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Abstract

Named entity recognition (NER) is a funda-
mental task in natural language processing,
these is a long held belief that datasets benefit
the model. However, not all the data help with
generalization, and some samples may contain
ambiguous entities or noisy labels. The ex-
isting methods can not distinguish hard sam-
ples from noisy samples well, and becomes
particularly challenging in the case of over-
fitting. This paper proposes a new method
called Noise-Aware-with-Filter (NAF) to solve
the issues from two sides. From the perspec-
tive of the data, we design a Logit-Maximum-
Difference (LMD) mechanism, which max-
imizes the diversity between different sam-
ples to help the model identify noisy samples.
From the perspective of the model, we design
an Incomplete-Trust (In-trust) loss function,
which boosts LCRF with a robust Distrust-
Cross-Entropy(DCE) term. Our proposed In-
trust can effectively alleviate the overfitting
caused by previous loss function. Experiments
on six real-world Chinese and English NER
datasets show that NAF outperforms the previ-
ous methods, and which obtained the state-of-
the-art(SOTA) results on the CoNLL2003 and
CoNLL++ datasets.

1 Introduction

Named entity recognition (NER) is a primary
task and which identifies both types and spans in
sentences. NER models are becoming more and
more accurate in prediction tasks, the potential im-
provement of existing architectures in real-world
applications is often inherently limited by data qual-
ity (Pleiss et al., 2020). However, not all sam-
ples are completely correct in the NER datasets
(Nooralahzadeh et al., 2019; Lange et al., 2019).
Many real-world datasets generally contain sam-
ples which are “weakly-labeled” (Derczynski et al.,
2017; Peng and Dredze, 2015). Specifically, some
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Figure 1: An overview of Noise-Aware-with-
Filter(NAF). In-trust loss prevents model from
overfitting and helps model generates logit matrices,
which enters LMD mechanism with labels to filter
noise data and get a cleaner data for model training.

datasets which are annotated based on distant su-
pervision (Yang et al., 2018; Liang et al., 2020)
contain more noise labels, and manual annotators,
especially on crowdsourcing platform, are prone to
making labeling mistakes. Meanwhile labeling a
huge datasets is an expensive and fallible process.

As the increase of training iteration epochs, the
model will overfit noisy samples and hinder the
generalization of the model (Pleiss et al., 2020).
In NER task, it is impractical to get an absolutely
clean dataset, and the existing datasets generally
exist mislabeled samples (Flor et al., 2019) and
ambiguous entity (Nadeau et al., 2006), even if
some classical datasets (e.g., CoNLL2003 (Tjong
Kim Sang and De Meulder, 2003)) still contain
noisy samples (Wang et al., 2019b). It makes sense
to obtain a cleaner dataset, but it would be very
difficult to correct these real-world datasets manu-
ally, and the existing methods can’t solve the issues
automatically , especially in the case of existing am-
biguous entities in sentences (Wang et al., 2019b).

From the CoNLL2003 NER dataset, we divide
the samples into Easy samples which are correctly
labeled and do not contain ambiguous entities,
Hard samples are correctly labeled but contain
ambiguous entities, and Noisy samples are misla-



4792

beled (Wang et al., 2019b). Such as:

• Easy samples:{ third and final test between
[England]{LOC} and [Pakistan]{LOC} at
[the]{LOC}[Oval]{LOC} on }. The sample
is labeled correctly and there is no ambiguous
entity.

• Hard samples:{ [Chicago]{ORG} won
Game 1 with Derrick Rose scoring 25 points }.
[Chicago] is a basketball team in NBA which
is correctly marked as [Chicago]{ORG} here.
Meanwhile [Chicago] is also a city in the
United States, it is easy to mark that as
[Chicago]{LOC} due to ambiguity.

• Noisy samples:{ Soccer - [Japan]]{LOC} get
lucky win, [China]{PER} in surprise defeat }.
The [China]{PER} is mislabeled.

We can easily obtain the boundary between easy
samples and noisy samples with utilizing loss val-
ues (Lin et al., 2017), but distinguishing hard sam-
ples from noisy samples still is a challenge (Wang
et al., 2019b; Pleiss et al., 2020), and becomes
particularly challenging in the case of overfitting
(Wang et al., 2019b; Liu et al., 2020).

