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Abstract

The drastic decrease in mobile SMS costs
turned phone users more prone to spam mes-
sages, usually with unwanted marketing or
questionable content. As such, researchers
have proposed different methods for detecting
SMS spam messages. This paper presents a
technique for embedding SMS messages into
vector spaces that is suitable for spam detec-
tion. The proposed approach relies on min-
ing patterns that are relevant for distinguishing
spam from legitimate messages. A subset of
those patterns is used to construct a function
that maps text messages into a multidimen-
sional vector space. The extracted patterns are
represented as skip-grams of token attributes,
where a skip-gram can be seen as a generaliza-
tion of the n-gram model that allows a distance
greater than one between matched tokens in
the text. We evaluate the proposed approach
using the generated vectors for spam classi-
fication on the UCI Spam Collection dataset.
The experiments showed that our method com-
bined with shallow networks reached accu-
racy that is competitive with state-of-the-art
approaches.

1 Introduction

SMS spam detection is a very relevant task for mo-
bile phone users. It can mitigate the annoyance
caused by the invasive marketing applied through
this platform and provide a more secure user expe-
rience by blocking potentially harmful messages.
In that sense, researchers have proposed different
methodologies to detect SMS spam. Abdulhamid
et al. (2017) and Abayomi-Alli et al. (2019), for
instance, provide comprehensive reviews of the
relevant datasets and techniques found in the litera-
ture.

Most recently, some researchers have success-
fully applied deep learning techniques for SMS
spam detection: Annareddy and Tammina (2019)

provide a comparative study on using Convolu-
tional Neural Networks (CNN) and Recurrent Neu-
ral Networks (RNN); Roy et al. (2020) and Popovac
et al. (2018) propose to CNN as well; Roy et al.
(2020), Jain et al. (2018) and Raj et al. (2018) pro-
pose using LSTM-based architectures; Ghourabi
et al. (2020) use a hybrid CNN-LSTM model;
Barushka and Hajek (2018) use regularized deep
multi-layer perceptrons combined with a feature
selection algorithm; and Wei and Nguyen (2020)
propose the use of Lightweight Gated Recurrent
Units (LGRU).

Other works employ traditional classifiers to
such a task (Fernandes et al., 2015; Fattahi and
Mejri, 2021; Xia and Chen, 2020), including di-
verse models like Support Vector Machines (SVM),
Hidden Markov Models (HMM), Optimum-Path
Forest (OPF), k-Nearest Neighbors (KNN), deci-
sion trees, and ensembling approaches. Gupta et al.
(2018) provide a comparative study using CNN and
traditional machine learning architectures.

SMS spam messages have a very characteristic
textual style; many inform the recipient that she
has won a prize or offer apparent great deals. As
such, many words (e.g., “prize”, “won”, “free”,
“bonus”, etc.) can be found to be very informative
for classifying a message as spam. While these
words can be used to create classifiers with good
performance, we observe that words and patterns
of a sequence of words can be very characteristic
of spam messages. For example, in the UCI SMS
Spam Collection dataset (Almeida et al., 2011),
the probability that a message is spam given that
it contains the word “text” is 0.53, and the same
likelihood raises to 0.96 when the message includes
the pattern “text [WORDS] to”, where “[WORDS]”
is a placeholder for a short sequence of one or more
words.

That happens because the word “text” can be
used many times in legitimate messages, as illus-
trated by the following example: “(...) I’ll text you
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in a few (...)”. On the other hand, it is very common
for spam messages to request the phone user to send
a message to a certain number, like the following:
“(...) text TONE or FLAG to 84199 NOW (...)”.
Thus, observing this pattern gives much higher
probability of a message being a spam than just
finding the word “text” in it.

In this paper, we propose a text embedding tech-
nique for SMS messages that exploits patterns rele-
vant for spam characterization. As a result, spam
and non-spam messages are projected distinctly
in the embedded space, allowing a more effective
classification. The method is split into three main
steps:

1. Tokenization: each text message from a train-
ing dataset is transformed into a sequence of
sets of attributes;

2. Skip-gram pattern mining: the generated se-
quences are then processed by an algorithm
for finding patterns relevant for the classifica-
tion task;

3. Embedding model: given the set of relevant
patterns, a model is constructed for mapping
text messages into a vector space.

