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Abstract

ELECTRA (Clark et al., 2020a) pretrains a dis-
criminator to detect replaced tokens, where
the replacements are sampled from a gener-
ator trained with masked language modeling.
Despite the compelling performance, ELEC-
TRA suffers from the following two issues.
First, there is no direct feedback loop from dis-
criminator to generator, which renders replace-
ment sampling inefficient. Second, the gen-
erator’s prediction tends to be over-confident
along with training, making replacements bi-
ased to correct tokens. In this paper, we
propose two methods to improve replacement
sampling for ELECTRA pre-training. Specif-
ically, we augment sampling with a hardness
prediction mechanism, so that the generator
can encourage the discriminator to learn what
it has not acquired. We also prove that the ef-
ficient sampling reduces the training variance
of the discriminator. Moreover, we propose
to use a focal loss for the generator in order
to relieve oversampling correct tokens as re-
placements. Experimental results show that
our method improves ELECTRA pre-training
on various downstream tasks. Our code and
pre-trained models will be released at: https:
//github.com/YRdddream/electra-hp

1 Introduction

One of the most successful language model pre-
training tasks is masked language modeling (MLM;
Devlin et al. 2019). First, we randomly mask some
input tokens in a sentence. Then the encoder learns
to recover the masked tokens given the corrupted
input. ELECTRA (Clark et al., 2020a) argues that
MLM only produces supervision signals at a small
proportion of positions (usually 15%), and uses
the replaced token detection task as an alternative.
Specifically, ELECTRA contains a generator and a
discriminator. The generator is a masked language
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model, which substitutes masks with the tokens
sampled from its MLM predictions. The discrimi-
nator learns to distinguish which tokens have been
replaced or kept the same. Experimental results on
downstream tasks show that ELECTRA can largely
improve sample efficiency.

Despite achieving compelling performance, it
is usually difficult to balance the training pace be-
tween the generator and the discriminator. Along
with pre-training, the generator is expected to sam-
ple more hard replacements for the detection task in
a curriculum manner, while the discriminator learns
to identify the corrupted positions. Although the
two components are designed to compete with each
other, there is no explicit feedback loop from the
discriminator to the generator, rendering the learn-
ing games independent. The absence of feedback
results in sub-efficient learning, because many re-
placed tokens have been successfully trained while
the generator does not know how to effectively
sample replacements. In addition, a well trained
generator tends to achieve reasonably good MLM
accuracy, where many sampled replacements are
correct tokens. In order to relieve the issue of
oversampling correct tokens, ELECTRA explored
tweaking the mask probability larger, raising the
sampling temperature, and using a manual rule to
avoid sampling original tokens.

In this paper, we propose two methods, namely
hardness prediction and sampling smoothing, to
tackle the above issues. First, the motivation of
hardness prediction is to sample the replacements
that the discriminator struggles to predict correctly.
We elaborate on the benefit of a good replacement
mechanism from the perspective of variance reduc-
tion. Theoretical derivations indicate that the re-
placement sampling should be proportional to both
the MLM probability (i.e., language frequency)
and the corresponding discriminator loss (i.e., dis-
crimination hardness). Based on the above conclu-
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sion, we introduce a sampling head in the generator,
which learns to sample by estimating the expected
discriminator loss for each candidate replacement.
So the discriminator can give feedback to the gener-
ator, which helps the model to learn what it has not
acquired. Second, we propose a sampling smooth-
ing method for the issue of oversampling original
tokens. We adopt a focal loss (Lin et al., 2017)
for the generator’s MLM task, rather than using
cross-entropy loss. The method adaptively down-
weights the well-predicted replacements for MLM,
which avoids sampling too many correct tokens as
replacements.

We conduct pre-training experiments on the Wik-
iBooks corpus for both small-size and base-size
models. The proposed techniques are plugged
into ELECTRA for training from scratch. Exper-
imental results on various tasks show that our
methods outperform ELECTRA despite the simplic-
ity. Specifically, under the small-size setting, our
model performance is 0.9 higher than ELECTRA

on MNLI (Williams et al., 2018) and 4.2 higher on
SQuAD 2.0 (Rajpurkar et al., 2016a), respectively.
Under the base-size setting, our model performance
is 0.26 higher than ELECTRA on MNLI and 0.52
higher on SQuAD 2.0, respectively.