We propose a new method called Noise-Aware-
with-Filter (NAF) to solve the issues from two sides.
From the perspective of data, we design a Logit-
Maximum-Difference (LMD) mechanism, which
maximizes the diversity between different samples
to help the model identify noisy samples. The
difference between easy samples and noisy sam-
ples is very obvious in LMD score, meanwhile
hard samples and noisy samples also can be well
distinguished. From the perspective of model, we
propose a noise tolerant term named Distrust-Cross-
Entropy(DCE), which combines with LCRF form
the basis of the approach Incomplete-Trust (In-
trust) loss function. In-trust not only improves
the robustness of the model, but also helps LMD
improve the accuracy of identifying noisy samples.
Experiments on six real-world Chinese and English
datasets show that NAF is more accurate than other
methods in identifying noisy samples, meanwhile
the datasets after filtering are cleaner.

In summary, our major contributions are the fol-
lowing:

• We propose a new method called Noise-
Aware-with-Filter (NAF) to distinguish hard
samples from noisy samples especially in the
case of overfitting.

• To distinguish hard samples from noisy sam-
ples, we design a Logit-Maximum-Difference
(LMD) mechanism. Meanwhile to alleviate
the negative impact of overfitting, we pro-
pose Incomplete-Trust (In-trust) loss function,
which utilizes both the incomplete correctness
of labels and the relative correctness of the
model output.

• We conduct extensive experiments on six
real-world Chinese and English NER datasets
show that NAF outperforms the previous
methods, and which obtains the state-of-the-
art(SOTA) results on the CoNLL2003 and
CoNLL++ datasets. We release the source
code publicly for further research 1.

2 Related Work

There are various approaches have been pro-
posed to obtain a robust model. We summarize
them into three categories: 1) Robust loss meth-
ods, 2) Training architectures methods, 3) Label
correction methods.

Robust loss methods specifically design robust
loss functions. They include Mean Absolute Er-
ror (MAE) (Ghosh et al., 2017), Improved MAE
(Wang et al., 2019a) which is a reweighted MAE.
Symmetric cross entropy (Wang et al., 2019b), by
adding a symmetric reverse cross entropy after the
cross entropy, makes the model have a certain noise
tolerance, and Generalized cross entropy (Zhang
and Sabuncu, 2018) is actually a new evolution-
ary form of MAE. Regularization (LSR) (Szegedy
et al., 2016) is a technique using soft labels in place
of one-hot labels to alleviate overfitting to noisy
labels. ELR (Liu et al., 2020) is a kind of method
that makes full use of early learning phenomenon
to keep a large learning gradient for clean samples.
But these methods can not effectively distinguish
hard samples from noisy samples, and which are
easy to confuse them.

Training architectures methods identify noisy
samples from the perspective of model framework.
Co-Tearching (Han et al., 2018; Yu et al., 2019) uti-
lizes “early learning” phenomenon to maintain two
networks in the process of training. All samples
are sorted based on the loss values, and the noisy

1https://github.com/Huangxiusheng/Named-Entity-
Recognition-via-Noise-Aware-Training-Mechanism-with-
Data-Filter
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Figure 2: The graphs display logit value trajectories for easy sample (left), hard sample (middle) and noisy sam-
ple(right). The blue line: the logit valueZ(t)

y corresponding to the label in logit matrix; the orange line: the maximal
logit value Z(t)

max in logit matrix except Z(t)
y . The x-axis refers to the number of training epochs, and the y-axis

refers to the logit value. (Dataset: WUT-17)

samples are deleted according to the forgetting ra-
tio (Jiang et al., 2018; Malach and Shalev-Shwartz,
2017). AUM (Pleiss et al., 2020) based on the out-
put of the model to distinguish hard samples from
noisy samples. CrossWeigh (Wang et al., 2019b)
cover the label of a certain category in the datasets,
and observes the model whether will predict the
sample into another category. However, these meth-
ods always make the model to learn the easy sam-
ples and not consider the problem of overfitting
(Chang et al., 2017).

Label correction methods are to improve the
quality of raw labels. New labels equal to the prob-
abilities estimated by the model (known as soft la-
bels) or to one-hot vectors representing the model
predictions (hard labels) (Tanaka et al., 2018; Yi
and Wu, 2019). Another option is to set the new
labels to equal a convex combination of the noisy
labels and the soft or hard labels (Reed et al., 2015).
However, these methods require the support from
extra clean data or an expensive detection process
to estimate the noise model.

3 Logit Maximum Difference
Mechanism (LMD)

In this section, we propose a novel LMD mech-
anism. The LMD utilizes the tiny difference be-
tween hard samples and noisy samples in the model
output. Meanwhile the LMD accumulates and ex-
pands the difference to identify noisy samples.

3.1 Preliminary

Easy samples and noisy samples are easy to
distinguish(e.g., utilizing loss values (Han et al.,
2018)), because of noisy samples are always con-
trary to the samples with correct tags. However,

hard samples with ambiguous entity are difficult
to distinguish from noisy samples, because hard
samples also will produce large loss values (Song
et al., 2020) in the early stage of training. This
has become a major challenge in the denoising task
(Song et al., 2020).

