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Abstract

Simultaneous machine translation (SIMT) in-
volves translating source utterances to the tar-
get language in real-time before the speaker
utterance completes. This paper proposes the
multilingual approach to SIMT, where a sin-
gle model simultaneously translates between
multiple language-pairs. This not only results
in more efficiency in terms of the number of
models and parameters (hence simpler deploy-
ment), but may also lead to higher performing
models by capturing commonalities among the
languages. We further explore simple and ef-
fective multilingual architectures based on two
strong recently proposed SIMT models. Our
results on translating from two Germanic lan-
guages (German, Dutch) and three Romance
languages (French, Italian, Romanian) into En-
glish show (i) the single multilingual model is
on-par or better than individual models, and
(ii) multilingual SIMT models trained based
on language families are on-par or better than
the universal model trained for all languages.1

1 Introduction

Simultaneous translation is the task of incremen-
tally generating the translation while the source
utterance is gradually spoken. It is crucial in multi-
national meetings, e.g., in business and politics,
where the online simultaneous translation is re-
quired for one or multiple language-pairs. Simulta-
neous machine translation (SIMT) is an attempt to
address the challenges of this translation scenario,
i.e., trading off the translation quality and its la-
tency (Cho and Esipova, 2016; Arivazhagan et al.,
2019, 2020; Firat et al., 2016b).

In this paper, we investigate the multilingual
SIMT setting, where a single model simultane-
ously translates between multiple language-pairs.

1Star (*) marks a shared first authorship between Philip
and Dongwon, where both contributed equally. This work was
done when Philip was a research fellow at Monash University.

This not only results in more efficiency in terms
of the number of models and parameters (hence
simpler deployment), but may also lead to higher
performing models by capturing commonalities
among the languages. The multilingual setting has
been successful for the standard offline neural ma-
chine translation (NMT) and studied extensively
(Johnson et al., 2017; Tan et al., 2019; Aharoni
et al., 2019).

We explore simple and effective multilingual ar-
chitectures based on two strong recently proposed
SIMT models, i.e. the WAIT-K (Dalvi et al., 2018)
and COUPLED POLICY (Arthur et al., 2020). The
former waits to read a fixed number of k input
tokens; afterward, it writes (generates) an output
token for each newly received input token. The
latter learns a policy, via an agent, for an adaptive
waiting between reading and writing to reduce the
translation delay while maintaining the quality.

COUPLED POLICY uses the adaptive waiting,
generated from offline word alignments. It contin-
ues to read the source tokens until the correspond-
ing word alignment to the target token appears.

Under these underlying SIMT models, we ex-
plore multi-task learning (MTL) framework, full
and partial parameter sharing protocols across the
languages with language indicators.

Our experiments show the effectiveness of the
simple strategy of sharing all the SIMT compo-
nents across the languages, with language tags spec-
ifying the translation task. The results on translat-
ing from two Germanic languages (German, Dutch)
and three Romance languages (French, Italian, Ro-
manian) into English show the single multilingual
model is on-par or better than individual models.
Furthermore, the results show that multilingual
SIMT models trained based on language families
are on-par or better than the universal model trained
for all languages.
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Algorithm 1 Training Multilingual NPI-SIMT

Require: D: Collections of parallel corpora with
oracle actions.

1: while a stopping condition is not met do
2: for Di ∈ D do
3: F,E is a language pair of Di.
4: for (x,y,a) ∈ Di do
5: θF,EA ← MLE(a, θF,EA )
6: θFE , θ

E
D ← MLE(x,y, θFE , θ

E
D)

7: end for
8: end for
9: end while

2 Multilingual Simultaneous Translation

The original neural programmer-interpreter (NPI)-
SIMT framework (Arthur et al., 2020) employs
a trainable programmer θprog and interpreter θintp.
The programmer/agent issues read/write com-
mands to control the interpreter, i.e. the NMT
model. The interpreter is constructed using an en-
coder θE and a decoder θD. Each component is
trained on triplet 〈x, y, a〉 where x is the source
sentence, y is the target sentence, and a is the pro-
gram oracle using behavioral cloning (Torabi et al.,
2019). For notation clarity we rename the program-
mer into θA, resulting triplet of trainable modules
θA, θE , θD.