Our model presents relevant contributions, dif-
fering from some related works (especially those
based on deep learning) regarding two aspects: (i)
the proposed embedding approach is a lightweight
model, being suitable to be used with shallow net-
works and executed on mobile devices; and (ii) the
model allows interpretation, with explicit informa-
tion associated with each dimension.

We evaluate the proposed technique using our
method to generate vectors for the classification of
SMS messages from the UCI SMS Spam Collec-
tion dataset (Almeida et al., 2011). Our best results
surpassed the baselines from (Almeida et al., 2011)
and showed to be competitive with recent deep
learning approaches in terms of accuracy. In partic-
ular, our embeddings combined with a Linear SVM
classifier achieved an average accuracy of 99.03%
on 10-fold cross-validation experiments. Regard-
ing efficiency aspects, prediction experiments using
an ARM Cortex-A53 mobile processor yielded an
average of 22 milliseconds of processing time for
each SMS message.

The remainder of this paper is organized as fol-
lows: Section 2 formalizes our method and Sec-
tion 3 performs an evaluation of the proposed tech-
nique. Finally, Section 4 states conclusions and
presents some suggestions of future directions.

2 Formal Model Definition

This section presents a formalization of the pro-
posed approach, which can be split into three main
steps: (i) tokenization; (ii) skip-gram pattern min-
ing; and (iii) the construction of the embedding
model.

2.1 Tokenization

Given a set X = {x1, x2, ..., x|X |} of texts, the
tokenization step constructs a set of sequences
S = {s1, s2, ..., s|X |}, where si is the sequence
generated for the text xi. We represent a given se-
quence as a tuple where each element is associated
with a designated text fragment. Instead of merely
being a substring of the text, each component of
the tuple defines a set of attributes associated with
the respective text fragment.

This transformation is applied with the following
steps:

1. Token splitting: the text is split into fragments
by capturing either of the following patterns,
in that order of precedence: (i) sequence of
one or more digits; (ii) sequence of one or
more alphabetic characters; and (iii) sequence
of any non-space character.

2. Sub-word splitting: each captured sequence
of alphabetic characters is further broken into
sub-sequences of length 3. For example, the
word “award” is transformed into the follow-
ing: “awa”, “war”, “ard”. While 3 seems to
be an arbitrary value for the length, we really
want this parameter to be small, since that al-
lows us to capture morphological variations
of terms with similar semantics.

3. Attribute assignment: each fragment is trans-
formed into a set of associated attributes, and
the result of the tokenization process is the
sequence of sets of attributes. Each attribute
is represented as a pair (a, b), with the first
element being the name of the attribute, and
the second its associated value. We have three
distinct attributes, i.e., a ∈ {type, pos, sub},
that can be defined as follows:

• type: the type of the fragment. Possi-
ble values for b are 1-digit, 2-digit,
3-digit, and 4+-digit for fragments
containing digits; sub-word for frag-
ments that are sub-strings of alphabetic
sequences; and other for fragments not



4195

belonging to any of the previous cate-
gories. The number before the digit types
refers to the length of the captured string,
4+-digit means 4 or more digits;

• pos: when the fragment is of type
sub-word, b refers to the position of the
sub-string in the captured word. Possible
values for b are: start, middle and end;

• sub: when the fragment is of type
sub-word, b is the sub-string represented
by the fragment in lowercase. If the
type is other, then b stands for the entire
matched fragment.

Such a representation is coined here as an attribute-
set sequence, and we use Σ = {σ1, σ2, ..., σ|Σ|} to
denote the dictionary of attributes, that is, the set
of all possible attributes.

Figure 1 illustrates the tokenization process for
the string “Call 09061701461.” The boxes at the
bottom represent the final sequence of attribute
sets. For the sake of explanation, the first attribute
of fragment “Cal” is the pair (type, sub-word).

Figure 1: Illustration of the tokenization process for
the string “Call 09061701461.”.

2.2 Skip-gram pattern mining
This step assumes that each sequence from S is as-
signed to a label from a set of labels Y . We denote
yi = γ(si) as the label assigned to the sequence
si using model γ. The objective of this step is to
construct a set R of skip-gram patterns that are
relevant for label prediction (i.e., classification).