Utilizing Logit Matrix Neural network models
will output a logit matrix in the training process,
which goes through the softmax layer and then
gets into loss function. The Softmax layer is a nor-
malized exponential function, which will nonlinear
increase the weight of maximum value in the logit
matrix and bring unfairness for identifying noisy
samples. LMD directly utilizes logit matrix to dis-
tinguish hard samples from noisy samples instead
of loss values.

Given a sentence x = [x1, x2, ..., xn] and its
tag sequence y = [y1, y2, ...yn], n is the sentence
length. Every token xi will obtain a corresponding
logit matrix Z = [zi1, z

i
2, ..., z

i
m], m denotes total

number of tags. LMD utilizes the difference be-
tween the zj corresponding to the class j and other
values in the logit matrix.

Observing The Difference In Figure 2, the logit
value Z(t)

y corresponding to tag y and epoch t, and
the Z(t)

y is evidently higher than other values in
easy samples(left). In hard samples(middle), the
Z

(t)
y is small at the beginning of training, then Z(t)

y

begins to increase and become the maximum in
the logit matrix with increasing epoch t. In noisy
samples(right), the Z(t)

y is relatively smaller than
other values, and the Z(t)

y becomes the maximum
in the logit matrix when epoch exceeds 5 even if
y is a negative tag, which indicates that overfitting
occurs.
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3.2 Identify Noisy Samples

Defining LMD We propose a new statistic LMD
score, which averages the difference between Z(t)

y

and the other values Z(t)
other at each epoch t. The

tiny difference between hard samples and noisy
samples are gradually accumulated and maximized,
which will effectively help model identify noisy
samples. The LMD score can be defined as:

LMD(x, y)=
1

T

T∑
t=1

(min(Z(t)
y −max

i 6=y
Z

(t)
i ))

(1)
Where T is the total number of epoch. A sen-

tence is the minimum unit of the input in the NER
task. If the tag corresponding to single token is mis-
labeled in a sentence, we can consider that the sen-
tence is negative. Therefore we choose the smallest
LMD score in each sentence as the LMD score of
the sentence, where every token will obtain a LMD
score in the sentence.

Figure 3: A record of LMD score in each epoch for
easy, hard and noisy samples. We select 100 samples
from the three sets respectively in WUT-17 dataset.

Working Mechanism In order to steadily en-
hance the discrimination between easy, hard and
noisy samples, we stack the LMD scores of multi-
ple epochs to get an average value. By utilizing the
LMD mechanism, every sample will get a LMD
score. The LMD scores of easy, hard and noisy
samples have obvious differentiation in Figure 3.
Then we sort the samples according to the LMD
scores, and define samples under the noise ratio
µ as noisy samples, finally delete them to get a
cleaner training set. And the noise ratio µ is a
hyperparameter. The model is trained again with

utilizing a clean training set, which will obtain bet-
ter performance without the interference of noisy
samples.

Figure 4: Compared with the experiment in Figure 3,
we only adjusted the epoch to 60.

3.3 The Influence of Overfitting
Overfitting Appears We further explore the in-
fluence of overfitting in the denoising task from two
sides. From the perspective of the LMD scores, the
LMD scores of hard samples and noisy samples
tend to be consistent with increasing epoch to 60
in the Figure 4. From the perspective of the logit
values, the logit value Z(t)

y becomes the maximum
in the logit matrix when epoch exceeds 5 even if y
is a noise tag in the Figure 2.

Phenomenon Analysis As the increase of train-
ing iteration epochs, the model will overfit noisy
samples. Meanwhile the model output of hard sam-
ples and noisy samples are almost consistent, which
make it difficult to distinguish. This proposes an-
other challenge that the model identifies noisy sam-
ples in the case of overfitting.

4 Incomplete-Trust Loss Function

In this section, we propose an Incomplete-Trust
(In-trust) loss function. Previous loss functions
(e.g., Cross Entropy) are easy to overfit noisy sam-
ples (Wang et al., 2019b), and they absolutely trust
tags even if the tags are mislabeled. Meanwhile,
neural networks have strong fitting ability, they can
achieve zero training error even on datasets with
randomly-assigned labels (Zhang et al., 2016). And
deep neural networks have been observed to first fit
the samples with clean tags during an “early learn-
ing” phase, before eventually memorizing the sam-
ples with mislabeled tags (Arpit et al., 2017; Zhang
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et al., 2016). With exploiting the early-learning
phenomenon, our proposed In-trust utilizes both
the model output which obtain the relative correct-
ness after enough practices and the incomplete cor-
rectness of tags which maybe are mislabeled. We
also provide theoretical analysis about the formula-
tion and behavior of In-trust.