Language-Specific Parameters We further ex-
tend this framework by distilling a parameter, spe-
cific to language θlx, where x is a specific module
and l is a specific language. This language-specific
parameter is similar to Firat et al. (2016a); Dong
et al. (2015); Ahmadnia and Dorr (2020) where
parameters are separated based on the source and
target languages. In the case of SIMT, the pro-
gram a is affected by both languages. This frame-
work enables us to use multiple parallel corpora Di

and train a language specific module using maxi-
mum likelihood estimation by updating particular
θlx based on Di. The training algorithm for our
NPI-SIMT is shown in Algorithm 1.

Multilingual Parameter Sharing Multilingual
parameter sharing is achieved by using only a sin-
gle module for language-specific parameter θ∗x. De-
pending on the module, we can disregard source
(F ) or target (E) completely. This allows us to
share the parameter across different parallel cor-
pora. However, the embedding matrix in different
Di can be different because of various tokenization

and vocabulary construction methods. To remedy
this, we can either train joint vocabulary spaces for
source and target sides, or simply joining different
spaces using union operation. Herein, we use the
latter method.

Language Indicator Embedding When the in-
terpreter is shared, it is difficult to communicate
which pairs of languages are being processed. To
deliver this, we pass the source and target language
embedding information to the encoder and decoder,
respectively. This information is then combined
using addition operation with the word embedding.
In the programmer, we use a concatenation of both
source and target languages.

Batch of Multilingual Instances Algorithm 1
outlines the overall training procedure of multilin-
gual SIMT. Here, it is crucial to construct a batch
as a mixture of many language pairs to achieve
good multilingual training. We also need to in-
clude the information of the source language to
create language indicator embedding. If a module
is language-agnostic, it will be responsible for con-
suming all the input; otherwise, language-specific
modules will be used to process the specific item
in the batch according to its language. Results
from different languages will be aggregated using
concatenation at the end.

3 Experiments

Our experiment aims to investigate the effects of
multilingualism in SIMT architecture. To achieve
this we first choose the language pairs from (1)
the same family group and (2) mixing them all.
This is enabled by investigating various parameter
sharing strategies for the components of the SIMT
architectures.

Datasets. We use IWSLT 2017 (Cettolo et al.,
2017) datasets for all parallel corpora in which
all translating to English. The choice was made
due to its characteristics of spoken multilingual
corpora from TED. We choose the Germanic lan-
guage group, German (DE) and Dutch (NL), and
the Romance language group, Italian (IT), French
(FR), and Romanian (RO). The languages within
the same group generally have high syntactic simi-
larity and the same word order. Unless otherwise
specified, we use the same settings and preprocess-
ing as described in Arthur et al. (2020).2

2In our preliminary experiment, the pre-processing under
concatenation of multilingual corpora with larger vocabulary
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SIMT Systems We compared two SIMT base-
lines, COUPLED POLICY (Arthur et al., 2020)
and the WAIT-K model (Ma et al., 2018). For
a fair comparison, we choose a value of k, which
achieves comparable translation quality to the COU-
PLED POLICY system. Following some initial ex-
periments, we choose k = 2.

Parameter Sharing Since our model deals with
the many-to-one translation task with an agent, we
decided to separate i) encoder, ii) agent, and iii)
encoder + agent. This idea came from the per-
formance improvements that a number of studies
demonstrated by separating the decoder in offline
one-to-many MT (Dong et al., 2015; Sachan and
Neubig, 2018). In SIMT, two modules, encoder
and agent, are tied to the source, and therefore,
reasonable to have them as language-specific pa-
rameters.

Evaluation. Following Arthur et al. (2020), we
evaluate the systems based on their translation qual-
ity and delay. Translation quality can be measured
by case sensitive BLEU (Papineni et al., 2002).
3 We adopt two delay measurements by previous
studies: (1) average proportion (AP) (Cho and Es-
ipova, 2016) is a fraction of reading source words
per emitted target words, and (2) average lagging
(AL) (Ma et al., 2019) is an average number of
lagged source words until all inputs are read.

3.1 Results

In this section, we will describe the results of
parameter sharing in SIMT. Following that, we
present the comparison of multilingualism under
different language groups.