For this work, we formally define a k-skip-
n-gram pattern as a tuple g = (g1, g2, ..., gn)
whose elements are sets of attributes. We say
that g matches an attribute-set sequence a =
(a1, a2, ..., al) if there is a tuple z = (z1, z2, ..., zn)
of matched indices of a, such that:

• ∀i, 1 ≤ i < n, 1 ≤ zi+1 − zi ≤ k + 1, that
is, matched indices must be in increasing or-
der and the distance between two matched
elements must not be greater than k + 1;

• ∀i, 1 ≤ i ≤ n, gi ⊆ azi .

Note that this definition differs from the one
given by Guthrie et al. (2006) in the following as-
pects: (i) k is the number of skips allowed between
consecutive elements of the skip-gram; (ii) a match
is based on set containment (gi ⊆ azi) instead of
equality.

Figure 2 illustrates how the skip-gram ({(pos,
start), (sub, ”tex”),}, {(pos, start), (sub, ”to”)}, {(type, 4+-
digit)}) would match the string “text PLAY to 85222
now”. That match holds for any k ≥ 3.

The pattern mining algorithm interactively con-
structs a set of skip-gram patterns that might be
relevant for the classification process. At each iter-
ation t, a set of candidate patterns Ct is generated
and a subset Rt ⊆ Ct is selected based on a scor-
ing function. After T iterations, the final setR of
patterns is then selected.

Before detailing the algorithm, we provide the
following definitions, which are used throughout
the remainder of this formalization:

• Z(g,s): the set of all tuples of indices of the
attribute-set sequence s ∈ S that are matched
by the skip-gram pattern g. Each tuple refers
to a different match. As an example, in Fig-
ure 2, (1, 5, 6) would be one tuple in such a
set;

• M(g,s) = {g ∈ G : Z(g,s) 6= ∅}: the set
of skip-gram patterns in G that match the se-
quence s;

• P (y|g) = P (γ(s) = y|Z(g,s) 6= ∅): the esti-
mation of the probability that the label of a se-
quence s is y given that the pattern g matches
s, which is calculated as follows:

P (y|g) =
|{s ∈ S : γ(s) = y ∧ Z(g,s) 6= ∅}|

|{s ∈ S : Z(g,s) 6= ∅}|
. (1)

• P (g|y) = P (Z(g,s) 6= ∅|γ(s) = y): the esti-
mation of the probability that a sequence s is
matched by the pattern g given that the label
of s is y. The probability is given as follows:

P (g|y) =
|{s ∈ S : γ(s) = y ∧ Z(g,s) 6= ∅}|

|{s ∈ S : γ(s) = y}| . (2)

• GY (g, y) = P (y|g)GY ALPHAP (g|y)1−GY ALPHA, a
function to measure the dependency level be-
tween a skip-gram g and label y, we call it
GY-Score. The parameter GY ALPHA is a value
between 0 and 1 that allows one to give more
relevance to one or the other term of the mul-
tiplication;
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Figure 2: Example of a skip-gram matching the string “text PLAY to 85222 now”.

• sup(g) = |{s ∈ S : Z(g,s) 6= ∅}|, the support
of skip-gram pattern g, that is, the number of
elements of S matched by g;

We now describe the mining algorithm in the fol-
lowing subsections. Sections 2.2.1 and 2.2.2 detail
the two steps taken at each iteration of the algo-
rithm and Section 2.2.3 describes the final pattern
selection step.

2.2.1 Candidate set construction
At each iteration t, a set C̃t of new candidate skip-
gram patterns is constructed. In the first iteration
(t = 0), this set is defined as

C̃0 = {({σ}) : σ ∈ Σ, sup(({σ})) ≥ MIN SUP}, (3)

that is, C̃0 is composed of all possible 1-skip-1-
gram patterns that reach a minimum support pa-
rameter MIN SUP.

From the second iteration and forward (t > 0),
C̃t is constructed by expanding patterns selected in
the previous iteration. This is done by finding all
matches between patterns selected in the previous
iteration and sequences of S, and then generating
new patterns from the skip-gram respective to each
match found.