2 Related Work

State-of-the-art NLP models are mostly pretrained
on a large unlabeled corpus with the self-supervised
objectives (Peters et al., 2018; Lan et al., 2020; Raf-
fel et al., 2020). The most representative pretext
task is masked language modeling (MLM), which
is introduced to pretrain a bidirectional BERT (De-
vlin et al., 2019) encoder. RoBERTa (Liu et al.,
2019) apply several strategies to enhance the BERT
performance, including training with more data
and dynamic masking. UniLM (Dong et al., 2019;
Bao et al., 2020) extend the mask prediction to
generation tasks by adding the auto-regressive ob-
jectives. XLNet (Yang et al., 2019) propose the
permuted language modeling to learn the depen-
dencies among the masked tokens. Besides, ELEC-
TRA (Clark et al., 2020a) propose a novel training
objective called replaced token detection which
is defined over all input tokens. Moreover, ELEC-
TRIC (Clark et al., 2020b) extends the idea of ELEC-
TRA by energy-based cloze models.

Some prior efforts demonstrate that sampling
more hard examples is conducive to more effective
training. Lin et al. (2017) propose the focal loss in

order to focus on more hard examples. Generative
adversarial networks (Goodfellow et al., 2014) is
trained to maximize the probability of the discrimi-
nator making a mistake, which is closely related to
ELECTRA’s training framework. In this work, we
aim at guiding the generator of ELECTRA to sample
the replacements that are hard for the discrimina-
tor to predict correctly, therefore the pre-training
process of the discriminator can be more efficient.

3 Background: ELECTRA

An overview of ELECTRA is shown in Figure 1.
The model consists of a generator G and a dis-
criminator D. The generator is trained by masked
language modeling (MLM). Formally, given an
input sequence x = x1 · · ·xn, we first randomly
mask k = d0.15ne tokens at the positions m =
m1 · · ·mk with [MASK]. The perturbed sentence
c is denoted as:

mi ∼ uniform{1, n} for i = 1, · · · , k
c = replace(x,m,[MASK])

where the replace operation conducts masking at
the positions m. The generator encodes c and per-
forms MLM prediction. At each masked position i,
we sample replacements from MLM output distri-
bution pG:

x′i ∼ pG(x
′
i|c) for i ∈m

xR = replace(x,m,x′)

where masks are replaced with the sampled to-
kens. Next, the discriminator encodes the corrupted
sentence xR. A binary classification task learns
to distinguish which tokens have been replaced
or kept the same, which predicts the probability
D(xRt ,x

R) to indicate how likely xRt comes from
the true data distribution.

The overall pre-training objective is defined as:

min
θG,θD

∑
x∈X

E
i∈m

[LθGG (xi,c)]+λ E
t∈[1,n]

[LθDD (xRt ,x
R)]

LG(xi, c)=−log pG(xi|c)

LD(xRt ,xR)=

{
−logD(xRt ,x

R) xRt =xt

−log(1−D(xRt ,x
R)) xRt 6=xt

where X represents text corpus, and λ = 50 sug-
gested by Clark et al. (2020a) is a hyperparame-
ter used to balance the training pace of generator
and discriminator. Once pre-training is finished,
only the discriminator is fine-tuned on downstream
tasks.
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Figure 1: An overview of ELECTRA. The MLM head of the generator learns to perform MLM and samples
replacements at each masked position from the MLM distribution. For the corrupted sequence, the discriminator
learns to distinguish which tokens have been replaced or kept the same.
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Figure 2: An overview of our model. The generator has two prediction heads. The MLM head learns to perform
MLM through the focal loss instead of the cross entropy loss. The sampling head is trained to estimate the
discriminator loss over the vocabulary. Our model samples the replacements from a new distribution, which is
proportional to both the MLM probability and the corresponding discriminator loss. The discriminator is trained
to distinguish input tokens and the loss feedback is transferred to the generator for the sampling head to learn.

4 Methods

4.1 Hardness Prediction

The key idea of hardness prediction is to let the
generator receive the discriminator’s feedback and
sample more hard replacements. Figure 2 shows
the overview of our method. Besides the original
MLM head in the generator, there is an additional
sampling head used to sample replaced tokens.