Parameter Sharing Strategies. Table 1
presents the results of various parameter sharing
strategies for FR/IT/RO in the Romance language
family. When sharing all parameters across these
three languages, WAIT-2 has a slight increase in
delay, but the translation quality is comparable
to or better than bilingual. In contrast, the best
parameter sharing setting for COUPLE POLICY is
to have language-specific encoders and share the
rest of the parameters. This appears to have a clear
advantage in both quality and delay; the BLEU
score increases up to 0.8 units, with a reduction

size does not impact performance.
3Calculated using sacrebleu (Post, 2018).

BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+
version.1.4.4 is our sacreblue’s signature

FR→EN IT→EN RO→EN Model
θE θD θA AL BLEU AL BLEU AL BLEU Size

WAIT-2
× × − 2.22 23.40 2.73 24.77 2.55 24.34 158.7M
× X − 2.32 23.54 2.77 24.75 2.68 24.43 88.2M
X X − 2.35 23.76 2.77 25.24 2.72 24.10 84.1M

COUPLED POLICY

× × × 1.48 26.90 1.00 22.62 1.02 22.82 166.9M
× X × 1.53 24.82 0.90 21.13 1.09 20.60 96.4M
× X X 1.37 27.45 0.92 23.40 1.01 23.35 90.9M
X X × 1.44 27.36 0.99 23.13 1.16 23.00 92.4M
X X X 1.38 27.34 0.89 23.32 1.02 22.63 86.9M

Table 1: Parameter sharing under Romance language
family: French, Italian, Romanian. X and × indicate
shared and not sharing components in the MTL archi-
tecture.

in AL, approximately 10% in FR and IT. In both
architectures, the model size reduces drastically
when trained on multilingual setting, and remains
approximately the same across different sharing
strategies. These results are consistent for DE/NL
in the Germanic language family. Full results are
included in the supplementary material.

Multilingual Modelling Strategies. Table 2
shows the overall performance comparison of the
multilingual setting. Multilingualism in SIMT ev-
idently surpasses the bilingual baseline in transla-
tion delay, quality, and/or model size. Generally,
SIMT trained on the same language family out-
performs not only the bilingual baselines, but also
the universal multilingual model. In the Germanic
language, training under the same language group
boosts up the BLEU up to 1 unit. Although baseline
in WAIT-2 has a shorter delay, COUPLED POLICY

surpasses both quality and delay. We observe that
when the model runs universally, the BLEU score
reaches back to or lower than that of the bilingual
model.

On the other hand, the Romance language fam-
ily has slightly different behavior across different
SIMT models. COUPLED POLICY behaves simi-
larly, where training SIMT under the same group
positively influences the performance, but in WAIT-
2, the universal model excels the best. This is
particularly interesting because the Romance lan-
guage family has the same word order as English,
which WAIT-2 would be a perfect fit for such trans-
lation between two languages with the same word
order. However, it is not the case, so mixing all the
languages regardless of word order under WAIT-2
improves translation quality more while preserving
the delay.
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DE→EN NL→EN FR→EN IT→EN RO→EN
AP AL BLEU AP AL BLEU AP AL BLEU AP AL BLEU AP AL BLEU Model Size

WAIT-2
Bilingual 0.62 2.54 22.99 0.63 2.39 28.33 0.60 2.22 23.40 0.63 2.73 24.77 0.63 2.55 24.34 264.5M
Germanic 0.62 2.56 23.86 0.63 2.50 28.44 − − − − − − − − − 68.5M
Romance − − − − − − 0.61 2.35 23.76 0.64 2.77 25.24 0.63 2.72 24.10 84.1M
Universal 0.62 2.55 23.04 0.63 2.44 27.43 0.60 2.21 24.40 0.63 2.58 25.09 0.63 2.54 24.63 115.4M

COUPLED POLICY
Bilingual 0.56 1.55 21.33 0.56 1.35 26.63 0.55 1.48 26.90 0.53 1.00 22.62 0.54 1.02 22.82 278.2M
Germanic 0.56 1.47 22.33 0.55 1.26 27.25 − − − − − − − − − 73.3M
Romance − − − − − − 0.55 1.37 27.45 0.53 0.92 23.40 0.54 1.01 23.35 90.9M
Universal 0.56 1.57 21.33 0.55 1.24 26.03 0.55 1.37 27.27 0.54 0.97 23.17 0.54 1.04 22.44 118.2M

Table 2: Multilingual results for WAIT-2 and COUPLED POLICY under Bilingual, Universal, and the same lan-
guage family (Germanic and Romance). Fully shared architecture is selected for Universal model while the same
language group model has language-specific parameters for encoder. The last column indicates model parameter
size, where bilingual row adds up the model size of all the language pairs, i.e. 55.646M× 5 ≈ 278.2M.

