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Abstract

We introduce a language modeling architec-
ture which operates over sequences of im-
ages, or over multimodal sequences of images
with associated labels. We use this architec-
ture alongside other embedding models to in-
vestigate a category of signs called complex
graphemes (CGs) in the undeciphered proto-
Elamite script. We argue that CGs have mean-
ings which are at least partly compositional,
and we discover novel rules governing the con-
struction of CGs. We find that a language
model over sign images produces more inter-
pretable results than a model over text or over
sign images and text, which suggests that the
names given to signs may be obscuring signals
in the corpus. Our results reveal previously un-
known regularities in proto-Elamite sign use
that can inform future decipherment efforts,
and our image-aware language model provides
a novel way to abstract away from biases intro-
duced by human annotators.

1 Introduction

This work sets out to understand a category of
signs called complex graphemes (CGs) in the un-
deciphered proto-Elamite (PE) script, a writing
system from ancient Iran dating to approximately
3300-2900 BC (Dahl et al., 2013).1 PE is partly
contemporaneous with the world’s other two ear-
liest writing systems, Egyptian hieroglyphs and
proto-cuneiform, and is the least deciphered of the
three, with the underlying language(s) remaining
unknown. PE was used exclusively as an account-
ing technology, employing several numerical sys-
tems whose bundling principles are known. Al-
though written in continuous lines, PE, like proto-
cuneiform, is most comparable to an accountant’s
spreadsheet; some structures and rules governing

1Our code, data, and trained models are avail-
able at https://github.com/sfu-natlang/
pe-compositionality

sign use have been identified (Hawkins, 2015; Dahl
et al., 2018; Englund, 2004).

The corpus consists of approximately 1500 pub-
lished clay tablets from excavations in Iran, almost
all of which exist in electronic transliteration fol-
lowing the conventions of a work-in-progress sign
list (Dahl, 2006). As with other decipherments,
understanding the nature of signs and the nuances
of sign use is as important as identifying the un-
derlying language(s). Meaningful information can
be recovered and the texts partly “read” even if the
language remains unknown.

To better understand sign usage in PE, this work
proposes an architecture for image-aware language
modeling, which permits sharing information be-
tween visually similar signs much as sub-word
units share information between words. We use
sign embeddings to demonstrate patterns which
are not readily apparent due to the complexity of
the accounting system and the large number of
sign shapes found in the script. Our analysis of-
fers insights on complex graphemes that can aid
in future hypothesis generation. We confirm that
some transliteration choices by PE specialists cap-
ture meaningful semantic divisions in the script;
this is not a trivial fact, due to the large number of
similar looking signs. By using image-aware mod-
els, we also observe that some signs with distinct
names receive very similar embeddings, implying
a functional equivalence that could be exploited by
merging signs to create a less sparse corpus that is
more amenable to analysis by NLP methods.

2 Methodology

As described by Dahl (2005), CGs in proto-Elamite
are signs that consist of one sign inscribed within
another (transliterated |S1+S2|), or of one sign
framed by two instances of another (|S1+S2+S1|).
Rarely, S1 and S2 occur connected at the side, as

https://github.com/sfu-natlang/pe-compositionality
https://github.com/sfu-natlang/pe-compositionality
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in |M296+M296| . We refer to S1 as the outer
sign and S2 as the inner sign, though we acknowl-
edge this terminology is not quite appropriate in
cases like |M296+M296|. Most signs which occur
as part of a CG can also occur as standalone signs.
Exceptions to this are rare, such as M600 which
only ever occurs in the hapax |M362+M600|.

Although these signs are orthographically com-
positional, it is not known whether they are also
semantically compositional. Similar constructions
exist in proto-cuneiform (PC), including “contain-
ers” with signs inscribed to indicate specific prod-
ucts (Wagensonner, 2015). Some PC compounds
survive into later cuneiform, and sometimes have
idiomatic meanings, e.g. cuneiform GU7 “eat”, a
combination of “head” and “bowl”. Chinese char-
acters likewise exhibit varying degrees of visual
and semantic compositionality (Sproat, 2006).