For each match found, the generation of new
patterns is done in two fashions: (i) adding new at-
tributes found in the match either to the first or last
attribute set of the pattern; and (ii) either appending
or prepending singleton sets with attributes found
around the match and, as such, increasing the size
of the new pattern by 1.

All the newly generated patterns are filtered so
that only those that reach the minimum support
parameter MIN SUP and that improve the GY-Score
by at least MIN GY DIFF are kept in C̃t.

Formally, for t > 0, we can define:

C̃t =
⋃
s∈S
E(Rt−1,s), (4)

whereRt−1 represents the set of patterns selected
in the previous iteration and E(G,s) can be described
as the set of patterns generated as expansions of
patterns in G for matches found in the sequence s,
which can be defined as:

E(G,s) = {g′ : (g′, g) ∈
⋃

a,b∈{1,2}

E(G,s)
ab ,

GY (g′, γ(s))−GY (g, γ(s)) ≥ MGY,

sup(g′) ≥ MIN SUP}.

(5)

The sets given by each Eab represent different types
of expansions. Each element of such sets is a pair in
the form (g′, g), with g′ being the newly generated
skip-gram pattern and g, the original (from the
match). The term MGY is an abbreviation for the
MIN GY DIFF parameter.

Specifically, the sets represented by E(G,s)
11 and

E(G,s)
12 are the expansions generated using the first

method, by adding attributes to the attribute-sets
on the extremes on the patterns:

E(G,s)11 = {(g′, g) : g′ = (g1 ∪ {σ}, ..., gn),

g = (g1, ..., gn) ∈M(G,s),

s = (a1, ..., am),

(j, ...) ∈ Z(g,s),

σ ∈ aj − g1}

(6)

E(G,s)12 = {(g′, g) : g′ = (g1, ..., gn ∪ {σ}),

g = (g1, ..., gn) ∈M(G,s),

s = (a1, ..., am),

(..., j) ∈ Z(g,s),

σ ∈ aj − gn}

(7)

On the other hand, E(G,s)
21 and E(G,s)

22 apply the
second method of expansion, by prepending and
appending elements to the skip-grams:

E(G,s)
21 = {(g′, g) : g′ = ({σ}, g1, ..., gn),

g = (g1, ..., gn) ∈M(G,s),

s = (a1, ..., am),

(j, ...) ∈ Z(g,s),

max {1, j − k − 1} ≤ l < j,

σ ∈ al}

(8)



4197

E(G,s)
22 = {(g′, g) : g′ = (g1, ..., gn, {σ}),

g = (g1, ..., gn) ∈M(G,s),

s = (a1, ..., am),

(..., j) ∈ Z(g,s),

j < l ≤ min {m, j + k + 1},
σ ∈ al}

(9)

, where k refers to the maximum number of skips
for our the skip-gram model, which is referred by
the parameter SKIPGRAM K in the evaluation section.

The final set of candidate patterns Ct for the
iteration t is then composed of the candidates from
this and previous iterations that have not already
been selected:

Ct =
t⋃

j=t−CBS+1

C̃j −
t−1⋃
j=0

Rj , (10)

where CBS is an abbreviation for
CAND BUFFER SIZE, which is a parameter that
defines how many of the new candidate sets from
previous iterations are remembered at the iteration
t. This parameter gives candidates from the CBS−1
previous iterations not yet selected a chance of
being selected before they are “forgotten”.

2.2.2 Pattern selection
Given the set of candidates Ct, a set of new selected
patterns Rt ⊆ Ct is constructed by iterating over
the sequences in S and selecting matching patterns
with the best GY-Scores. Formally, the setRt can
be defined by

Rt =
⋃
s∈S

Select(Ct, s), (11)

where

Select(Ct, s) = arg max
g∈M(Ct,s)

GY (g, γ(s)) (12)

is either a set containing one of the patterns in Ct
matching s with the highest GY-Score or the empty
set if no matching pattern is found.