4.1 Definition
KL-divergence Given two distributions p and q,
the relationship between entropy, cross entropy and
KL-divergence is as follows:

KL(q||p)=H(q, p)−H(q) (2)

In NER task, q=q(k|x) is the one-hot distribu-
tion of the label in sample x, and p=p(k|x) is
the prediction distribution of the model for sam-
ple x. The model makes the p=p(k|x) gradually
approach the q=q(k|x), this is also to minimize the
KL-divergence between the two distributions.

Proposing DCE Term However, if the sample
x is a noisy sample and the q=q(k|x) is an in-
correct distribution, it will cause negative impacts
for model, so the label distribution q=q(k|x) is
not worthy of full trust. According to the phe-
nomenon of early learning, the model always tends
to learn the correct samples in the early stage of
training. It means that even if some samples are
mislabeled, the model still may predict the correct
results in the early stage of training. We exploit
this phenomenon to trust that not only the label
distribution q=q(k|x), but also the prediction dis-
tribution p=p(k|x) before the model overfit noisy
samples. Therefore, we design the robust Distrust-
Cross-Entropy LDCE term as follows:

LDCE=−p log(δp+(1−δ)q) (3)

Where δ is a hyperparameter, and its size de-
termines that the model whether trust labels or
model output. When δ is larger, the model will
trust prediction distribution p=p(k|x) more, on
the contrary, the model will trust label distribution
q=q(k|x) more.

Forming In-trust We proposed an Incomplete-
Trust (In-trust) loss function, which boosts LCRF
with LDCE term.

LIn−trust=αLCRF+βLDCE (4)

Where LDCE term is an acceleration regulator
term, which can effectively prevent model from

overfitting noisy samples. That will be proved in
Appendix A. The LCRF term is not noise tolerant
(Ghosh et al., 2017), but which benefits the conver-
gence of the model (Zhang and Sabuncu, 2018). α
and β are two decoupled hyperparameters, α regu-
lates the overfitting issue of LCRF while β aims to
flexibly explore the robustness of LDCE .

Contrasting Logit Values Figure 5 shows the re-
sult of comparative experiment with Figure 2. The
logit value Z(t)

y corresponding to mislabeled tag y
is no longer the maximum in the logit matrix, this
means that LIn−trust effectively prevents model
from overfitting noisy samples.

Figure 5: A comparative experiment of CRF (left) on
noisy samples. We only replace the loss function to
LIn−trust (right), and other parameters are consistent.

Contrasting LMD Scores Figure 6 shows the
result of comparative experiment with Figure 4.
There is still obvious discrimination between hard
samples and noisy samples when the epoch reaches
60, this indicates that LIn−trust can help LMD
mechanism identifies noisy samples accurately.

Figure 6: A comparative experiment between CRF
(left) and LIn−trust (right), other parameters are con-
sistent.

4.2 Robustness Analysis

LDCE Robustness Analysis: In order to sim-
plify the calculation, we set α and β as 1 and derive
the gradient of LDCE . For brevity, we denote pk,
qk as abbreviations for p=p(k|x) and q=q(k|x),
the gradient of the LDCE loss with respect to the
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logits Zj can be derived as:

∂LDCE
∂Zj

=(
K∑
k=1

pk × log(δpk+(1−δ)qk))
′

(5)

Where ∂pk
∂Zj

can be further derived based on
whether k = j:

∂pk
∂Zj

= pk(1−pk)

∂pk
∂Zj

= −pkpj

k=j

k 6= j
(6)

For brevity, we denote ak=δpk+(1−δ)qk and

bk=pk log ak+
δp2k
ak

. We know that ∂pk∂Zj
is a function

of pk from Eq.(5), let Lpk=
∂pk
∂Zj

, and the gradient
of the Lpk with respect to the pk can be derived as:

L
′
pk
=

K∑
k=1

bk+(pj−1)
∂bj
∂pj

(7)

And the second derivative of Lpk is:

L
′′
pk
=2b

′
+(pj−1)b

′′
(8)

Where L
′′
pk

is a monotone increasing function,
when qj=1 and δ ∈ [0.0, 0.1, ...], we obtain the
corresponding relation between L

′′
pk

and pj in the
Figure 7. It is concluded that L

′
pk

is a decreasing
and then increasing function, which also shows that
the acceleration of LDCE first decreases and then
increases with the increase of pj corresponding to
the label.