Past work (Mikolov et al., 2013b; Salehi et al.,
2015; Cordeiro et al., 2016) suggests that embed-
ding models capture semantic compositionality in
noun compounds and multiword expressions. Of-
ten, these models assign a compound a represen-
tation which is similar to the sum of the represen-
tations of the words in the compound. Thus we
predict that if CGs are semantically compositional,
their embeddings will be additively compositional
at a higher rate than expected by chance. Their em-
beddings may also exhibit other signs of internal
structure, such as the ability to model proportional
analogy between CGs with shared components:

|M136+M365| : M136 :: |M327+M365| : M327

: :: :

If this analogy holds in the embedding space
(which is to say that the 3CosAdd formula
|M136+M365| - M136 + M327 ≈ |M327+M365|
holds between the signs’ embeddings) this would
give further evidence that the CGs involved have
some degree of semantic compositionality.

Unfortunately, most PE signs are rare, which
impedes a model’s ability to learn meaningful in-
formation about their distributions. Yet many signs
with distinct names have striking visual resem-
blances, and it is usually not known whether they
have different meanings. Visual information may
therefore help an embedding model by allowing
it to share distributional information across graph-
ically similar signs. To this end, we propose an
architecture for multimodal language modeling in
Figure 1. This architecture uses two separate em-
bedding components. On the left of Figure 1, in

red, is a standard embedding layer which replaces
a one-hot input with a small, learnable represen-
tation. On the right, in blue, a lookup function
retrieves an image of the sign represented by the
input. A CNN extracts a feature vector from the
image, which is max-pooled, flattened, and passed
through a dense layer to produce a low-dimensional
embedding. Both embeddings are concatenated
and fed to a BiLSTM2 (Hochreiter and Schmid-
huber, 1997; Schuster and Paliwal, 1997) which
attempts to predict the name of the next sign in
the text. All timesteps share the same weights for
the CNN and embedding layers. By omitting the
blue image-embedding component we can obtain
a normal BiLSTM language model. By omitting
the red text-based component, we can obtain an
image-only model which never directly sees the
labels assigned to the signs in the corpus.

one-hot
encoding

sign image

CNN

maxpool

flatten

......

M066

input token

BiLSTM

output token

dense

......

word
embedding

layer

M461

Figure 1: Architecture for image-aware, multimodal
language modeling.

To verify that this architecture captures distri-
butional properties of signs, and not just visual
properties, we train a separate image recognition
model to predict a sign’s name given only its image.

2We also attempted to train a Transformer model (Vaswani
et al., 2017), but the corpus size proved insufficient and it
always underperformed compared to the BiLSTM.
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Model Input Type Embedding Sizes3 Other Parameters Description
glove seq. of sign names 16, 32, 64, 128, 256 window size: 15 Pennington et al. 2014
fasttext.cbow seq. of sign names 16, 32, 64, 128, 256 window size: 15 Bojanowski et al. 2017
fasttext.skip seq. of sign names 16, 32, 64, 128, 256 window size: 15 Bojanowski et al. 2017
word2vec.cbow seq. of sign names 16, 32, 64, 128, 256 window size: 15 Mikolov et al. 2013a
word2vec.skip seq. of sign names 16, 32, 64, 128, 256 window size: 15 Mikolov et al. 2013a
lm.text seq. of sign names 64 hidden dimension: 64 Figure 1, blue (image

embedding) omitted.
lm.image+text seq. of sign names

and images
64 hidden dimension: 64

image size: 64×64
Figure 1.

lm.image seq. of sign images 64 hidden dimension: 64
image size: 64×64

Figure 1, red (text em-
bedding) omitted.

image recognition individual sign image 64 image size: 64×64 Figure 1, blue (image
embedding) only.

Table 1: List of models considered in this work.

This model uses the blue image embedding com-
ponent from Figure 1 to produce a representation
of an input image; a dense layer predicts the name
of the sign from this embedding. This model only
sees signs in isolation, meaning it will not learn
from distributional information. If a result holds
for the multimodal LM but not for this image recog-
nition model, this implies that the result arises from
contextual information in the text, and not simply
from visual resemblances between signs.