2.2.3 Final selection
After T iterations, a last step is performed in
order to filter the selected patterns to contain
only those that hit a minimum threshold value of
information gain, given by a parameter MIN IG,
and then that filtered set is used to selected the

best FINAL SELECT K matched patterns for each se-
quence. Thus, the final setR of selected skip-gram
patterns is defined by:

R =
⋃
s∈S

Best(RF , s), (13)

RF =

g ∈
T−1⋃
j=0

Rj : IG(g) ≤ MIN IG

 , (14)

IG(g) =
∑
y∈Y

P (y|g) · ln(
P (y|g)

P (y)
), (15)

where Best(RF , s) is a set containing the top
FINAL SELECT K elements fromM(RF ,s) with the
greatest GY-Scores; and P (y) is the marginal prob-
ability that a sequence has label y and is estimated
with:

P (y) =
|{s ∈ S : γ(s) = y}|

|S| . (16)

The number of iterations taken by the algorithm
(i.e. T ) is referred by the parameter ITERATIONS in
the evaluation section.

2.3 Embedding Model
Once a setR of relevant skip-grams is found, it can
then be used to build an embedding model. Our
driving hypothesis is:

1. that the presence or absence of one or more of
those patterns in a sequence greatly changes
prior probability of labels;

2. that each pattern carries a very characteristic
contextual baggage, in the sense that there is
some level of statistical dependency between
the occurrence of a pattern and of other at-
tributes in a sequence.

As such, we propose an embedding function
v(s) that exploits both the information about the
presence of patterns in the sequence s and the con-
textual information associated with each pattern
taken into consideration.

We formalize our embedding model as follows.
First we define a subsetRd of d skip-gram patterns
from R to be used for the embedding. Then we
define the function v(s) in terms of elements of
Rd. The value of d is referred by the parameter
DIMENSIONS in the evaluation section.

Let Rd ⊆ R be a set containing the d most
informative skip-gram patterns, that is: (i) |Rd| =
d, and (ii) ∀r ∈ Rd, ∀r′ ∈ R − Rd, IG(r) ≥
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IG(r′). Each element of Rd will be associated
with one dimension of the target vector space. For
that, we select an arbitrary ordering of elements of
Rd, which we denote by the following indexing:

Rd = {r1, r2, ..., rd}. (17)

Now, we define the value of v(s) to be a d-
dimensional vector as follows:

v(s) = α · u1(s) + (1− α) · u2(s) (18)

u1(s) = [u11(s), u12(s), ..., u1d(s)] (19)

u2(s) = [u21(s), u22(s), ..., u2d(s)], (20)

where:

• u1(s) is the vector accounting for skip-gram
matches found in s. Each component u1j(s)
is defined as:

u1j(s) =

{
1 if rj ∈M(Rd,s)

0 otherwise.
(21)

• u2(s) is the vector accounting for contextual
information. Each component u2j(s) must be
a measure that, in a way, reflects the statis-
tical dependence between the pattern rj and
attributes found in s. For this work, we choose
a very simple approach by taking the average
of probabilities of rj having a match with s
given each relevant attribute of s. Thus, we
define:

u2j(s) =
1

|As|
∑
σ∈As

P (rj |({σ})), (22)

where As is the set of every attribute σ found
in s in such that sup(({σ})) ≤ MIN U2 SUP,
and MIN U2 SUP is a parameter for filtering out
rare attributes;

• α ∈ [0, 1] is a parameter for weighting the
two types of information being aggregated in
v(s). We refer to this parameter by U ALPHA

in the evaluation section.

3 Evaluation

This section describes the evaluation of our pro-
posed technique. We used the UCI SMS Spam Col-
lection1 (Almeida et al., 2011), which is a dataset
comprised of 4,827 (86.6%) legitimate messages

Parameter Values used
Skip-gram mining parameters

SKIPGRAM K 6
GY ALPHA 0.8
MIN SUP 10

MIN GY DIFF 0.05
CAND BUFFER SIZE 6

ITERATIONS 6
MIN IG 0.5

FINAL SELECT K 5
Embedding parameters

U ALPHA 0.0 0.1 ... 0.9 1.0
MIN U2 SUPPORT 10 20 30
DIMENSIONS 50 100 1892

Table 1: Variations of parameters used for generating
the embedding models.

and 747 (13.4%) spam messages, with an average
length of 16±12 tokens per message.

We first conducted our evaluation by following
the same experimental protocol used by the authors
for their classification baselines and provide the
analysis of our results in this in Sections 3.1 and
3.2. We used the train split to construct different
variations of our embedding model and then evalu-
ated three different machine learning methods for
classification of spam and non-spam message. Ta-
ble 1 displays the variation of parameters used for
our experiments. The parameters related to the
skip-gram mining step were fixed at single values
after some empirical preliminary experimentation.

