
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 4003–4014
August 1–6, 2021. ©2021 Association for Computational Linguistics

4003

On the Cost-Effectiveness of Stacking of Neural and Non-Neural Methods
for Text Classification: Scenarios and Performance Prediction

Christian Gomes
UFMG - Brazil

christianreis@dcc.ufmg.br

Marcos André Gonçalves
UFMG - Brazil

mgoncalv@dcc.ufmg.br

Leonardo Rocha
UFSJ - Brazil

lcrocha@ufsj.edu.br

Sergio Canuto
IFG - Brazil

sergio.canuto@ifg.edu.br

Abstract

Neural network algorithms such as those based
on transformers and attention models have ex-
celled on Automatic Text Classification (ATC)
tasks. However, such enhanced performance
comes at high computational costs. Ensem-
bles of simpler classifiers (i.e., stacking)
that exploit algorithmic and representational
complementarities have also been shown
to produce top-notch performance in ATC,
enjoying high effectiveness and potentially
lower computational costs. In this context, we
present the first and largest comparative study
to exploit the cost-effectiveness of stacking
of ATC classifiers, consisting of transformers
and non-neural algorithms. In particular, we
are interested in answering research questions
such as: Is it possible to obtain an effective en-
semble with significantly less computational
cost than the best learning model for a given
dataset? Disregarding the computational cost,
can an ensemble improve the effectiveness of
the best learning model? Besides answering
such questions, another main contribution
of this paper is the proposal of a low-cost
oracle-based method that can predict the best
ensemble in each scenario (with and without
computational cost limitations) using only a
fraction of the available training data.

1 Introduction

Natural Language Processing, Machine Learning
and Data Mining techniques work together to
automate the fundamental task of Automatic
Text Classification (ATC). ATC automatically
associates documents with classes, providing
means to organize information, allowing better
comprehension and interpretation of the data.
Algorithms based on neural networks (e.g.,
BERT (Devlin et al., 2018), XLNet (Yang et al.,
2019)) have become the highlight in the area,
where they are used both to learn features for text

representation and as classification algorithms.
The main problem of such methods is the very high
computational costs needed for learning the model
parameters (Sun et al., 2019; Cunha et al., 2021).

Ensemble approaches, such as stacking, which
combine the outputs of several base classification
models to form an integrated output, have also
been shown to excel in ATC (Džeroski and
Ženko, 2004; Ding and Wu, 2020), enjoying high
effectiveness and computational costs that depend
on the selected learning methods of the ensemble.
They are motivated by the fact that distinct learning
models or text representations may complement
each other, uncovering specific structures that
underlie the input/output relationship of the data.
Early works (Larkey and Croft, 1996) aimed at
showing combinations of different classification al-
gorithms capable of producing better effectiveness
results than any single type of classifier.

However, the benefits of ensemble techniques
against a strong classifier are not always clear (Yan-
Shi Dong and Ke-Song Han, 2004), in part, due
to the excellent generalization power of the best
classifiers. In fact, previous ensemble works
mostly focus on improving the overall classifica-
tion effectiveness using the results of traditional
classification algorithms (Campos et al., 2017;
Ding and Wu, 2020), paying little or no attention
to practical issues such as the execution time or
which combination of efficient base algorithms can
bring effective results at a lower cost.

Accordingly, our first contribution in this paper
is a thorough study of the cost-effectiveness trade-
off of stacking techniques for text classification
tasks. Rather than just evaluating the effectiveness
of an ensemble of various recent and effective
methods, including those based on transformers
and attention models, we focus on the study of
stackers capable of achieving a better compromise
between low cost (or high efficiency) and high ef-



4004

fectiveness when compared to a single base model
(i.e., the most effective single classifier in a given
dataset). A wide range of comparative experiments
with stacked ensemble models and state-of-the-art
base algorithms are conducted on six datasets
widely used in text classification. We seek answers
based on empirical evidence to the following
questions, considering the best learning model
for each given dataset: (RQ1): Is it possible to
obtain an effective ensemble with significantly less
computational time than the best learning model?
(RQ2): Is it possible to improve the effectiveness of
the best learning model using an ensemble without
increasing the computational time? (RQ3): Disre-
garding the computational time, can an ensemble
improve the effectiveness of the best learning
model? As far as we know, we are the first to
investigate the cost-effectiveness trade-offs (Cunha
et al., 2021) of stacking of neural and non-neural
text classifiers from the described perspectives.