We also train CBoW and skipgram models with
FastText4 (Bojanowski et al., 2017) and word2vec
(Mikolov et al., 2013a), as well as GloVe embed-
dings (Pennington et al., 2014). Table 1 summa-
rizes all of the models used in this work and im-
portant hyperparameters. We train these models
on the PE corpus from Born et al. (2019), which
is a cleaned version of texts originally published
by the Cuneiform Digital Library Initiative (CDLI).
This contains digitized transliterations from 1399
tablets comprising 11013 lines in total, or 33778
tokens. 7508 tokens represent broken or unread-
able signs, and another 11364 represent numerals,
leaving only 14906 non-numerical tokens. 1107
tokens (comprising nearly half the sign types in our
cleaned data) are labeled as CGs. We treat each en-
try of a tablet as a single input sentence for training
LMs, and set aside 500 lines as a validation set.

Prior to training, we replace all signs occurring
3 or fewer times5 with UNK. We replace rare signs
wherever they occur, including inside of CGs. The
tokens X and ... represent broken or unreadable
signs, so we also replace these with UNK. When

3To give a fairer comparison, we train the simpler mod-
els with several embedding sizes and report results from
whichever dimensionality performs best on each task. Ad-
ditional model information is in the supplemental material.

4Sign names are largely arbitrary, so we disable sub-words
in FastText by setting the maximum sub-word length to 0.

training language models, we do not backpropagate
losses from samples where the target word is UNK,
since it so often represents broken material. To
make the data less sparse, we remove annotations
marking sign variants, so that for example M157
and M157∼a are considered the same sign.

3 Experimental Results

3.1 Additive Composition

We predict that if a CG is semantically composi-
tional, its embedding will approximately equal the
sum of the embeddings of the signs it comprises.

Given a sign s, let es denote the embedding of s.
If s is a CG let σ(s) denote the list of signs which
make up s. For every CG s in the signary, we check
whether

∑
t∈σ(s) et ≈ es. If

∑
t∈σ(s) et is within

the k nearest neighbors of es for some threshold
k, we say that s appears to have a compositional
representation.

For different thresholds k, we measure how
many CGs have compositional representations.
Since many PE signs have low frequency, we pre-
dict that noise may drown out any signal when k
is small. However, when k is large enough to over-
come this noise, we predict that the number of CGs
with compositional representations will be greater
than expected by chance, as we expect that some
CGs have meanings which are semantically com-
positional rather than idiomatic. Table 2 shows the
results from this evaluation.

In text-only models, when k is small the num-
ber of CGs with compositional representations is
no higher than expected by chance. However, for
image-aware models, and for text-only models with
large k, the number of CGs which are close to the

5To determine frequency, we count how often a sign occurs
both independently and as part of a CG.
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k
model 1 3 5 10 15
glove.256 0 0 1 3 13
word2vec.cbow.16 0 0 1 9 12
word2vec.skip.32 0 0 5 13 16
fasttext.cbow.128 0 2 3 5 9
fasttext.skip.128 0 3 10 15 20
lm.text.64 0 0 0 0 1
lm.image+text.64 1 14 21 40 51
lm.image.64 11 16 27 48 61
image recognition.64 3 7 15 28 38

Table 2: Number of compositional CGs for different
similarity cutoffs k. Bold numbers represent cases
where the number of compositional graphemes is sig-
nificantly larger than expected by chance.

sum of their components is significant. Even for
k = 15, the signs identified as compositional by
lm.image.64 average >0.97 cosine similarity to
the sum of their parts, suggesting this is not too
generous a threshold.

Notably, the number of compositional CGs in
lm.image.64 is always larger than the number
in any of the other models, including the image
recognition model.6 This has the important impli-
cation that compositionality in the embeddings is
not solely a consequence of visual compositionality.
If that were the case, the contextual information
available to the LM would not be useful for this
task, and the image LM would not be expected to
find more compositional CGs than the image recog-
nition model. Moreover we would not expect to
find a significant amount of compositionality in any
of the text-only models for any k. Table 3 shows ex-
amples of signs which appear to be compositional
in the image LM but not the image recognition
model. These are signs for which contextual in-
formation plays a deciding role in making them
appear semantically compositional, and which may
therefore be of interest to analyze in future work.