Figure 7: The acceleration record of LDC term.The
LDC term produces different accelerations for differ-
ent model outputs. The x-axis is pj and the y-axis is
the corresponding L

′′

pk
value. δ ∈ [0.0, 0.1, ...].

When pj approaches to 1 with the q distribution
is close to the p distribution, the model will believes
correct tags more, and LDCE has larger accelera-
tion in learning correct samples. That benefits the
model learns cleaner samples and prevents overfit-
ting. On the contrary, the LDCE term thinks that
the model has relatively correct prediction result
for noisy samples under the influence of learning
other correct labels, and the acceleration is small
which also effectively prevents the model overfit-
ting and improves the noise tolerance. And other
more detailed proofs are shown in the Appendix A.

LIn−trust Robustness Analysis: According to
Eq.(4), LIn−trust consists of LCRF and LDCE .
When qj = 1, LDCE term will provide a robust
acceleration value, which benefits LIn−trust ob-
tains a correct loss value. Specifically, LIn−trust
will obtain a greater loss value when pj approach
to q, which will benefit the model learn this sam-
ple like LCRF . On the contrary, LDCE will pre-
vent model from learning the sample unlike LCRF .
When qj = 0, other loss functions will prevent
the model from learning the direction, even if the
model output p is greater in this direction. We
believe that the model is relatively correct after
learning a large number of samples. And LDCE
term will provide LIn−trust with an acceleration to
help the model to learn the direction. In addition,
LDCE term also prevent the model from learning
when p is small. Therefore LDCE term has no
negative effect on the convergence of model.

5 Experiments

In this section, we verify the advantages of
Noise-Aware-with-Filter (NAF) method by com-
paring experiments with other denoising methods.

5.1 Experimental Setup

NER Dataset

English NER Dataset We evaluate our
method on English NER datasets include WUT-
17 (Derczynski et al., 2017), CoNLL2003 (Tjong
Kim Sang and De Meulder, 2003), CoNLL++
(Wang et al., 2019b) and OntoNotes5 (Pradhan
et al., 2013). CoNLL2003 is in news domain and
WUT-17 is user generated text. Compared with
CoNLL2003, the test set of CoNLL++ is manu-
ally corrected. OntoNotes5 is a larger dataset and
contains 18 entity types.
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Dataset Weibo NER OntoNotes4 OntoNotes5 CoNLL2003 CoNLL++ WUT-17
CE 59.71 81.05 85.57 90.99 92.07 54.77
LCRF 60.88 81.22 85.40 91.60 91.87 55.22
SCE 60.97 80.72 85.30 91.53 91.26 53.55
DSC 60.78 80.34 85.23 91.34 92.08 54.48
ELR 57.41 81.54 84.48 91.24 91.73 53.54

LIn−trust(our) 61.97 81.29 86.23 91.67 92.68 56.13
NAF(our) 62.55 82.15 86.46 91.72 92.95 58.54

Table 1: The result of NAF(LIn−trust + LMD) and other denoising methods in the BERT model.

Dataset CoNLL2003 CoNLL++ WUT-17
CE 94.31 95.80 64.99
LCRF 94.22 95.90 64.85
RCE 94.29 95.37 63.73
DSC 94.33 94.79 64.89
ELR 94.10 94.21 63.58

LIn−trust(our) 94.45 96.13 66.44
NAF(our) 94.51 96.25 67.88

Table 2: The result of NAF(LIn−trust + LMD) and
other denoising methods in the LUKE model.

Chinese NER Dataset Chinese NER datasets
include Weibo NER (Peng and Dredze, 2015) and
OntoNotes4 (Pradhan et al., 2011). Weibo NER is
in social domain, OntoNotes4 is in news domain.

In these six real-wold datasets, we use the same
way of data segmentation as the original author.
Since WUT-17 has no development set, we ran-
domly select 10% samples from the training set as
the development set.

Pre-trained Language Model BERT (Devlin
et al., 2019) employs a Transformer encoder to
learn a BiLM from large unlabeled text corpora and
sub-word units to represent textual tokens. We use
the BERTbase model in our experiments. LUKE
(Yamada et al., 2020)proposes new pretrained con-
textualized representations of words and entities
based on the bidirectional transformer, which is the
state-of-the-art(SOTA) model in English NER task.

Baseline We compare NAF with 3 recently pro-
posed robust methods as well as the standardLCRF
: (1) CE:Cross Entropy; (2)SCE (Wang et al.,
2019b): symmetric cross entropy loss; (3)DSC
(Li et al., 2020): dice loss function; (4)ELR (Liu
et al., 2020): early regularization; (5)In-trust (We
proposed Incomplete-Trust loss function).