A second main contribution of our work is the
proposal of a low-cost oracle-based method that
can predict the best ensemble in each scenario
(with and without computational cost limitations)
using only a fraction of the available training
data. Our “Oracle” first estimates the best base
algorithm (which can be seen as a baseline for
effectiveness) to perform an efficient greedy search
of ensembles guided by both their effectiveness
and efficiency concerning the best base algorithm.
Particularly, the Oracle predicts effective ensem-
bles by successively including base algorithms
that improve their combined majority voting
effectiveness. Moreover, our method avoids the
inclusion of expensive base algorithms (concerning
the best base algorithm) to guarantee the ensemble
efficiency. Our proposed Oracle is the first known
strategy to provide an efficient prediction of
effective ensembles capable of tackling practical
efficiency issues related to our research questions.
In more details, our proposal aims at predicting
three ensembles corresponding to the time
restrictions of RQ1, RQ2 and RQ3, respectively,
while avoiding the potential high computational
cost of evaluating expensive base models and their
ensembles, especially on large datasets.

Our experimental results show affirmative
answers to our three research questions in most ex-
periments. In most datasets, it is possible to obtain
an ensemble of base algorithms that is as good as or
better than the base algorithm, at a lower cost. In 5

out of 6 datasets it is possible to obtain an ensemble
with statistically significant gains against the best
algorithm with no increase in cost. Similarly, in
5 out of 6 datasets, our oracle provides as good as
or better results than the best base algorithm with
no increase in cost, providing empirical evidence
to the practical benefits of the proposed oracle.

2 Background and Related Work

2.1 Text Classification Strategies

Early efforts in ATC focused on improving
machine learning algorithms such as Naı̈ve Bayes,
kNN, Logistic Regression and SVM (Howard
and Ruder, 2020) using a simple bag of (TFIDF
weighted) words representation. Even with such
simple document representation, the use of meth-
ods such as LinearSVM (Fan et al., 2008a) and
XGBoost (Chen and Guestrin, 2016a) produced
high effectiveness with and efficient convergence
for large datasets (Fan et al., 2008a).

More recent strategies, such as meta-
features (Canuto et al., 2018) and neural networks
(NNs) (Joulin et al., 2017; Tang et al., 2015a),
exploit the training data to build more informative
document representations. Particularly, strategies
based on metafeatures (Canuto et al., 2018; Canuto
et al., 2019b) extract information from more
basic (bag-of-words) features to enhance the
feature space by smartly exploiting a document’s
neighborhood. Strategies based on NNs enhance
word representations (and thus documents) also
exploiting the training data. FastText (Joulin et al.,
2017) and PTE (Tang et al., 2015a), for instance,
presented high effectiveness in comparison to
(costly) deep learning approaches.

Considerable advances on deep learning for
ATC were achieved by using pre-trained language
models with fine-tuning (Howard and Ruder,
2018), mainly when combined with attention
mechanisms (Kokkinos and Potamianos, 2017;
Yang et al., 2016) and the parallelization benefits of
transformers, better exemplified by BERT (Devlin
et al., 2018). Following BERT’s success, the recent
XLNet network (Yang et al., 2019) proposes a new
autoregressive formulation to improve the exploita-
tion of contextual information. Though effective,
the fine-tuning process of methods such as BERT
and XLNet still takes substantial computational
time, requiring powerful hardware (GPUs) (Sun
et al., 2019). Such requirements might bring
practical limitations for these solutions.



4005

2.2 Stacking

Stacking (Wolpert, 1992) is a widely known
ensemble technique that combines the predictions
of heterogeneous algorithms (i.e., base algorithms)
to improve effectiveness concerning these base
algorithms. To implement stacking, we first need to
train each base algorithm. With the trained models,
we can make predictions in a different validation
set, which was not used for training. With the saved
models and the predictions in the validation set, a
metalayer (another learning algorithm) is used to
learn how to combine the predictions in the com-
bination. Recent work reported high effectiveness
with stacking for multiple ATC tasks, such as topic
classification (Campos et al., 2017; Abuhaiba and
Dawoud, 2017), sentiment analysis (Carvalho and
Plastino, 2020; Onan et al., 2016) and multi-label
classification (Xia et al., 2020; Weng et al., 2019).
Particularly, stacking provided substantial effective-
ness improvements on recently proposed decision-
tree-based algorithms (Campos et al., 2017) and
with methods trained on different representations
(including word embeddings) (Carvalho and Plas-
tino, 2020; Pelle et al., 2018; Onan et al., 2016).