Later, we extended our evaluation by using dif-
ferent split configurations of the dataset in order
to provide comparisons of our model with related
work, which are presented in Section 3.2.1. Fi-
nally, Section 3.3 presents a visual evaluation of
generated embeddings.

3.1 Selected patterns

The skip-gram pattern mining step applied to the
training dataset resulted in 189 selected patterns.
Table 2 displays the distribution of the types of
patterns selected as well as the average informa-
tion gain scores. We can note that longer patterns
tend to be more informative but rarer at the same
time. Although patterns with n > 3 were allowed
(because ITERATIONS = 6 and CBS = 6), only
patterns of length 1, 2 and 3 were selected.

Some interesting examples from the patterns
with the highest information gain scores are listed

1Available at https://archive.ics.uci.edu/
ml/datasets/sms+spam+collection.

2We use 189 instead of 200 here because that was the
total number of selected skip-gram patterns after the mining
process.

https://archive.ics.uci.edu/ml/datasets/sms+spam+collection
https://archive.ics.uci.edu/ml/datasets/sms+spam+collection
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Type Proportion (%) Avg. Info. Gain
6-skip-1-gram 44.44 1.07±0.41
6-skip-2-gram 51.86 1.42±0.39
6-skip-3-gram 3.70 1.77±0.23

Table 2: Distribution of types of skip-gram patterns
selected.

in Table 3. The third column displays the esti-
mated conditional probability that a message is
a spam given that the pattern matches it, and
the fourth column shows the proportion of the
spam messages that are covered by the respective
pattern. The pattern [{(sub, "cal")}, {(type,
4+-digit)}] showed to be a very recurrent one,
representing about 32% of the spam messages in
the training dataset.

3.2 Classification
We used three different types of classifiers to assess
the effectiveness of our embedding model: Nearest
Neighbors Classifier, Multilayer Perceptron (MLP)
and Linear Support Vector Machine (LSVM). For
the three methods, we used the implementation pro-
vided by the Scikit-learn library (Pedregosa et al.,
2011)3.

Table 4 summarizes the best result achieved for
each classification method. The best baseline found
by (Almeida et al., 2011) is also shown in the ta-
ble for comparison purposes. The table has the
following columns:

• Method: name of the method used for classifi-
cation;

• SC: percentage of spam caught;

• BH: percentage of blocked hams, that is, legit-
imate messages that were classified as spam;

• Acc: accuracy of the classification in percent-
age unit;

• MCC: the Matthews Correlation Coeffi-
cient (Matthews, 1975), which is a good met-
ric to be used for unbalanced datasets (as it is
the case with the dataset used in this work).
The table is sorted by this column in descend-
ing order.

The MLP model was constructed using two lay-
ers with 100 neurons in each layer and the logistic
function for activation, and it was optimized using
the Adam optimizer (Kingma and Ba, 2014). Our

3We used version 0.24.0 of the library

preliminary experiments showed that using two lay-
ers yielded better results than using just one; and
increasing further the number of layers hurt the per-
formance of the model. Each embedding parameter
variation was executed 10 times and the average of
the metrics were taken.

For the KNN model, we varied the number of
neighbors used by 5, 10 and 15 and tested both uni-
form and distance-based weighting schemes. We
found that using 5 neighbors and distance-based
weighting yielded the best result for this type of
classifier.

We used the default parameters provided by
Scikit-learn for the LSVM model. It is worth men-
tioning that the reported baseline also uses linear
support vector machines.

When compared with the baseline, the results in
Table 4 show that our embedding technique com-
bined with those classification methods displayed
significant increases in the rate of detected spams
while keeping very low increases in the rate of
blocked hams (less than 0.5%).

Table 5 shows the embedding parameters respec-
tive to the results in Table 4. The values are very
similar between different methods. It is a consen-
sus for all evaluated classification techniques that
low values for U ALPHA tend to yield the best results
for classification tasks, which suggests that giving
more weight to contextual information associated
with skip-gram patterns is more beneficial.