M153 + M106 ≈ |M153+M106|
M175 + M286 ≈ |M175+M286|
M327 + M348 ≈ |M327+M348|
M362 + M244 ≈ |M362+M244|
M157 + M288 ≈ |M157+M288|
M175 + M153 ≈ |M175+M153|
M218 + M388 ≈ |M218+M388|

Table 3: Sample of signs which appear to be composi-
tional in the image LM but not the image recognition
model.

We emphasize that the text-only models have
no information about sub-words (such as CG com-

6The image recognition model has fewer parameters than
the LMs, but it attains >99% accuracy on its original task,
suggesting that it does not suffer from being a smaller model.

ponents), so any compositionality in these models
must exclusively reflect distributional properties.
From these results we conclude that there is legiti-
mate evidence for some CGs having semantically
compositional meanings in PE.

3.2 Pairing Consistency
To assess the contribution of a sign to the CGs it oc-
curs in, we consider the pairing consistency score
(PCS) from Fournier et al. (2020). This metric mea-
sures whether the offsets between pairs of words
are more parallel than expected by chance. If a sign
s always contributes the same meaning to the CGs
in which it occurs, then the offset between the pair
of signs (t, |t + s|) is expected to be roughly par-
allel to the offset between the pair (u, |u+ s|) for
most choices of t and u. If CGs containing s have
idiomatic meanings (so the contribution of s is not
consistent), the offsets between such pairs are not
likely to be parallel. Thus PCS serves as a proxy for
compositionality, and allows us to investigate the
impact of individual signs on the representations
of CGs in which they occur. This is distinct from
a measure like mutual information which depends
on raw sign counts and does not account for the
internal structure of sign embeddings.

For each sign s we construct two relations. Rs,in
contains all CGs with s as the inner sign, paired
with whichever sign forms the outer part of the CG.
Rs,out contains all CGs with s as the outer sign,
paired with whichever sign forms the inner part of
the CG. Formally, given a CG c containing a sign
s, let δ(c, s) denote the element of c which is not s.
Further, let I(s) be the set of all CGs with s as the
inner element and O(s) be the set of all CGs with
s as the outer element. Then

Rs,in = {(δ(c, s), c) | c ∈ I(s)}

Rs,out = {(δ(c, s), c) | c ∈ O(s)}

Table 4 reports the average PCS7 of Rs,in and
Rs,out for each model, averaged across all signs s.
On average, we find that inner signs have higher
PCS than outer signs. This difference is statisti-
cally significant in the image-aware LMs, the im-
age recognition model, and FastText. This implies
that inner signs have a more consistent and pre-
dictable impact on the representation of compounds
in which they occur. The fact that this holds for

7We compute PCS using the code published by Fournier
et al. (2020), but we adjust the permutation-finding function
to avoid infinite loops when a relation contains few items.
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some text-only models as well as for the image-
aware LMs implies that it is due to distributional
properties of signs and not simply their appearance.

Mean PCS
model Rs,in Rs,out

glove.64 0.542 0.544
word2vec.cbow.64 0.525 0.492
word2vec.skip.64 0.521 0.495
fasttext.cbow.64 0.562 0.484
fasttext.skip.64 0.539 0.500
lm.text.64 0.465 0.529
lm.image+text.64 0.719 0.482
lm.image.64 0.760 0.536
image recognition.64 0.929 0.493

Table 4: Comparison of pairing consistency for the
inner and outer parts of compound signs in 64-
dimensional models. Bolded rows represent pairs
where the difference between columns is significant.

Fournier et al. (2020) note that different cate-
gories of relations in English have different average
PCS. They find that relations involving inflectional
morphology (for example, between a verb and its
gerund) have high PCS, relations involving deriva-
tional morphology (as between heat and reheat)
have lower PCS, and other semantic relations (as
between hot and cold) have the lowest PCS of the
relations they examine.

We expect that absolute PCS values will not be
comparable between PE and English, owing to the
very different nature of the two writing systems.
However, it may be possible to draw broad compar-
isons between different categories. As the category
with the highest PCS, inner signs appear to pattern
with inflectional morphology, while outer signs pat-
tern more closely with regular lexical items. This
does not imply that inner signs actually encode
inflectional morphology: most PE signs likely cor-
respond to objects or ideograms, and most types of
morphological marking were absent in the earliest
phases of Near Eastern writing (Nissen et al., 1993).
Rather, we suggest that inner signs may offer mi-
nor refinements to the meaning of an outer sign
without fundamentally changing its value, parallel
to the way that inflecting a verb refines its role in a
sentence but does not change its basic meaning.