Evaluation Our primary evaluation metric is F1
score on the test set to compare the results of dif-
ferent methods.

5.2 Experimental Settings

In our experiments, we set the initial learning
rate to lr = 1e−5 for all datasets. Since the scale
of each dataset varies, we set different training
batch size for different datasets. Specifically, we
set the batch sizes of Weibo NER, OntoNotes4,
WUT-17, CONLL2003 and CoNLL++ as 40, 40,
40,32 and 32 in BERT, and set the batch sizes of
WUT-17, CONLL2003 and CoNLL++ as 2, 2 and
2 in LUKE. We stop the training when we find the
best result in the development set.

5.3 Robustness Performance

Table 1 presents the results for the baseline and
our methods in the BERT. Compared with other
methods, NAF shows obvious advantage in the
six real-wold datasets. Our method outperforms
other methods by 1.58%, 0.61%, 0.29%, 0.87%
and 3.77% in F1 score on Weibo NER, OntoNotes4,
CoNLL2003, CoNLL++ and WUT-17 datasets. Ta-
ble 2 presents the results in the LUKE, and our
method has achieved new state-of-the-art (SOTA)
with the F1 score reached to 94.51% and 96.25%
on CoNLL2003 and CoNLL++ datasets.

Specifically, NAF has made more obvious
progress on Weibo NER, WUT-17 and CoNLL++
datasets, and our analysis shows that the noise ra-
tio of Weibo NER and WUT-17 are greater than
others and there is a cleaner test set after manual
correction in CoNLL++ dataset.

5.4 Manual Verification

Results Statistics In order to prove the effective-
ness of our method, we manually verify the noisy
samples which are selected from CoNLL2003,
OntoNotes4 and WUT-17 (Table 4). We randomly
select 100 samples from “Original” train set and
we manually verify the proportion of noisy sam-
ples. After utilizing LMD or NAF method, we will
obtain a new datasets, and then we randomly select
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Dataset noisy samples
Soccer - KEANE signs four-years contract with Manchester United{LOC} .

CoNLL2003 Soccer - sharpshooter knup back in swiss{MISC} squad .
Little{PER} change from today ’s weather expected .
9/16 - Luo Yigang ( China ) beat Hwang Sun-ho{MISC} ( South Korea ) 15-3 .

WUT-17 Federal lawyers{O} fly to Minneapolis to investigate shooting
@janzensational at least may date ka na hahaha{O} . Goodluck zen ! : *

Table 3: noisy samples in CoNLL2003 and WNUI-17. The mislabel entities are marked with red.

Dataset CoNLL2003 Weibo NER
δ = 0.1 90.34% 60.58%
δ = 0.2 90.52% 61.12%
δ = 0.3 91.21% 61.32%
δ = 0.4 90.43% 61.78%
δ = 0.5 91.72% 61.44%
δ = 0.6 91.47% 62.21%
δ = 0.7 91.28% 62.55%
δ = 0.8 91.32% 62.32%
δ = 0.9 90.20% 61.70%

Table 5: The effect of δ in In-trust. We set α=1 and
β=1 here.

100 samples from the new datasets for manually
verifying. The probability of true negative sam-
ples is 5% in the “Original” CoNLL2003 dataset,
and which reaches to 76% and 82% respectively
with utilizing LMD and NAF methods. While for
OntoNotes4 dataset, the probability is 8% in “Orig-
inal” dataset and which reaches to 72% and 80%
with LMD and NAF. In the WUT-17 dataset, the
probability is 18% in “Original” dataset and which
reaches to 58% and 71% with LMD and NAF.

Result Analysis The accuracy of identifying
noisy samples will greater with the dataset that
model performs better, and the excellent datasets
will benefit the model identify noisy samples.

Dataset Original LMD(our) NAF(our)
CoNLL2003 5% 76% 82%
OntoNotes4 8% 72% 80%

WUT-17 18% 58% 71%

Table 4: The accuracy of identifying noisy samples
is verified manually. We select 100 samples from the
Original train set, LMD and NAF separately, then ver-
ify the proportion of noisy samples manually. And the
“Original” means raw data.

Demonstration of Examples The real noisy
samples in CoNLL2003 and WUT-17 datasets are

shown in Table 3, such as {Soccer - KEANE signs
four-years contract with Manchester United}, the {
Manchester United} is wrongly marked {LOC}.
The { Manchester United } is a football club in
Manchester England, and which should be marked
{ORG}. In addition, the more noisy samples in
datasets are shown in the Appendix C.