A careful choice of base algorithms is necessary
due to the potential degradation of the stacking
effectiveness and efficiency. The literature reported
low effectiveness on stacking due to overfitting
issues with multiple base algorithms (Reid and
Grudic, 2009; Ledezma et al., 2010). Previous
works that optimize the choice of a subset of base
algorithms (Ledezma et al., 2010; Gupta and
Thakkar, 2014) focused on maximizing the ensem-
ble effectiveness with no concern for efficiency.
Stacking efficiency is usually attached to the most
expensive method. In fact, (Hou et al., 2021)
reportedly avoids the cost of using expensive deep
learning methods by including gradient boosting
base algorithms comparable to convolutional NNs.

In this work, we provide a thorough evaluation
of the effectiveness and efficiency tradeoffs of
stacking, i.e., we investigate whether there are
combinations of algorithms that overcome (in
both, efficiency and effectiveness) the best base
ones in a given dataset. Our proposed oracle in
turn is the first method to explicitly tackle a time-
constrained stacking prediction goal by explicitly
and efficiently exploiting the relationships between
stacking and the best base algorithms.

3 Methodology

3.1 Time-Constrained Stacking
We aim to answer the following research questions:
(RQ1): Is it possible to obtain an effective ensem-
ble with significantly less computational time than
the best learning model? (RQ2): Is it possible
to improve the effectiveness of the best learning
model using an ensemble without increasing the
computational time? (RQ3): Disregarding the
computational time, can an ensemble improve the
effectiveness of the best learning model?

With RQ1 we aim to identify whether it is
possible to obtain a stacking of (a subset of) base
algorithms that is as effective or better than the
best (i.e., most effective) base algorithm and takes
strictly less computational time than the best base.
Favorable evidence towards a positive answer is
important to indicate the existence of cost-effective
stacking solutions, especially if the best base
algorithm is a costly strong/high generalization
power baseline. RQ2 keeps the same effectiveness
demands of RQ1, but considering the following
relaxation on the time constraint: the parallel
execution of the base models can take at most the
same execution time as the best base algorithm.
This time constraint allows the best base algorithm
to be included in the stacking. With this, we
intend to evaluate if effectiveness improvements
are possible with the (time) cost of the best base
algorithm as an upper limit. In RQ3 we remove
all time constraints to obtain the best possible
stacking regardless of cost. With RQ3 we want to
evaluate the potential effectiveness improvements
of an stacking over the best base algorithm, in
exchange for additional (time) cost.

3.2 Oracle-Based Prediction of Stacking
Performance

The proposed strategy is implemented as follows:
(i) each base algorithm is trained with a reduced
amount of the training set (e.g., 30%); (ii) we run
an algorithm, called “Oracle” (Algorithm 1), which
aims at finding the best combination of base algo-
rithms with less training by a greedy strategy. First,
we select the best base algorithm obtained with the
reduced training to start the combination, where A
is the set of all base algorithms executed with less
training. For this, we use the Best(A) function,
which simply returns the best algorithm based on
the validation set. For each iteration, the next best
algorithm, as estimated in a validation set, is added



4006

and we verify whether the combined result presents
a statistically significant improvement (α = 0.05)
in relation to the previous iteration. If positive, it
is permanently included in the combination. The
process continues until all base algorithms are
considered. The strategy is greedy since it makes
the best choice in the current iteration.

To perform the comparison and statistical tests in
each iteration, we use a separated piece within the
training set (validation) that is not contained in the
smaller part used in training. Besides, as a meta-
layer, we use a simple average, i.e., we simply add
the probabilities of the predictions dividing it by
the number of base algorithms. The meta-layer av-
erage is represented by the function Avg(E) in the
pseudocode, where E ⊂ A. As it is a simple meta-
layer and not a learning algorithm, the cost can be
considered insignificant in the choice process.

Algorithm 1 Oracle Algorithm

procedure ORACLE(A)
C← Best(A)
S← A− C
while S 6= ∅ do

X ← Best(S)
E← C + X
if Avg(E) > Avg(C) then

C← E
S← A− C

else
S← S−X

return C . Best combination

With the oracle defined, we raise the following
research questions: (ORQ1): Can we predict, using
a fraction of the training data, an effective stacking
that will tie or outperform the best learning model
when trained with all the available training, at a
smaller cost than that of the best model? (ORQ2):
Can we make a similar prediction than in ORQ1,
but now with cost smaller or at the maximum equal
to that of the best model when trained with all
training data? (ORQ3): with no constraints in time,
can we predict a combination that will be better
than the best learning algorithm in a dataset?