3.3 Analogy

Our PCS results measure sign behaviour in aggre-
gate, but do not provide specific examples of rela-
tions between signs. We augment these results by
searching for concrete analogies which hold in the
embedding models.

Given two CGs s and t, let s− t denote the signs
that are in s but not t, and let s∩ t denote the signs
both CGs have in common. Consider the vector

A(s, t) = es −
∑
u∈s−t

eu +
∑
v∈t−s

ev

This vector represents the analogical formula
s : (s− t) :: t : (t− s). If A(s, t) ≈ et in a partic-
ular embedding model, then this analogy appears
to hold true according to that model.

We compute how often A(s, t) is within the k
nearest neighbors of et for different thresholds k
when s∩t 6= ∅. We also compute how oftenA(s, t)
is close to et when s and t are randomly chosen
CGs. We predict that CGs which have signs in
common also have some meaning in common, and
consequently that the former value will be signifi-
cantly larger than the latter value.

Table 5 shows the results of this evaluation. As
in the compositionality task, more analogies hold
between CGs with shared components in image-
aware models than in text-only models, and the
largest number by far occur in the image LM. Once
again, in lm.image.64 the target vector aver-
ages >0.97 similarity to the computed vector even
when k = 15. Bold numbers in the table represent
cases where analogies are significantly more likely
to hold between CGs with shared components than
between random pairs of CGs. We see that the num-
ber of analogies is larger than expected by chance
even in some text-only models, suggesting that
there is a meaningful relationship between some
CGs which have elements in common. The fact
that the image LM outperforms the image recog-
nition model further implies that these analogies
reflect legitimate distributional properties and are
not purely due to visual resemblance.

k
model 1 3 5 10 15
glove.256 0 8 11 25 48
word2vec.cbow.256 0 17 36 65 90
word2vec.skip.128 0 8 29 97 140
fasttext.cbow.128 0 9 22 64 98
fasttext.skip.256 0 11 30 91 145
lm.text.64 0 2 7 16 21
lm.image+text.64 27 82 134 233 320
lm.image.64 69 172 258 393 521
image recognition.64 29 67 92 133 174

Table 5: Number of analogies which hold between CGs
with signs in common, for different similarity cutoffs k.
Bold numbers represent values which are significantly
larger than expected by chance.
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0.49
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Figure 2: Containment hierarchy for a subset of the signs which can occur in CGs. Directed edges point from outer
signs to the inner signs they can contain. Note that (excluding self-loops) the graph is acyclic and all edges point
from higher nodes to lower ones. Thicker edges represent CGs which are more strongly compositional. Nodes
are colored according to modularity class (Blondel et al., 2008) such that nodes are most strongly connected to
like-colored nodes. Full hierarchy, showing all signs which occur in CGs, is available in supplemental material.

As was the case for additive compositionality,
the image+text LM underperforms the image-only
LM, and on this task the difference is much more
pronounced. This suggests that sign names act as
distractors: if sign names conveyed information
which was helpful to the analogy task, their inclu-
sion would be expected to improve performance.
This fact has implications about the labeling of the
data which we return to in Section 4.

Taken altogether, the results suggest that many
CGs have compositional meanings which can be
understood by comparison to the meanings of their
component parts and the other CGs with which
they share components. We next consider which
pairs of signs are able to combine into CGs and
which pairings are never observed.

3.4 CG Containment Rules

Some signs which occur as the inner part of
one CG may also occur as the outer part of an-
other, as with M348 in |M327+M348| and
|M348+M004| . We may therefore expect to
find pairs of signs where either one can contain
the other, and yet, no such pairs actually exist. In
fact, we find that CGs appear to be constructed ac-
cording to a strict hierarchy whereby a sign may
only contain itself or another sign which is lower
on this hierarchy. We can visualize this as a lattice
with directed edges from outer signs to the inner
signs they are observed to contain, as in Figure 2
(excerpted from the full hierarchy available in the
supplemental material). The thickness of an edge in
this figure is proportional to the compositionality of
the corresponding CG in lm.image+text.64.