Given a1 replaced token x′ in the input sequence
c, let LD(x′, c) denote the discriminator loss for
the replacement. Rather than directly sampling
replacements from the MLM prediction pG, we
propose to sample from pS:

pS(x
′|c) = pG(x

′|c)LD(x′, c)
EpG(x∗|c)[LD(x∗, c)]

(1)

xR = replace(x,m,x′) x′ ∼ pS(x
′|c)

where the corrupted sentence xR is obtained by
substituting the masked positions m with sampled
replacements x′. The first term pG(x

′|c) implies
sampling from the data distribution. The second
term LD(x′, c) encourages the model to sample

1For notation simplicity, we assume only one token is
masked in each sentence.

more replacements that the discriminator has not
successfully learned.

Notice that Equation (1) uses the actual discrim-
inator loss LD(x′, c), which can not be obtained
without feeding xR into the discriminator. As an al-
ternative, we use the estimated loss value L̂D(x′, c)
to sample replaced tokens, which approximates the
actual loss for the candidate replacement. During
pre-training, we use the actual loss as supervision,
and simultaneously train the sampling head. We
describe the detailed implementations of loss esti-
mation in Section 4.1.2.

By considering detection hardness in replace-
ment sampling and giving feedback from the dis-
criminator to the generator, the components are no
longer independently learned. ELECTRA (Clark
et al. 2020a; Appendix F) also attempts to achieve
the same goal by adversarially training the gen-
erator. However, it underperforms the maximum-
likelihood training, because of the poor sample ef-
ficiency of reinforcement learning on discrete text
data. More importantly, their generator is trained
to fool the discriminator, rather than guiding the
discriminator by data distribution, which breaks
the ELECTRA training objective. In contrast, we
still retain the MLM head, and decouple it from re-
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placement sampling. So we can take the advantage
of the original training objective.

4.1.1 Perspective of Variance Reduction
We show that the proposed hardness prediction
method is well supported from the perspective of
variance reduction.

Proposition 1. Sampling replacements from
pS(x

′|c) can minimize the estimation variance of
the discriminator loss.

Proof. At each masked position, the expectation of
the discriminator loss we aim to estimate can be
summarized as Z = EpG(x∗|c)[LD(x∗, c)]. Under
pG, the estimation variance of the discriminator loss
is:

VarpG(x∗|c)[LD(x
∗, c)]

=
∑

x∗∈vocab

pG(x
∗|c)(LD(x∗, c)− Z)2

=
∑

x∗∈vocab

pG(x
∗|c)LD(x∗, c)2 − Z2

Similar to importance sampling, we can select an
alternative distribution pS different from pG, then
the expectation Z is rewritten as:

EpG(x∗|c)[LD(x
∗, c)]

=
∑

x∗∈vocab

pG(x
∗|c)LD(x∗, c)

=
∑

x∗∈vocab

pS(x
∗|c)pG(x

∗|c)
pS(x∗|c)

LD(x∗, c)

= EpS(x∗|c)[
pG(x

∗|c)
pS(x∗|c)

LD(x∗, c)]

By making a multiplicative adjustment to LD, the
estimation variance of Z under the new sampling
distribution pS is converted to:

VarpS(x∗|c)[
pG(x

∗|c)
pS(x∗|c)

LD(x∗, c)]

=
∑

x∗∈vocab

pS(
pG(x

∗|c)LD(x∗, c)
pS

)2 − Z2

=
∑

x∗∈vocab

(pG(x
∗|c)LD(x∗, c)− pS(x

∗|c)Z)2

pS(x∗|c)

Based on the above derivation, it is obvious
that we obtain a zero-variance estimator when
we choose pS(x

∗|c) = pG(x
∗|c)LD(x∗, c)/Z as

Equation (1). This theoretically optimal form pro-
vides us insights into designing the above sampling
scheme.

4.1.2 Two Implementations of Hardness
Prediction

We design two variants of the sampling head. The
first one is to explicitly estimate the discriminator
loss (HPLoss). The second method is to approxi-
mate the expected sampling distribution (HPDist).