4 Experiments

4.1 Experimental Setup

We consider the effectiveness and efficiency of the
models on two large-scale ATC datasets (Zhang
et al., 2015) (more than 100,000 documents) –
AG’s News (AGNews) and IMdB Reviews – and
four mid-sized datasets very known in the ATC
community – 20 Newsgroups (20NG), WebKB
(WebKB), Reuters (Reut) and ACM Digital Library
(ACM). Table 1 shows the datasets details.

In terms of classification (base) algorithms,
we consider the LinearSVM (Fan et al., 2008b),
kNN (Altman, 1992), LogisticRegression (Fan
et al., 2008b), XGBoost (Chen and Guestrin,
2016b), XLNet (Yang et al., 2019) and BERT (De-
vlin et al., 2018). In terms of representations, be-
yond the traditional term-weighting alternatives
(TFIDF), we consider distributional and other types
of word embeddings, such as FastText (Joulin et al.,
2016; Bojanowski et al., 2017) and PTE (Tang et al.,
2015b), as well as recent representations based on
MetaFeatures that have obtained state-of-the-art
(SOTA) effectiveness in some of the experimented
datasets (Canuto et al., 2019a, 2018, 2016; Cunha
et al., 2020, 2021). Table 2 has a summary of the
base algorithms and respective representations used
in each of them.

Algorithm Representation ID Algorithm Representation ID

LinearSVM FastText A Logistic FastText J
PTE B Regression PTE K
TFIDF C TFIDF L
Metafeatures D Metafeatures M

kNN FastText F XGBoost FastText N
PTE G PTE O
TFIDF H TFIDF P
Metafeatures I Metafeatures Q

XLNet Raw Documents R
BERT Raw Documents S

Table 2: Base Algorithms and Representations IDs.

We run the stacking process with the following
variants: all combinations of the same base algo-
rithm with different representations, all combina-
tions of different base algorithms with their best
representations, and a combination that includes
all the base algorithms. For example, we perform
all possible combinations of LinearSVM with Fast-
Text, PTE, TFIDF and MetaFeatures, resulting in
total of 11 combinations:

(
4
2

)
+

(
4
3

)
+

(
4
4

)
. This

limitation of combinations has a main reason: all
combinations of all algorithms and representations,
18 in our case, would result in an impracticable
number of possible combinations for execution:
262,125 experiments =

(
18
2

)
+
(
18
3

)
+ ..+

(
18
18

)
.

An important observation is that we assume that
the base algorithms can be run in parallel (e.g. dif-
ferent machines). Thus, a stacking or oracle combi-
nation has the execution time limited by the most
costly base algorithm in the respective combina-
tion. Even if this assumption is not true and it is
necessary to execute the base algorithms and com-
binations on one single machine, this would only



4007

Class Distribution
Dataset Size # Feat. # Classes Minor Median Mean Major Avg Doc. Skewness

Class Class Size (words)

20NG 18,846 97,401 20 628 984 942 999 296 Balanced
ACM 24,897 48,867 11 63 2,041 2,263 6,562 65 Imbalanced
Reut 13,327 27,302 90 2 29 148 3964 171 Extremely Imbalanced
WebKB 8,199 23,047 7 137 926 1,171 3705 209 Imbalanced
AGNews 127,600 39,837 4 31,900 31,900 31,900 31,900 37 Balanced
IMdB Reviews 348,415 115,831 10 12,836 31,551 34,841 63,233 326 Imbalanced

Table 1: Datasets statistics.

aggravate the cost problem and allow an unfair
comparison in our favor. Therefore, to avoid this
unfair comparison, we maintain the assumption of
parallel execution.

The experiments in the smaller datasets were ex-
ecuted using a 10-fold cross-validation procedure
while in the larger we used 5 folds due to the cost
of the procedure. The algorithms parameters were
tuned using the Bayesian Optimization (Bergstra
et al., 2015) approach with 10 iterations, with the
5-fold stratified strategy and the training set (nested
cross-validation). In Table 14 in the Appendix, we
have the values of each parameter that we optimize
in the non-neural base algorithms. The parameters
and pre-trained models for BERT and XLNet are
also shown in the Appendix (Table 12). For the
neural networks, we adopted the same parameters
defined by the authors of their respective meth-
ods (Devlin et al., 2018; Yang et al., 2019). In
our experiments, we adopt AWS EC2 instances to
run and measure the execution time for both neural
and non-neural algorithms. For the non-neural al-
gorithms, we use the instance model c5a.12xlarge,
which has 48 CPUs, 96GB of RAM (without GPU).
For the neural algorithms, we use the instance
model p2.xlarge, which has one NVIDIA K80 GPU
(12 GB of memory), 4 CPUs and 61 GB of RAM.