There appears to be some relation between a
sign’s compositionality and its position in this lat-
tice. The signs on the left half of Figure 2 have
low compositionality (seen as thinner edges in the
figure) while the nodes to the right have higher
compositionality (seen here as thicker edges). This
suggests that there may be different kinds of CG,
of which some are idiomatic and some are not, and
that these categories have sufficiently little overlap
to appear as separate modules in the lattice.

This “grammar” governing CG construction has
not been noted in previous PE scholarship. The
ordering of signs within this hierarchy deserves
attention in future work, as it may reflect different
levels of administrative units in PE society, degrees
of specificity in qualifying commodities, or other
information which can be exploited to understand
the content of these texts.

4 Analysis

Little is known about the role of CGs in PE, al-
though these signs make up a significant portion
of the corpus. Some occur in “headers” appearing
at the beginning of a text. In headers, outer signs
(such as M157) are hypothesized to indicate the
type of household or institution to which the en-
tire account relates. The outer sign may be further
specified by an inner sign, but many (including
M157) can also appear without another sign in-
scribed within. Inner signs are hypothesized to
specify a particular kind of item being recorded, a
person, profession, or administrative department
related to an account, and more.

Our results are consistent with these hypothe-
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ses. The PCS results point to inner signs playing
a specializing role; this is corroborated by visual
inspection of the embedding space, which reveals
that CGs cluster according to their outer sign rather
than their inner sign (cf. Figure 3 below).

According to Table 2, our text-only models de-
tect additive composition in at most one of every 10
CGs; the image LM detects it in one of every 4 CGs.
Likewise, the image LM suggests that a meaning-
ful analogical relation obtains between slightly less
than one-third of all pairs of CGs with signs in
common. These values depend on the threshold
k, but they suggest the presence of a least a small
core of compositional CGs in PE. In several places,
compositional and non-compositional CGs appear
separated from one-another in the CG containment
hierarchy (cf. Figure 2), which may point to this
being a legitimate distinction in the writing system
and not a failure of our models to detect composi-
tionality in some cases where it is really present.

We can make some inferences about the CGs
which are compositional. They are not likely
to represent either combinations of ideograms
with an emergent lexical value (like the Sume-
rian cuneiform sign for nan “drink” combining
the signs for human head and water) or ideograms
with phonetic complements (signs indicating the
proper reading of the CG), as both cases should
be expected to produce non-compositional mean-
ings. Our results may also counter-indicate "coat-
of-arms"-like symbols (Farmer et al., 2004), since
we show that the components of CGs can often
be understood in relation to their use elsewhere in
texts, and since CG elements on their own often
seem to reference products (including foodstuffs
and livestock) and their distribution. Future work
may train embedding models on proto-cuneiform, a
structurally-similar writing system containing com-
pound signs with occasionally known meanings
that could act as useful points of comparison.

The two components of a CG can occur indepen-
dently, within the same text or even side-by-side.
A dramatic example comes from |M218+M288| ,
the components of which appear 37 times as the
bigram M218 M288. M288 (“grain container”)
is the most frequent sign in PE, appearing in di-
verse contexts but often before numerical measures
of capacity. M218 is among the signs specu-
lated to function “syllabically” to write personal
names (Dahl, 2019), though it may also have other
uses. It is not clear yet whether |M218+M288|

and M218 M288 operate identically, particularly
since |M218+M288| is not strongly additively com-
positional in any of our embedding models. The
possible polyvalence of M218 and broad distribu-
tion of M288 may impact models’ ability to detect
compositionality in |M218+M288|. Despite this dif-
ficulty, the image LM identifies analogies between
|M218+M288|, |M175+M288|, and |M305+M288|
(the analogy vector has >0.99 cosine similarity to
the target in both cases) implying that we should at
least consider M218, M175, and M305 as parallel
categories each with relation to grain capacities.