HPLoss guides the generator to learn the probabil-
ity predicted by the discriminator that the sampled
token x′ is an original token. In this case, the output
layer of the sampling head is actually a sigmoid
function same as the discriminator:

D̂(x′, c) = sigmoid(w(x′) · hS(c))

where hS(c) denotes the contextual representations
projected by the sampling head, and w denotes
the projection parameters. Then the loss of the
sampling head at the masked position is:

LS(x′, c) = (D̂(x′, c)−D(x′, c))2

When sampling replacements over the vocab-
ulary, the estimated discriminator probability
D̂(x′, c) can be easily rewritten to the estimated
discriminator loss L̂D(x′, c):

L̂D(x′, c) =

{
− log D̂(x′, c) x′ = x

− log(1− D̂(x′, c)) x′ 6= x

Multiplying the MLM probability factor pG, we
obtain the sampling distribution:

pS(x
′|c) = pG(x

′|c)L̂D(x′, c)∑
x∗∈vocab pG(x∗|c)L̂D(x∗, c)

=
pG(x

′|c)L̂D(x′, c)
EpG(x∗|c)[L̂D(x∗, c)]

HPDist aims to directly approximate the expected
sampling distribution as in Equation (1), instead of
the discriminator loss. In this case, the sampling
head produces an output probability of the token
x′ with a softmax layer:

pS(x
′|c) = exp(e(x′) · hS(c))∑

x∗∈vocab exp(e(x
∗) · hS(c))

(2)

where e represents the token embeddings. For the
sampled token x′, we define the loss of the sam-
pling head as:

LS(x′, c) = −
pG(x

′|c)
pS(x′|c)

LD(x′, c) log pS(x
′|c)
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Then we show that minimizing the above loss
LS(x′, c) pushes sampling distribution of Equa-
tion (2) to our goal. Specifically, the loss expecta-
tion over the whole vocabulary is:

EpS(x∗|c)[LS(x
∗, c)] =

−
∑

x∗∈vocab

pS(x
∗|c)pG(x

∗|c)
pS(x∗|c)

LD(x∗, c)log pS(x
∗|c)

= −
∑

x∗∈vocab

pG(x
∗|c)LD(x∗, c) log pS(x

∗|c)

According to the Lagrange Multiplier method, the
optimal solution p̃S of the loss function LS(x′, c)
is consistent with Equation (1):

p̃S(x
′|c) = pG(x

′|c)LD(x′, c)∑
x∗∈vocab pG(x∗|c)LD(x∗, c)

=
pG(x

′|c)LD(x′, c)
EpG(x∗|c)[LD(x∗, c)]

4.2 Sampling Smoothing

Along with the learning process, the masked lan-
guage modeling tends to achieve relatively high
accuracy. As a consequence, the generator over-
samples the correct tokens as replacements, which
renders the discriminator learning inefficient.

In order to address the issue, we apply an al-
ternative loss function called focal loss (Lin et al.,
2017) for MLM of the generator. Compared with
the vanilla cross-entropy loss, focal loss adds a
modulating factor for the weighting purpose:

LfcG(x, c) = −(1− pG(x|c))γ log pG(x|c)

where γ ≥ 0 is a tunable hyperparameter. Besides
using a constant γ, we try the piecewise function
γ = 1(pG > 0.2) ∗ 3 + 1(pG ≤ 0.2) ∗ 5 in our
experiments as suggested by Mukhoti et al. (2020).

In other words, the focal loss is used to adap-
tively down-weight the well-classified easy ex-
amples and thus focusing on more difficult ones.
When applying the focal loss to the MLM head
for the generator, we notice that if a token is easy
for the generator to be predicted correctly, i.e.,
pG(x|c) → 1, the modulating factor is greatly de-
creased. In contrast, if a token is hard to predict,
the focal loss approximates to the original cross
entropy loss. Therefore, we propose to employ the
focal loss in order to smooth the sampling distribu-
tion, which in turn relieves oversampling correct
tokens as replacements.

4.3 Pre-Training Objective

Adopting the above two strategies, we jointly train
the generator and the discriminator together as the
original ELECTRA model. The word embeddings
of them are still tied during the pre-training stage.
Formally, we minimize the combined loss over a
large corpus X :

min
θG,θS ,θD

∑
x∈X

(
E
i∈m

[Lfc,θGG (xi, c)]+

λ1 E
i∈m

[LθSS (xRi , c)] + λ2 E
t∈[1,n]

[LθDD (xRt ,x
R)]
)

where λ1, λ2 are two hyperparameters to adjust
three parts of the loss. We only search λ1 value
and keep λ2 = 50 for the fair comparison with
ELECTRA. After pre-training, we throw out the
generator and only fine-tune the discriminator on
the downstream tasks.

