Park et al., 2019) × 47.3 33.9 - 112.3 24.5
M-VAM (Shi et al., 2020) × 50.3 37.0 69.7 114.9 30.5

M-VAM+RAF (Shi et al., 2020) X 51.3 37.8 70.4 115.8 30.7
SRDRL+AVS × 54.9 40.2 73.3 122.2 32.9

Table 4: Comparing with state-of-the-art methods on CLEVR-Change in terms of two settings.

Scene Change None-scene Change
Method RL B-4 M C S B-4 M C S

Capt-Dual (Park et al., 2019) × 38.5 28.5 89.8 18.2 56.3 44.0 108.9 28.7
DDUA (Park et al., 2019) × 42.9 29.7 94.6 19.9 59.8 45.2 110.8 29.1

M-VAM+RAF (Shi et al., 2020) X - - - - - 66.4 122.6 33.4
SRDRL+AVS × 52.7 36.4 114.2 30.8 62.2 51.3 117.0 34.9

in Table 2, in terms of scene change, we can ob-
serve that 1) SSRE, CSRM and AVS all achieve
improvements over the baseline; 2) compared with
SSRE, the improvement is relatively small when
respectively using CSRM and AVS; 3) better per-
formances are achieved when using two kinds of
combinations (SRDRL and SRDRL+AVS). These
indicate 1) the effectiveness of our proposed SR-
DRL and its single block, as well as the AVS; 2)
the priority of this task is to capture the semantic
difference in the image pair. The reason is that only
if the semantic difference is captured sufficiently,
can the following specific change localization and
caption generation do well on itself part.

Besides, we can observe that although each sin-
gle block can improve the baseline in the case of
scene change, but they are worse than the baseline
in one or more metrics in the case of none-scene
change. Our conjecture is that the robustness of sin-
gle block is relatively weak, so it would sometimes
misidentify the illumination or viewpoint change
as the actual semantic change. When observing
the performance of two kinds of combinations (SR-
DRL and SRDRL+AVS), both of them improve the
baseline in all metrics, which indicates the robust-
ness of our overall model is strong.

4.5 Performance Comparison

4.5.1 Results on CLEVR-Change

In this dataset, we compare with four state-of-the-
art methods, Capt-Dual (Park et al., 2019), DUDA

(Park et al., 2019), M-VAM (Shi et al., 2020) and
M-VAM+RAF (Shi et al., 2020), in four dimen-
sions: 1) the total performance of scene change
and none-scene change; 2) only scene change; 3)
only none-scene change; 4) specific type of scene
change. The comparison results are shown in Table
3, Table 4, and Table 5, respectively.

From Table 3, in terms of total performance, we
can clearly observe that our method achieves sig-
nificant improvements over them in all evaluation
metrics, in particular with an increase of 34.3%
and 7.2% in SPICE, respectively. From Table 4,
under two kinds of settings, we can observe that
our method outperforms DDUA with a large mar-
gin. Furthermore, since the M-VAM+RAF did not
report the results on scene change, we only com-
pare with them in the setting of none-change. We
can observe that it outperforms us in METEOR and
CIDEr. This superiority could derive from the rein-
forcement learning strategy. However, this strategy
will remarkably increase training time and compu-
tation complexity. Moreover, as reported in Table
3, our total performance is much better than them,
which is evaluated under the both scene change and
none-scene change. Hence, compared to them, our
method is more robust due to the discriminative
difference representation learning.

Table 5 is the detailed breakdown of the eval-
uation based on five change types: “Color” (C),
“Texture” (T), “Add” (A), “Drop” (D), and “Move”
(M). Specifically, compare to all SOTA methods,
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Table 5: A Detailed breakdown of Change Captioning evaluation on CLEVR-Change by different
change types: “Color” (C), “Texture” (T), “Add” (A), “Drop” (D), and “Move” (M).

Method RL Metrics C T A D M
Capt-Dual (Park et al., 2019) × CIDEr 115.8 82.7 85.7 103.0 52.6

DDUA (Park et al., 2019) × CIDEr 120.4 86.7 108.3 103.4 56.4
M-VAM+RAF (Shi et al., 2020) X CIDEr 122.1 98.7 126.3 115.8 82.0

SRDRL+AVS × CIDEr 136.1 122.7 121.0 126.0 78.9
Capt-Dual (Park et al., 2019) × METEOR 32.1 26.7 29.5 31.7 22.4

DDUA (Park et al., 2019) × METEOR 32.8 27.3 33.4 31.4 23.5
M-VAM+RAF (Shi et al., 2020) X METEOR 35.8 32.3 37.8 36.2 27.9

SRDRL+AVS × METEOR 39.0 35.6 38.9 38.0 30.1
Capt-Dual (Park et al., 2019) × SPICE 19.8 17.6 16.9 21.9 14.7

DDUA (Park et al., 2019) × SPICE 21.2 18.3 22.4 22.2 15.4
M-VAM+RAF (Shi et al., 2020) X SPICE 28.0 26.7 30.8 32.3 22.5

SRDRL+AVS × SPICE 32.4 30.9 33.0 32.4 25.4

Table 6: Comparing with state-of-the-art methods on
Spot-the-Diff.