Some signs rarely occur outside of CGs, such
as the productive inner sign M342 , about
which practically nothing is known. Our data
show that it has moderately high PCS (0.69 in
lm.image.64) and that analogies hold between
all but one of the CGs which contain M342
(|M157+M342|, |M304+M342|, |M305+M342|,
|M325+M342|, |M327+M342|, and |M351+M342|,
excluding |M153+M342|). These analogies hold
strongly for the image LM but not the image recog-
nition model, meaning they reflect primarily distri-
butional properties. Many of these signs are also
additively compositional. We believe that these
signs may be suitable starting points for future anal-
ysis, as our results imply that they are probably not
idiomatic and are likely to have related meanings.

|M157+M342| : M157 :: |M304+M342| : M304
|M157+M377+M377| : M157 :: |M175+M377+M377| : M175
|M370+M046+M370| : M046 :: |M370+M072+M370| : M072
|M175+M377+M377| : M175 :: |M201+M377+M377| : M201
|M351+1(N14)| : 1(N14) :: |M351+M380| : M380
|M036+1(N39C)| : 1(N39C) :: |M036+M035| : M035
|M136+M365| : M136 :: |M327+M365| : M327
|M157+M057| : M157 :: |M327+M057| : M327

Table 6: Sample of analogies which hold in the
lm.image+text.64 model.

Table 6 gives additional examples of analogies
which hold in lm.image+text.64. We see
that inner and outer signs both participate in ana-
logical relations, as do both |S1+S2|-type CGs
and |S1+S2+S1|-type CGs. Some analogies hold
between a CG with a numeric inner sign and
one with a non-numeric inner sign, as between
|M036+1(N39C)| and |M036+M035|. Such cases
may have implications to the meaning of the signs
involved; if 1(N39C) and M035 truly have parallel
functions in these two CGs, this may imply a kind
of quantifying role for M035, or alternatively that
1(N39C) is used for its pronunciation or possible
syllabic value rather than as a true numeral. The
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Figure 3: Detail from t-SNE decompositions of the GloVe embeddings (left), the image LM (centre) and the image
recognition model (right).

existence of other M036 compounds containing nu-
merals (e.g. |M036+1(N30D)| and |M036+1(N14)|)
would seem to favor the former interpretation.

The image-only LM found stronger signals for
compositionality and analogical relations than the
image+text LM, suggesting that sign names acted
as distractors for those tasks. This has significant
implications for the ongoing process of revising the
PE sign list. Our work relies on the sign labels as-
signed through an exhaustive manual transliteration
process; since it is easy to automate merging signs,
this process assumed that most signs are unique un-
til proven otherwise. However, we now believe this
choice weakens signals in the text data by making
most signs very rare. Moreover, some signs which
appear graphically compositional are not currently
labeled as CGs, usually when the inner part is never
attested as a standalone sign. For these reasons, fu-
ture work may benefit from relabeling signs based
on a combination of context and sign shape.

At the same time, the current transliteration sys-
tem may record meaningful (if fine-grained) infor-
mation reflected in minor graphical details (con-
sider M263 and M262 ), such as (hypotheti-
cally) “jug of red beer” versus “jug of dark beer”.
Such similarly functioning signs might obtain sim-
ilar embeddings, but retaining their distinction in
the published transliterations still improves our un-
derstanding of the texts. However for both manual
and machine-learning analysis, significant reduc-
tions in the sign list may open new avenues for
decipherment: for instance, Born et al. (2019) note
that frequency-based approaches to decipherment
are currently difficult in PE owing to the very small
number of repeated n-grams in the corpus.

Figure 3 shows details from the embedding
spaces learned by GloVe, the image LM, and the

image recognition model.8 GloVe produces small
clusters of visually similar signs even though it
does not have access to sign images: note the prox-
imity of M353 , M354 , and 2(N30C) ,
as well as the variants of M036 . These clusters
occur in sufficient number that we have confidence
the model is detecting meaningful similarities in the
usage of visually similar signs. The image recog-
nition model produces much clearer groupings of
visually related signs, as would be expected. The
image LM replicates some clusters from the im-
age recognition model: a cluster of lozenge-shaped
signs is visible in both the image LM figure and
the image recognition figure. However, contextual
information causes the image LM to relocate other
lozenge-shaped signs like M218 to a different
part of the embedding space, implying a functional
difference between it and the signs in the figure.
Overall, these observations confirm that our mul-
timodal architecture is finding a balance between
contextual and visual information as intended.