Under the same SIMT model, COUPLED POL-
ICY has better performance when trained in the
same language group. Also, the model size de-
creases 40% compared to the bilingual baseline,
where the same language family has a total of
164.2M parameters and the bilingual has a total of
278.2M parameters. WAIT-2 seems to have slightly
arguable results, where DE and NL have the high-
est BLEU when trained language-family-wise, but
the Romance language family benefits the most
from universally trained in all languages. Also, one
should note that a lower delay in WAIT-K under the
same k value does not mean outputting the target
sentence faster: (1) Because of the nature of WAIT-
K, the model follows the fixed READ and WRITE
actions, and (2) the formulation of AL accounts for
not only the lagging of translation but also the num-
ber of tokens produced as output and taken as input.
Therefore, a lower AL indicates the changes in the
probability of producing the end of the sentence.
This will generate a shorter target sentence and/or
stop the translation without fully observing the in-
put, which impacts the delay. Nevertheless, under
WAIT-2, the translation quality improves, and the
model size decreases with multilingualism.

3.2 Discussion

The setting for parameter sharing in this experiment
is inspired from the observation that the multilin-
gual NMT can benefit from separating encoder and
decoder parameters (Dong et al., 2015; Sachan and
Neubig, 2018; Ahmadnia and Dorr, 2020). The
motivation from Dong et al. (2015); Sachan and
Neubig (2018) is that separating decoder parame-
ters in one-to-many setting is beneficial because of
the difficulty of one-to-many translation task. Our

problem is SIMT where not only mapping from
the source language to the target language is im-
portant, but also learning when to map is equally
important. Hence, our assumption was that due to
the difficulty of many-to-one SIMT task, assign-
ing the encoder and the agent to language-specific
would help the performance. Under WAIT-K, en-
coding the representation of the source language
separately does not seem to benefit. However, Ta-
ble 2 shows multilingual setting surpasses bilingual.
This would be similar to the traditional NMT, that
the model generalize the translation tasks across
different languages and leverages the correlation
across the source languages.

COUPLED POLICY is more complex architec-
ture than WAIT-K as it also needs to learn the op-
timal policy from an oracle trajectory. However,
this takes more advantages when trained on the
same language family. Since its oracle is generated
from offline word alignments between the source
language and the target language, its mechanism
of read/write is dependent on the word order and
language properties. Our results in Table 2 also sup-
ports this as the model trained on the same language
family surpasses both bilingual baselines and uni-
versal model. The interesting observation here is
that, unlike WAIT-K, a separated encoder takes ad-
vantages more than fully shared architecture while
separating both encoder and agent significantly de-
grades the performance in BLEU. This suggests
that the language-specific encoder can form the
representation of the source languages better than
the shared one, but if the agent is separated together,
the model struggles mapping from the source lan-
guage to the target language. This reflects why sep-
arated encoder and agent in COUPLED POLICY has
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a BLEU decay while AL is not affected as signifi-
cant. Therefore, because COUPLED POLICY takes
advantages of the same word order from its oracle
trajectory, its shared agent can capture the general
representation of the same word order better while
the language-specific encoder can help the agent
by only focusing on encoding the representation of
each source language.

4 Related Work

Simultaneous Machine Translation SIMT has
been explored as a sequential decision-making
translation problem. NPI architecture is employed
to 1) choose whether to take more input token or
produce output token using agent programmer and
2) translate partially observed input tokens to out-
put using neural machine translation (NMT) inter-
preter (Satija and Pineau, 2016; Gu et al., 2016).
The initial approaches were mainly training the
agent using reinforcement learning with assigned
rewards to balance the trade-off between transla-
tion quality and delay (Gu et al., 2016; Satija and
Pineau, 2016; Alinejad et al., 2018). However, it
has stability and robustness issues due to the sparse
reward signals, so imitation learning using oracle
actions has been independently attempted (Zheng
et al., 2019; Arthur et al., 2020; Dalvi et al., 2018).