3.2.1 Comparison with related work
We also compared our approach with recent deep
learning techniques found in the recent literature.
Since they used different experimental protocols,
we re-executed our experiments using different
splits of the dataset in order to match the differ-
ent protocols used by related works. Table 6 dis-
plays the performance of our best models and re-
lated works grouped by the experimental protocol
and Table 7 shows the best embedding parameters
found for each protocol. The comparison displayed
in Table 6 shows that our embedding technique,
combined with a Linear SVM, is competitive with
the deep learning approaches proposed recently.

3.3 Visualization

We finalize our evaluation by providing a visual
analysis of the embeddings generated with the
parameters from Table 5. For that, we used
UMAP (McInnes et al., 2018a,b) to map each
embedding generated for the test split into a 2-
dimensional space and plotted the results. Figure 3



4200

g IG(g) P (y = spam|g) P (g|y = spam)
[{(sub, "cal")}, {(type, 4+-digit)}] 1.951 1.0 0.319
[{(sub, "cla")}, {(sub, "aim")}] 1.951 1.0 0.156
[{(sub, "pri")}, {(sub, "ize")}] 1.951 1.0 0.109

[{(sub, "tex")}, {(sub, "to")}, {(type, 4+-digit)}] 1.951 1.0 0.088

Table 3: Examples of selected patterns.

Method SC(%) BH(%) Acc(%) MCC
MLP 90.12±0.41 0.61±0.05 98.19±0.06 0.919±0.003

KNN 88.41 0.38 98.15 0.917
LSVM 87.62 0.29 98.13 0.916

Baseline 83.10 0.18 97.64 0.893

Table 4: Summary of results for classification.

Method U ALPHA MIN U2 SUPPORT DIMENSIONS

MLP 0.3 30 189
KNN 0.1 30 189

LSVM 0.2 10 189

Table 5: Best embedding parameters for classification.

provides the visualization for the embeddings gen-
erated for the MLP classifier from Table 4. We
can see that the projection successfully separates
most of the vectors representing spams from the
non-spam ones. Interestingly, some small clusters
can be observed for both classes, which could indi-
cate that, inside each class, further categorization
could be possible.

UMAP: n_neighbors=15, min_dist=0.1

ham
spam

Figure 3: Visualization of embeddings for the MLP
classifier.

4 Conclusions and Future Works

In this work, we proposed an embedding technique
for short texts based on skip-gram patterns and

Reference Classifier Accuracy (%)
10-fold cross-validation

Roy et al. (2020) CNN 99.44
This work LSVM 99.03±0.31

Barushka and Hajek
(2018)

DBB-RDNN-Rel 98.51

Popovac et al.
(2018)

CNN 98.4

Holdout 4:1
This work LSVM 99.1
Gupta et al. (2018) CNN 99.1
Wei and Nguyen
(2020)

LGRU 99.04

Annareddy and Tam-
mina (2019)

RNN 97.8

Holdout 3:1
This work LSVM 98.99
Raj et al. (2018) LSTM 97.5

Holdout 2:1
This work LSVM 98.76
Roy et al. (2020) CNN 98.63

Table 6: Comparison with related work.

Protocol U ALPHA MIN U2 SUPPORT DIMENSIONS

10-fold 0.3 10 300
Holdout 4:1 0.2 10 300
Holdout 3:1 0.2 10 300
Holdout 2:1 0.2 10 300

Table 7: Embedding parameters concerning the results
found in Table 6.

successfully evaluated our method in a dataset for
SMS spam detection. Our experiments showed
that our method, when combined with “shallow”
classifiers, is competitive with recent deep learning
approaches. Our results suggest that using this
kind of pattern matching might be a good way to
improve representations for textual classification
tasks.

We see some interesting ways of improving the
work presented in this paper, which can be taken
as future work, such as:

• increasing our evaluation scope by adding
more textual datasets (not limited to SMS)
to our evaluation workload;

• investigating ways to integrate word vectors
in our skip-gram matching mechanism in or-
der to be able to capture patterns that do not
necessarily have the same attributes but that
are semantically similar;
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• looking for alternative ways of defining the
contextual component of the embedding func-
tion, namely, the function u2(s). In this work
we chose to use a simple model that takes the
average of conditional probabilities - more ro-
bust predictive models could be used instead.
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