5 Experiments

5.1 Setup

We implement ELECTRA+HPLoss/HPDist+Focal on
both the small-size setting and the base-size setting.
The two prediction heads share both the genera-
tor and the token embeddings, which avoids the
unnecessary increase in model complexity. We fol-
low most settings as suggested in ELECTRA (Clark
et al., 2020a). In order to enhance the ELECTRA

baseline for a solid comparison, we add the relative
position (Raffel et al., 2020). Experimental results
show that our methods can improve performance
even on the enhanced ELECTRA baseline.

We pretrain our models on the same text corpus
as ELECTRA, which is a combination of English
Wikipedia and BooksCorpus (Zhu et al., 2015). We
also adopt the N-gram masking strategy which is
beneficial for MLM tasks. The models are trained
for 1M steps for small-size models and 765k steps
for base-size models, so that the computation con-
sumption can be similar to baseline models (Clark
et al., 2020a). The base-size models are pretrained
with 16 V100 GPUs less than five days. The small-
size models are pretrained with 8 V100 GPUs less
than three days. We use the Adam (Kingma and
Ba, 2015) optimizer (β1 = 0.9, β2 = 0.999) with
learning rate of 1e-4. The value of λ2 in the train-
ing objective is kept fixed at 50 for a fair compari-
son with ELECTRA. For HPLoss, we search λ1 in
{5, 10, 20}, the best one is 5. For HPDist, we keep
λ1 = 1. We search the focal loss weight γ in {1, 4}
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Model MNLI QNLI QQP RTE SST MRPC CoLA STS
-m/-mm Acc Acc Acc Acc Acc MCC PCC

Small-size
ELECTRA (reimplementation) 80.3/80.6 89.0 89.2 62.2 89.0 87.3 59.6 86.3

ELECTRA+HPLoss+Focal 81.2/81.7 89.1 89.6 66.1 89.2 86.6 59.3 86.7
ELECTRA+HPDist+Focal 81.0/81.8 89.3 89.6 62.5 89.2 86.8 59.7 86.8

Base-size
BERT (Devlin et al., 2019) 84.5/- 88.6 90.8 68.5 92.8 86.0 58.4 87.8
RoBERTa (Liu et al., 2019) 84.7/- - - - 92.7 - - -
XLNet (Yang et al., 2019) 85.8/- - - - 93.4 - - -
ELECTRA (Clark et al., 2020a) 86.2/- 92.4 90.9 76.3 92.4 87.9 65.8 89.1
ELECTRIC (Clark et al., 2020b) 85.7/- 92.1 90.6 73.4 91.9 88.0 61.8 89.4
ELECTRA (reimplementation) 86.7/86.5 92.6 91.4 80.4 92.6 89.1 66.5 91.0

ELECTRA+HPLoss+Focal 87.0/86.9 92.7 91.7 81.3 92.6 90.7 66.7 91.0
ELECTRA+HPDist+Focal 86.8/86.8 92.3 91.6 80.0 92.7 89.8 67.3 90.9

Table 1: Comparisons between our models and previous pretrained models on GLUE dev set. Reported results are
medians over five random seeds.

on both the base-size and small-size model, the best
configuration is γ = 1. The detailed pre-training
configurations are provided in the supplemental
materials.

5.2 Results on GLUE Benchmark

The General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2019) is a col-
lection of diverse natural language understanding
(NLU) tasks, including inference tasks (MNLI,
QNLI, RTE; Dagan et al. 2006; Bar-Haim et al.
2006; Giampiccolo et al. 2007; Bentivogli et al.
2009; Williams et al. 2018; Rajpurkar et al. 2016b),
similarity and paraphrase tasks (MRPC, QQP, STS-
B; Dolan and Brockett 2005; Cer et al. 2017), and
single-sentence tasks (CoLA, SST-2; Warstadt et al.
2018; Socher et al. 2013). The detailed descriptions
of GLUE datasets are provided in the supplemen-
tary materials. The evaluation metrics are Spear-
man correlation for STS-B, Matthews correlation
for CoLA, and accuracy for the other GLUE tasks.