Method RL M R C S
DDLA × 12.0 28.6 32.8 -
DDUA × 11.8 29.1 32.5 -
SDCM × 12.7 29.7 36.3 -
FCC × 12.9 29.9 36.8 -

static rel-att × 13.0 28.3 34.0 -
dynamic rel-att × 12.2 31.4 35.3 -

M-VAM × 12.4 31.3 38.1 14.0
M-VAM+RAF X 12.9 33.2 42.5 17.1
SRDRL+AVS × 13.0 31.0 35.3 18.0

our method significantly raises the CIDEr scores
in “Color” and “Texture” types, which indicates
our method can better distinguish the attribute
change of objects from an illumination change. Be-
sides, for the number or position change of objects
(“Add”, “Drop”, and “Move”), our method all out-
performs them in most of metrics. Especially for
SPICE, compared to them, our method has 64.9%
and 12.9% improvements for “Move” case, respec-
tively, which also shows our method can better
localize the object movement from the viewpoint
change. In particular, the most challenging change
types are “Texture” and “Move” in this dataset, be-
cause they are most often confused with the illumi-
nation or viewpoint changes (Park et al., 2019). The
relative experiments show that our method is more
robust than SOTAs, and this benefits from the fact
that the CSRM block helps attend to the actually
semantic change by measuring the cross-semantic
relations of the image pair and their difference.

<After><Before>

Ground Truth:

The tiny blue cylinder 

changed its location.

Baseline:

The small blue matte 

cylinder that is behind 

the big blue matte object 

is no longer there.

SRDRL:

The small blue shiny 

cylinder that is to the left 

of the tiny green matte 

thing has been added.

SRDRL+AVS:

The small blue metal 

cylinder that is behind the 

tiny green metallic object 

changed its location.

Figure 3: A comparative example about “Move” case
from the test set of CLEVR-Change, which involves
the caption generated by the baseline, SRDRL, and
SRDRL+AVS. We visualize the localization results on
“before” (blue) and “after” (red).

4.5.2 Results on Spot-the-Diff

To validate the generalization ability of the pro-
posed method, we conduct the experiments on a
recent published Spot-the-Diff dataset, where the
image pairs are mostly well aligned and their is
no viewpoint change. We compare with eight
SOTA methods and most of them cannot consider
handling viewpoint changes: DDLA (Jhamtani
and Berg-Kirkpatrick, 2018), DDUA (Park et al.,
2019), SDCM (Oluwasanmi et al., 2019a), FCC
(Oluwasanmi et al., 2019b), static rel-att / dyan-
mic rel-att (Tan et al., 2019), and M-VAM / M-
VAM+RAF (Shi et al., 2020).
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Ground Truth

The small blue thing is 

in a different location.

<After><Before>

Ground Truth

The large green matte 

sphere that is behind 

the purple cylinder is 

in a different location.

SRDRL+AVS

The small blue metal 

cube that is to the right of 

the large gray matte thing 

is in a different location.

<After><Before>

SRDRL+AVS

The scene is the 

same as before.

Figure 4: Qualitative examples of SRDRL+AVS. The left is a successful case that SRDRL+AVS localizes the
accurate changed object and generates a correct sentence to describe the change. The right is a failure case that a
slight movement of the object is not detected.

The results are reported in Table 6. We can
observe that our method achieves the best perfor-
mance in terms of METEOR and SPICE. Espe-
cially for SPICE which is recently designed for
evaluating the image captioning task, our method
achives 28.6% and 5.3% improvements over the
current SOTA method M-VAM and M-VAM+RAF.
Hence, compared to the above methods, the gener-
ated captions by our method are more in line with
standards of human caption evaluation. This superi-
ority results from that the SSRE block can capture
the relation-embedded feature difference so as to
better explore those tiny changed objects.

4.6 Qualitative Analysis

Figure 3 shows a comparative example about
“Move” from the CLEVR-Change dataset, which
includes the change captions generated by humans,
baseline, SRDRL, and SRDRL+AVS. We also visu-
alize the results of change detection. The baseline
is implemented based on DDUA (Park et al., 2019).
We can clearly observe that it localizes a wrong
region on the “after” and thus misidentifies “Move”
as “Drop”. By contrast, both proposed methods
(SRDRL and SRDRL+AVS) can accurately local-
ize the moved object on both “before” and “after”
images, which validates the effectiveness of the
proposed SRDRL. Moreover, it is interesting to
note that, for the proposed methods, although the
results of change localization are accurate, only
using SRDRL generates a wrong caption, which
indicates the POS tags of target words indeed guide
and regularize the change caption generation.

Figure 4 illustrates two examples with viewpoint
changes on CLEVR-Change dataset. The left ex-
ample is a success in which SRDRL+AVA can dis-
tinguish the small blue changed cube from the ir-

relevant viewpoint change. This benefits from that
SRDRL can learn discriminative difference repre-
sentation and overcome viewpoint changes. The
right example shows a failure, where SRDRL+AVA
judges there is no difference. Our conjecture is that
the movement of this sphere is very slight and thus
confused with the viewpoint change. Hence, we
will improve our method to learn more fine-grained
difference representation in the future work.

5 Conclusion

In this paper, we propose a semantic relation-aware
difference representation learning network (SR-
DRL) and attention-based visual switch (AVS) to
address change captioning in the presence of dis-
tractors, where SRDRL can explicitly learn the dif-
ference representation in the image pair and AVS
can aid the caption generator to convey the local-
ized change in a logically and grammatically accu-
rate sentence. Extensive experiments conducted on
both CLEVR-Change and Spot-the-Diff datasets
show that the proposed method achieves state-of-
the-art results.
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