Multilingual Machine Translation In NMT,
multilingual training is a popular MTL approach as
it is very simple, but effective (Johnson et al., 2017;
Sachan and Neubig, 2018; Dong et al., 2015; Dabre
et al., 2020). Instead of choosing entirely different
NLP tasks and increase complexity of implemen-
tation (Niehues and Cho, 2017; Zaremoodi and
Haffari, 2018), multilingual setting only involves
concatenating multiple bilingual language pairs for
training (Johnson et al., 2017). The language pairs
are the task space in MTL, which determines the
performance of the model, and so, the selection of
language pairs influences the overall performance
of translation (Tan et al., 2019).

Parameter sharing in multilingual setting has
also been extensively studied. Dong et al. (2015)
initially had language-specific decoder under one-
to-many translation. This was further extended
to sharing decoder parameters partially (Sachan
and Neubig, 2018). Ahmadnia and Dorr (2020)
investigated hierarchically sharing parameters un-
der the similarity between languages. This simple
parameter sharing has shown to restrict sharing
dissimilarity, improving translation quality of all

the languages (Johnson et al., 2017; Sachan and
Neubig, 2018; Cettolo et al., 2017).

5 Conclusions

In this paper, we have investigated multilingual
SIMT using IWSLT 2017 datasets. We have ex-
plored simple and effective multilingual architec-
tures based on two strong recently proposed SIMT
models, namely WAIT-K and COUPLED POLICY.
Experiments show that the best parameter sharing
strategy for the WAIT-K model, when dealing with
DE/NL (as Germanic languages) and RO/IT/FR (as
Romance languages), is to share all SIMT com-
ponents across the languages regardless of the lan-
guage set. However, the best sharing strategy seems
to depend on the language family when it comes
to COUPLED POLICY. Under the best parameter
sharing strategy, our results have shown that (i)
the single multilingual model is on-par or better
than individual models, and (ii) multilingual SIMT
models trained based on language families are on-
par or better than the universal model trained for all
languages. Furthermore, (iii) COUPLED POLICY

takes the advantages of the same word order, so it
achieves the best performance with the language-
specific encoder and training under the same lan-
guage family

For the future work, we plan to extend this to a
larger dataset. Aharoni et al. (2019) demonstrated
the scales of parallel corpora draw different conclu-
sions in multilingual NMT. To maintain the charac-
teristics of spoken languages, translation datasets
must be selected carefully. Secondly, we will inves-
tigate different language families, including Slavic
languages and Austronesian languages. The con-
sistent results in different families would make the
claim in this paper more valid.
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DE→EN NL→EN
θE θD θA AP AL BLEU AP AL BLEU

WAIT-2
× × − 0.62 2.54 22.99 0.63 2.39 28.33
× X − 0.63 2.67 23.04 0.63 2.51 28.16
X X − 0.62 2.56 23.86 0.63 2.50 28.44

COUPLED POLICY

× × × 0.56 1.55 21.33 0.56 1.35 26.63
× X × 0.56 1.66 21.61 0.55 1.32 25.65
× X X 0.56 1.47 22.33 0.55 1.26 27.25
X X × 0.56 1.68 21.21 0.55 1.28 25.63
X X X 0.56 1.49 21.69 0.56 1.31 26.22

Table 3: Parameter sharing under Germanic language family: German, Dutch. X and × indicate shared and not
sharing components in the MTL architecture.

FR→EN IT→EN RO→EN
θE θD θA AP AL BLEU AP AL BLEU AP AL BLEU

WAIT-2
× × − 0.60 2.22 23.40 0.63 2.73 24.77 0.63 2.55 24.34
× X − 0.61 2.32 23.54 0.64 2.77 24.75 0.63 2.68 24.43
X X − 0.61 2.35 23.76 0.64 2.77 25.24 0.63 2.72 24.10

COUPLED POLICY

× × × 0.55 1.48 26.90 0.53 1.00 22.62 0.54 1.02 22.82
× X × 0.55 1.53 24.82 0.53 0.90 21.13 0.54 1.09 20.60
× X X 0.55 1.37 27.45 0.53 0.92 23.40 0.54 1.01 23.35
X X × 0.55 1.44 27.36 0.53 0.99 23.13 0.54 1.16 23.00
X X X 0.55 1.38 27.34 0.53 0.89 23.32 0.54 1.02 22.63

Table 4: Parameter sharing under Romance language family: French, Italian, Romanian. X and × indicate shared
and not sharing components in the MTL architecture.