For small-size settings, we use the hyperparam-
eter configuration as suggested in (Clark et al.,
2020a). For base-size settings, we consider a lim-
ited hyperparameter searching for each task, with
learning rates ∈ {5e-5, 1e-4, 1.5e-4} and training
epochs ∈ {3, 4, 5}. The remaining hyperparam-
eters are the same as ELECTRA. We report the
median performance on the dev set over five dif-
ferent random seeds for each task. All the results
come from the single-task fine-tuning. For more
detailed fine-tuning configurations, please refer to

the supplementary materials.
Results are shown in Table 1. With the same con-

figuration and pre-training data, for both the small-
size and the base-size, our methods outperform
the strong reimplemented ELECTRA baseline by
0.6 and 0.4 on average respectively. For the most
widely reported task MNLI, our models achieve
87.0/86.9 points on the matched/mismatched set,
which obtains 0.3/0.4 absolute improvements. The
performance gains on the small-size models are
more obvious than the base-size models, we spec-
ulate that is due to the learning of the small-size
generator is more insufficient and suffers from the
above issues more significantly. The results demon-
strate that our proposed methods can improve the
pre-training of ELECTRA. In other words, sampling
more hard replacements is more efficient than the
original masked language modeling.

5.3 Results on SQuAD 2.0

The Stanford Question Answering Dataset
(SQuAD; Rajpurkar et al. 2016a) is a reading
comprehension dataset, each example consists
of a context and a question-answer pair. Given a
context and a question, the task is to answer the
question by extracting the relevant span from the
context. We only use the version 2.0 for evaluation,
where some questions are not answerable. We
report the results of both the Exact-Match (EM)
and F1 score. When fine-tuning on SQuAD, we
add the question-answering module from XLNet
on the top of the discriminator as Clark et al.
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Model SQuAD 2.0
EM F1

Small-size
ELECTRA (reimplementation) 68.9 71.3

ELECTRA+HPLoss+Focal 71.8 74.3
ELECTRA+HPDist+Focal 73.2 75.5

Base-size
BERT (Devlin et al., 2019) 73.7 77.1
RoBERTa (Liu et al., 2019) - 79.7
XLNet (Yang et al., 2019) 78.2 81.0
ELECTRA (Clark et al., 2020a) 80.5 83.3
ELECTRIC (Clark et al., 2020b) 80.1 -
ELECTRA (reimplementation) 82.4 85.1

ELECTRA+HPLoss+Focal 83.0 85.6
ELECTRA+HPDist+Focal 82.7 85.4

Table 2: Comparisons between our models and previ-
ous pretrained models on SQuAD 2.0 dev set. Reported
results are medians over five random seeds.

(2020a). All the hyperparameter configurations
are the same as ELECTRA. We report the median
performance on the dev set over five different
random seeds. Refer to the appendix for more
details about fine-tuning.

Results on SQuAD 2.0 are shown in Table 2.
Consistently, our models perform better than ELEC-
TRA baseline under both the small-size setting and
the base-size setting. Under the base setting, our
models improve the performance over the reimple-
mented ELECTRA baseline by 0.6 points (EM) and
0.5 points (F1). Especially under the small setting,
our models outperform the baseline by a remark-
able margin. ELECTRA+HPDist+Focal obtains 4.3
and 4.2 points absolute improvements on EM and
F1 metric.

5.4 Ablation Studies
We conduct ablation studies on small-size ELEC-
TRA+HPLoss+Focal models. We investigate the ef-
fect of the loss weight λ1 of the sampling head and
the focal loss factor γ in order to better understand
their relative importance. Results are presented in
Table 3.