5.5 Ablation Experiment

As mentioned in the previous Section 4.1, δ pro-
vides flexibility between the model output distribu-
tion p=p(k|x) and the label distribution q=q(k|x).
In this section, we explore the influence of hyper-
parameter δ, and we conducted experiments on
Weibo NER and CoNLL2003 with α=1 and β=1
to explore how it manipulates the tradeoff. Experi-
mental results are shown in Table 5. The highest F1
on CoNLL2003 datatset is 91.72% when δ is set to
0.5, meanwhile for Weibo NER, the highest F1 is
62.55% when δ is set to 0.7. The optimal value of
δ is different in different noise ratio datasets, and
when there are more noisy samples in the datasets,
δ should be set larger. Because of the noise ratio
of Weibo NER is larger than CoNLL2003 dataset,
the optimal δ value of Weibo NER is larger. The
experiment result of the other hyperparameters α
and β are show in the Appendix B.

6 Conclusion

In this paper, we observe that the existing denois-
ing methods can not effectively distinguish hard
samples from noisy samples, and we proposed a
new method called Noise-Aware-with-Filter (NAF),
which contains LMD mechanism and In-trust loss
function to solve the issues. Specifically, NAF
can effectively improve the discrimination between
hard samples and noisy samples even in the case of
overfitting. In addition, our proposed the Logit-
Maximum-Difference(LMD) mechanism which
maximizes the diversity between different samples
to help the model identify noisy samples. Mean-
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while we design an Incomplete-Trust (LIn−trust)
loss function, which boosts LCRF with a noise ro-
bust Distrust-Cross-Entropy(DCE) term. In order
to verify the effectiveness of our method, we also
conduct manual verification for noisy samples and
the results show that our method has higher accu-
racy on identifying noisy samples. Experiments on
six real-world Chinese and English NER datasets
show that NAF outperforms the previous methods,
and which obtained the state-of-the-art(SOTA) re-
sults on the CoNLL2003 and CoNLL++ datasets.
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A LIn−trust Robustness Proof

We have know LIn−trust is:

LIn−trust=α× CRF+β × LDCE
=α× CRF+β × (−p× log(δp+(1−δ)q))

(9)

And make:a=δp+(1−δ)q

Eq9=α× CRF+β × (−p× log a

=α× CRF

+β
K∑
k=1

(− ∂pk
∂Zj

log ak+(−pk
ak

‘

ak
))

(10)

Meanwhile we have know:

∂pk
∂Zj

=

∂( Zk∑K
j=1 e

Zj
)

∂Zj

=

∂eZk

∂Zj
(
∑K

j=1)−eZk
∂(

∑K
j=1 e

Zj )

∂Zj

(
∑K

j=1 e
Zj )2

(11)

When k=j:

∂pk
∂Zj

=
∂pk
∂Zk

=
eZk(

∑K
k=1 e

Zj )−(eZk
)2

(
∑K

k=1 e
Zk)2

=
eZk∑k
k=1 e

Zk

−( eZk∑K
k=1 e

Zk

)2

=pk−pk2

=pk(1−pk)

(12)

When k 6= j:

∂pk
∂Zj

=
0(
∑K

k=1 e
Zj )−eZkeZj

(
∑K

k=1 e
Zj )(

∑K
k=1 e

Zj )

=− eZk∑K
k=1 e

Zj

eZj∑K
k=1 e

Zj

=− pkpj

(13)

Gradient Calculation:

LDCE=− p× log(δp+(1−δ)q)

∂LDCE
∂Zj

=(

K∑
k=1

pk × log(δpk+(1−δ)qk))
′

=
K∑
k=1

pk
′
log(δpk+(1−δ)qk)

+
δpkpk

′

δpk+(1−δ)qk

(14)

For the convenience of calculation, we make
a=δpk+(1−δ)qk

∂LDCE
∂Zj

=

K∑
k=1

p‘k log ak+
pka

′
k

ak

=
K∑
k=1

p
′
k log ak+

δpkp
‘
k

ak

=− pj
k∑
k=1

(pk log pk+
δp2k
ak

)

+pj log aj+
δp2j
δaj

(15)

Make bk=pk log ak+
δp2k
ak

∂LDCE
∂Zj

=− pj
K∑
k=1

bk+bj

∂LDCE
∂Zj

=pj

K∑
k=1

bk−bj

(16)

We hypothesis L=pj
∑K

k=1 bk−bj

L
′
=
∂L

∂pj
=

K∑
k=1

bk+pj(
K∑
k=1

bk)
‘−∂bj
∂pj

=
K∑
k=1

bk+(pj−1)
∂bj
∂pj

(17)