DE→EN FR→EN IT→EN NL→EN RO→EN
θE θD θA AP AL BLEU AP AL BLEU AP AL BLEU AP AL BLEU AP AL BLEU

WAIT-2
× × − 0.62 2.54 22.99 0.60 2.22 23.40 0.63 2.73 24.77 0.63 2.39 28.33 0.63 2.55 24.34
× X − 0.62 2.59 22.85 0.60 2.22 24.04 0.63 2.60 25.91 0.63 2.48 27.96 0.63 2.54 24.47
X X − 0.62 2.55 23.04 0.60 2.21 24.40 0.63 2.58 25.09 0.63 2.44 27.43 0.63 2.54 24.63

COUPLED POLICY

× × × 0.56 1.55 21.33 0.55 1.48 26.90 0.53 1.00 22.62 0.56 1.35 26.63 0.54 1.02 22.82
× X × 0.57 1.76 19.54 0.55 1.45 27.04 0.54 1.04 22.29 0.56 1.36 24.50 0.54 1.09 22.34
× X X 0.55 1.29 19.95 0.55 1.33 25.50 0.53 0.92 21.73 0.56 1.29 24.89 0.54 1.05 21.72
X X × 0.56 1.67 21.11 0.55 1.42 26.92 0.53 0.99 22.36 0.56 1.37 25.31 0.54 1.09 22.68
X X X 0.56 1.57 21.33 0.55 1.37 27.27 0.54 0.97 23.17 0.55 1.24 26.03 0.54 1.04 22.44

Table 5: Parameter sharing under all language families: German, French, Italian, Dutch, Romanian. X and ×
indicate shared and not sharing components in the MTL architecture.
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Model Name Model Size
model.src embedder.0.0.weight torch.Size([32004, 512])
model.trg embedder.1.0.weight torch.Size([32004, 512])
model.encoder.0.weight ih l0 torch.Size([2048, 512])
model.encoder.0.weight hh l0 torch.Size([2048, 512])
model.encoder.0.bias ih l0 torch.Size([2048])
model.encoder.0.bias hh l0 torch.Size([2048])
model.decoder.1.weight ih l0 torch.Size([2048, 1024])
model.decoder.1.weight hh l0 torch.Size([2048, 512])
model.decoder.1.bias ih l0 torch.Size([2048])
model.decoder.1.bias hh l0 torch.Size([2048])
model.attention.1.src projector.weight torch.Size([512, 512])
model.attention.1.trg projector.weight torch.Size([512, 512])
model.attention.1.inner projector.1.weight torch.Size([1, 512])
model.context projector.1.weight torch.Size([512, 1024])
model.context projector.1.bias torch.Size([512])
model.output projector.1.weight torch.Size([32004, 512])
model.output projector.1.bias torch.Size([32004])
agent.action embedder.0.weight torch.Size([6, 512])
agent.input projector.0.weight torch.Size([512, 1536])
agent.input projector.0.bias torch.Size([512])
agent.rnn.0.weight ih l0 torch.Size([2048, 512])
agent.rnn.0.weight hh l0 torch.Size([2048, 512])
agent.rnn.0.bias ih l0 torch.Size([2048])
agent.rnn.0.bias hh l0 torch.Size([2048])
agent.output projector.0.weight torch.Size([6, 512])
agent.output projector.0.bias torch.Size([6])

Table 6: The details of parameters in COUPLED POLICY baseline. WAIT-K has no agent parameters and multilin-
gual models has additional components in model.encoder or agent and an increase in the first dimension of
model.src embedder by the number of languages, e.g., torch.Size([32004, 512]) for bilingual base-
line to torch.Size([64004, 512]) for Germanic family. Total number of parameters for encoder, agent,
attention, decoder, input embedding, output embedding and action embedding are 2.0M, 2.8M, 512.5K, 19.1M,
15.6M, 15.6M and 2.0K, respectively.