We first disable the focal loss and only under-
stand the effect of λ1. As shown in Table 3, no
matter what the value of λ1 is, our models ex-
ceed the baseline by a substantial margin, which
demonstrates that the hardness prediction can in-
deed improve the pre-training and our methods

Model MNLI-m SQuAD 2.0

ELECTRA 80.3 71.3

ELECTRA + HPLoss

λ1 = 5 80.9 74.2
λ1 = 10 81.1 75.1
λ1 = 20 81.0 74.1

ELECTRA + HPLoss (λ1 = 5) + Focal

γ =

{
3 pG > 0.2

5 pG ≤ 0.2
81.0 74.7

γ = 1.0 81.2 74.3
γ = 4.0 80.9 74.2

Table 3: Ablation studies on small-size models. We an-
alyze the effect of the hardness prediction loss weight
λ1 and the focal loss factor γ. Reported results are me-
dians over five random seeds.

are not sensitive to the loss weight hyperparam-
eter. Next, we fix λ1 at 5 and understand the
effect of the focal loss factor γ. We observe
that the application of the focal loss with piece-
wise γ = 1(pG > 0.2) ∗ 3 + 1(pG ≤ 0.2) ∗ 5
and γ = 1 can improve the performance on two
datasets, which proves the effectiveness of the sam-
pling smoothing.

6 Analysis

To better understand the main advantages of our
models over ELECTRA, we conduct several analy-
sis experiments.

6.1 Impacts on Sampling Distributions

We first provide a comparison between the sam-
pling distributions of ELECTRA and our models
illustrate the effect of our proposed methods. We
conduct evaluations on a subset of the pre-training
corpus. Figure 3 demonstrates the distribution of
the maximum probability of the two sampling dis-
tributions at the masked positions. We observe
that the ratio of the maximum value under ELEC-
TRA sampling distribution between [0.9, 1] is much
higher than that of our models. In other words,
the original distribution suffers from over-sampling
the high-probability tokens and the discriminator is
forced to learn from these easy examples repeatedly.
In contrast, the distribution of the maximum value
of our models in each interval is relatively more
uniform than ELECTRA, which indicates that our
methods can significantly reduce the probability of
sampling the well-classified tokens and smooth the
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(b) Sampling distribution of our models

Figure 3: The distribution of the maximum probabil-
ity at the masked positions under the sampling distribu-
tions of ELECTRA and our models.

Token Type Original Replaced All

Corr. Coeff. 0.78 0.61 0.64

Table 4: Correlation coefficient between the actual
discriminator loss and the estimated value for ELEC-
TRA+HPLoss+Focal. “Original”: sampling correct to-
kens as replacements. “Replaced”: the positions that
are substituted to incorrect tokens.

whole sampling distribution.

6.2 Estimation Quality

In order to measure the estimation quality of dis-
criminator loss, we evaluate our models on a held-
out set of pre-training corpus and compute the cor-
relation coefficient between the actual discrimina-
tor loss LD(x, c) and the estimated value L̂D(x, c).
The results of ELECTRA+HPLoss+Focal are shown
in Table 4. We report the estimation quality of the
original tokens and the replaced tokens separately.
The correlation coefficient value is 0.64 over two
types of tokens, which proves that LD(x, c) and
L̂D(x, c) correlate well. Furthermore, we observe
that the estimation quality over the original tokens
is relatively higher than the replacements. We spec-

Model Masked Positions All Positions

ELECTRA 0.81 0.96
Ours 0.72 0.95

Table 5: Replacement detection accuracy of ELECTRA
and ELECTRA+HPLoss+Focal. The models are evalu-
ated on 15% masked positions and all input tokens re-
spectively. Our method samples more hard examples.

ulate that the sampling probability of the original
tokens is generally higher than the replacements, so
the sampling head tends to receive more feedback
from these original tokens.

6.3 Prediction Accuracy of the Discriminator
In order to verify the claim that the sampling distri-
bution of our models indeed considers the detection
difficulty, we evaluate the prediction accuracy of
the discriminator under the two sampling schemes
of ELECTRA and ELECTRA+HPLoss+Focal. Re-
sults are listed in Table 5. No matter evaluating
at all positions or only at the masked positions,
the detection accuracy under our sampling distri-
bution is relatively lower than under masked lan-
guage modeling in original ELECTRA. Because the
unmasked tokens constitute the majority of input
examples, the difference of the all-token accuracy
between two models is not so distinct compared
to the masked tokens. This phenomenon is consis-
tent with our original intention. It proves that our
models can sample more replacements that the dis-
criminator struggles to make correct predictions. In
contrast, the replacements sampled from ELECTRA

are easier to distinguish.