5 Related Work

Sun et al. (2019) introduce “character-enhanced”
embeddings of Chinese words. Their architecture
roughly parallels our own, but requires a deeper
CNN due to the visual complexity of Chinese char-
acters. We train with a full context language model-
ing objective whereas they use a sampling scheme
similar to word2vec. They use character-level in-
formation to improve word embeddings, where we
exclusively learn character embeddings. Our appli-
cation of this architecture to decipherment is novel.

Liu et al. (2017) explicitly learn compositional
embeddings for Chinese characters. They use su-

8Full figures are available in our supplemental data.



4144

pervised data to help identify when two visually-
distinct signs use the same radical (as in水 and池).
In our data, it is not known which signs are truly re-
lated to one another, thus we refrain from giving the
model explicit information about compositionality.

Yin et al. (2019) segment and transcribe undeci-
phered scripts based on visual similarities between
glyphs. Although their transcription error rate is
high, they still achieve partial decipherments with
no human intervention.

Dencker et al. (2020) perform OCR-style sign
detection on images of Sumerian cuneiform tablets,
recognizing signs which may be written very dif-
ferently across the corpus. Their task benefits from
the existence of supervised Sumerian training data.

Born et al. (2019) train topic models on PE
texts and cluster PE signs in a simple mutual
information-based embedding model. The present
work considers more sophisticated embedding
models and performs a more detailed investigation
of the embedding space.

Luo et al. (2019) perform automated decipher-
ment of Ugaritic. Their technique finds alignments
between orthographic representations of phonetic
information, and thus is not easily applicable to
ideographic scripts. It also requires multilingual
data, and cannot extract information from a script
with no known surviving relatives.

Our work exploits the embedding space learned
by a neural language model, but the actual task of
language modeling is otherwise irrelevant to our re-
sults. By contrast, Kambhatla et al. (2018) actually
sample text from a neural language model to help
estimate the quality of a proposed decipherment.
Future work could similarly sample from a lan-
guage model as a means of counteracting the small
size of the PE corpus; this should be done with
caution, however, given the difficulty of evaluating
whether the sampled text is fluent.

Salehi et al. (2015) and Cordeiro et al. (2016)
demonstrate that English word embeddings tend to
be additively compositional and can capture human
intuitions about semantic compositionality. Har-
tung et al. (2017) investigate other methods for
decomposing word embeddings.

Sproat (2006) discusses a variety of writing sys-
tems and the degrees to which they employ pho-
netic versus semantic information. The discussion
is largely taxonomic and addresses subtle nuances
between scripts which are already well-understood.
In this way it demonstrates the wide range of varia-

tion observed between scripts, and by extension the
range of possibilities which should be considered
when analyzing an undeciphered script such as PE.

6 Conclusion

Interpreting what a word embedding model has
learned typically involves a comparison to native
speaker intuitions. In contrast, in this work we have
shown how exploiting graphical compositionality
and carefully examining sequences of image em-
beddings can lead to new insights in proto-Elamite
(PE), an undeciphered script with no living users
and relatively little available data. Abstracting
away from human annotations, we introduced a
novel architecture for multimodal or image-based
language modeling, which shares information be-
tween visually similar signs to better model con-
textual patterns. This provides a new toolkit for
decipherment of an unknown language, distinct
from translation-based approaches.

As one of the world’s earliest experiments in
writing, employing 774 signs and variants by cur-
rent estimates, reasonable concerns have existed
over PE’s level of standardisation and the impact
this may have on decipherment (Dahl, 2019:71, 82).
The corpus is small and filled with lacunae, and
prior work has done little to understand how NLP
techniques function on early writing systems which
may reflect linguistic content differently from mod-
ern writing systems. Despite these challenges, this
work has shown that embedding models can indeed
identify meaningful patterns in proto-Elamite.

We have presented evidence that a subset of com-
plex graphemes are semantically compositional
rather than idiomatic, and we have discovered the
existence of a simple grammar or partial ordering
which appears to govern the construction of CGs.
Our results should give domain experts confidence
that the proto-Elamite script contains sufficient reg-
ularities to allow for describing its mechanics and
potentially understanding the underlying content.
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