And L
′′
=2b

′
+(pj−1)b

′′

Meanwhile we can get:

b
′
= log a+

pa
′

a
+
2δp−δp2a′

a2

= log a+
δp

a
+
2δp−δ2p2

a2

= log a+
3δp

a
−(δp

a
)2

(18)

b
′′
=
δ

a
+3δ

(1−δ)q
a2

−2δ2 p
a

(1−δ)q
a2

=
δ

a
+
3δ(1−δ)q

a2
−2δ2p(1− δ)q

a3

(19)

When qj=0 :

L
′′
=2 log(δ + 2)+

p−1
p

=2 log δp+4+1−1

p

=2 log δp+5−1

p

(20)
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When p approaches 0 : L
′′
<0

When p approaches 1 : L
′′
=2 log δ+4

E : δ1 ∈ [0, 1], make L
′′
(δ1)>0

Because L
′′

is continuous function, so L
′′

is
Monotone increasing function
E : δ2 ∈ [0, 1], make L

′′
(δ2)=0

So L
′

is Decreasing then increasing function and
the inflection point is only related to δ.

When qj=1 :

b
′
= log a+

3δp

a
−(δp

a
)2

b
′′
=
δ

a
+
3δ(1−δ)q

a2
−2δ2p(1− δ)q

a3

=
δa2+3δa−3δ2a−2δ2p+2δ3p

a3

L
′′
=2b

′
+(pj−1)b

′′

=2 log a+
6δp

a
−2δ2p2

a2
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δa2p+3δap−3δ2ap−2δ2p2+2δ3p2

a3
+

−δa2−3δa+aδ2a+2δ2p−2δ3p
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Because L
′′

is monotone increasing function
So when p=0:
L

′′
=2 log(1−δ)+−δa2−3δa+3δ2a

(1−δ)3 <0
When p=1:
In order to simplify the calculation, we make

δ=0
So L

′′
=0

When δ>0, and L
′′
>0

So L
′

is Decreasing then increasing function and
the inflection point is only related to δ.

In summary, when q=0 or q=1 :
L

′
is Decreasing then increasing function and

the inflection point is only related to δ.
We know L

′
(p=0)>0 , L

′
(p=1)>0,

and E : µ ∈ [0, 1], make L
′
(p=µ)<0

We observe that when δ is larger, the model tends
to learn from the p of the model output, and when δ
is smaller, the model tends to learn from the label q.
Moreover, when the pj corresponding to the label
is larger and the model output is close to the label
distribution, the acceleration of LDC term is larger,
which makes the model more inclined to learn the
sample, which helps the model learn clean samples.
When pj is small, there is a big gap between the
model output and label distribution. We think that
the sample may be a noisy sample, and the accel-
eration of LDC term is smaller, which makes the

model more inclined to give up the learning of the
sample, and prevents the model from over fitting
the noisy sample.

Figure 8: The relationship between b and p.

B Ablation Experiment Supplement

Dataset CoNLL2003 OntoNotes4
α = 0.1 27.82% 29.56%
α = 0.2 30.37% 34.17%
α = 0.3 32.41% 46.71%
α = 0.4 45.32% 54.31%
α = 0.5 56.23% 68.32%
α = 0.6 74.10% 75.43%
α = 0.7 89.37% 78.32%
α = 0.8 90.21% 80.32%
α = 0.9 91.70% 82.13%

Table 6: Appendix B: The effect of α in In-trust. We
set δ=0.5 and β=1 here.

Dataset CoNLL2003 OntoNotes4
β = 0.1 90.99% 81.05%
β = 0.2 91.15% 80.07%
β = 0.3 91.33% 80.07%
β = 0.4 91.32% 80.09%
β = 0.5 91.67% 81.10%
β = 0.6 91.65% 82.09%
β = 0.7 91.68% 82.15%
β = 0.8 91.72% 82.10%
β = 0.9 91.70% 82.13%

Table 7: Appendix B: The effect of β in In-trust. We
set α=0.6 and δ=0.5 here.
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C noisy samples

dataset noisy samples
TYPE FRN BASE 3M LIBOR PAY DATE S23.SEP.96
O O O B-ORG O O O O
English County Championship cricket matches on Thursday :
B-MISC B-MISC I-MISC O O O O O

CoNLL2003 SOCCER - EUROPEAN CUP WINNERS ’ CUP RESULTS .
O O B-MISC I-MISC I-MISC I-MISC I-MISC O O
Red Star - Vinko Marinovic ( 59th )
B-ORG I-ORG O B-MISC I-MISC O O O
SOCCER - SHARPSHOOTER KNUP BACK IN SWISS SQUAD .
O O O B-PER O O B-MISC O O

Table 8: Appendix C: noisy sample display