7 Conclusion

We propose to improve the replacement sampling
for ELECTRA pre-training. We introduce two meth-
ods, namely hardness prediction and sampling
smoothing. Rather than sampling from masked
language modeling, we design a new sampling
scheme, which considers both the MLM probabil-
ity and the prediction difficulty of the discriminator.
So the generator can receive feedback from the
discriminator. Moreover, we adopt the focal loss
to MLM, which adaptively downweights the well-
classified examples and smooth the entire distribu-
tion. The sampling smoothing technique relieves
oversampling original tokens as replacements. Re-
sults show that our models outperform ELECTRA

baseline. In the future, we would like to apply
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our strategies to other pre-training frameworks and
cross-lingual models. Moreover, we are exploring
how to integrate the findings and insights of the pro-
posed method into the masked language modeling
task, which seems also quite promising.
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Hyperparameter Value

Learning Rate 3e-4 for Small, {5e-5, 1e-4, 1.5e-4} for Base
Adam ε 1e-6
Adam β1 0.9
Adam β2 0.999
Layerwise LR decay 0.8
Learning rate decay Linear
Warmup fraction 0.1
Attention Dropout 0.1
Dropout 0.1
Weight Decay 0 for Small, {0, 0.01} for Base
Batch Size 32
Train Epochs {10, 15, 20} for RTE, {3, 4, 5} for other tasks

Table 6: Fine-tuning details about ELECTRA baseline and our models.

Hyperparameter Small Base

Number of layers 12 12
Hidden Size 256 768
FFN inner hidden size 1024 3072
Attention heads 4 12
Attention head size 64 64
Embedding Size 128 768
Generator Size 1/4 1/3
Mask percent 15 15
Learning Rate Decay Linear Linear
Warmup steps 10000 10000
Learning Rate 5e-4 1e-4
Adam ε 1e-6 1e-6
Adam β1 0.9 0.9
Adam β2 0.999 0.999

Table 7: Pre-training details about ELECTRA baseline
and our models.

hypothesis sentence, the task is to predict whether
the premise entails the hypothesis or not. The
dataset contains 2.5k train examples from a series
of annual textual entailment challenges.

SST The Stanford Sentiment Treebank (Socher
et al., 2013) consists of sentences from movie re-
views and human annotations of their sentiment.
The task is to predict the sentiment of a given sen-
tence. The dataset contains 67k train examples.

MRPC The Microsoft Research Paraphrase Cor-
pus (Dolan and Brockett, 2005) is a corpus of sen-
tence pairs automatically extracted from online
news sources. The task is to predict whether two
sentences are semantically equivalent or not. The

dataset contains 3.7k train examples.

CoLA The Corpus of Linguistic Acceptabil-
ity (Warstadt et al., 2018) consists of English ac-
ceptability judgments drawn from books and jour-
nal articles on linguistic theory. The task is to
determine whether a given sentence is grammatical
or not. The dataset contains 8.5k train examples.

STS-B The Semantic Textual Similarity Bench-
mark (Cer et al., 2017) is a collection of sentence
pairs drawn from news headlines, video and image
captions, and natural language inference data. The
tasks is to predict how semantically similar two
sentences are on a 1-5 scale. The dataset contains
5.8k train examples.

B Pre-training Details

We did not search any hyperparameters during pre-
training. Most of our pre-training configurations
are same as the original ELECTRA (Clark et al.,
2020a). The learning rate for base-sized model
is changed from 2e-5 to 1e-5 on both ELECTRA
baseline and our models, because we expect the fair
comparison with BERT and RoBERTa. We keep
λ2 = 50 for both ELECTRA-EL and ELECTRA-
AD. The full set of pre-training hyperparameters is
provided in Table 7.

C Fine-tuning Details

For base-sized models, we searched the learning
rate and pre-training epochs on both ELECTRA
baseline and our models. For small-sized models,
we use the same hyperparameters as suggested in
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ELECTRA. All the results come from the single-
task fine-tuning. The full set of fine-tuning hyper-
parameters is provided in Table 6.

D Prediction Accuracy of the
Discriminator
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Figure 4: The prediction accuracy of the discriminator.
Blue lines indicate sampling replacements according to
pG, red lines are according to pS. The solid line rep-
resents the prediction accuracy evaluated on the 15%
masked tokens and the dashed line represents the pre-
diction accuracy of all input tokens.