We evaluate all methods, combined with differ-
ent representations, with respect to classification
effectiveness and training time. We assess clas-
sification effectiveness in the test partitions using
MicroF1 and MacroF1 (Sokolova and Lapalme,
2009). While MicroF1 measures the classification
effectiveness over all decisions, MacroF1 measures
the classification effectiveness for each individual
class, averaging them, being very important for
skewed datasets. In addition to effectiveness, we
also assess the cost of each method in terms of
the training execution time aiming at analyzing the

cost-effectiveness trade-offs for all methods. The
metric is the overall time in seconds (average of
folds). To compare the average test results on our
cross-validation experiments, we assess the statis-
tical significance employing the paired t-test with
95% confidence, which is strongly recommended
over signed-rank tests for hypothesis testing on
mean effectiveness and arguably robust to poten-
tial violations of the normality assumption in this
context (Urbano et al., 2019; Hull, 1993).

4.2 Experimental Results

4.2.1 Stacking Results
Effectiveness and Time results for the base algo-
rithms in each dataset are shown in Table 3. The
results of these best base algorithms are consid-
ered in the next analyses. Results for RQ1, RQ2
and RQ3, in terms of MacroF1 for each dataset are
shown in Tables 4, 5, and 6, respectively, while
Figure 1, shows the analysis of the cost (time).
For each dataset, the tables show the effectiveness
(MacroF1) of the best base algorithm along with
the stacking combination that best answered the
respective research question (if any), the respec-
tive combination of methods (the letters refer to
the index of algorithms described in Table 2), and
finally, in the last column, (Most Costly) the most
costly algorithm that entered in the combination,
according to the constraints imposed by the ques-
tion. We present only MacroF1 results due to space
constraints and the fact that is it harder to improve
them in the highly skewed scenario that occurs in
most of the experimented datasets. However, we
also consider MicroF1, whose results are summa-
rized in Table 7.

In Table 4, which focuses on RQ1 that has a
strong constraint in terms of cost (time), we can
see that in 4 out of 6 datasets, it is possible to ob-
tain a combination of classifiers (stacking) that is



4008

Algorithm
Dataset Metric A B C D F G H I J K L M N O P Q R S

MicroF1 80.4 88.66 89.46 90.52 80.96 81.25 84.63 90.42 81.54 88.96 88.89 90.73 80.39 86.24 79.86 90.06 74.38 85.88
20NG MacroF1 79.96 88.34 89.2 90.32 80.45 80.46 84.06 90.27 81.09 88.69 88.65 90.58 79.94 85.9 79.35 89.9 73.97 85.43

Time (S) 79 66 22 702 76 76 28 78 323 413 163 467 632 1,392 1,428 1,163 3,972 3,959
MicroF1 73.28 75.34 76.62 79.01 73.88 75.73 73.64 78.19 73.90 75.76 77.21 79.19 73.49 75.98 74.67 78.98 71.65 78.25

ACM MacroF1 60.64 62.57 66.88 68.66 62.47 61.37 59.25 65.22 61.95 63.19 68.43 69.11 60.93 61.82 64.12 69.32 60.58 65.56
Time (S) 89 112 13 776 136 140 35 125 481 2057 201 922 512 1,239 530 1,542 4,153 3,482
MicroF1 66.57 66.07 67.19 78.85 68.53 68.96 69.41 75.19 65.64 66.55 66.80 76.99 64.68 63.70 65.92 82.17 72.72 72.72

Reut MacroF1 30.13 31.75 34.54 42.48 31.45 26.31 32.74 35.68 30.45 31.22 33.88 43.17 28.73 23.91 31.85 47.37 40.29 33.60
Time (S) 120 150 38 3,427 39 38 12 163 4,434 4,316 2,026 15,185 2,363 2,633 1,482 6,426 3,537 3,897
MicroF1 75.69 71.31 81.35 77.4 77.16 72.53 75.02 77.27 76.64 71.41 82.64 77.62 75.63 78.58 83.65 79.47 84.60 86.04

WebKB MacroF1 65.81 58.19 71.45 65.29 69.17 59.25 58.76 64.72 68.25 58.66 74.67 66.19 65.54 66.21 74.33 69.23 77.76 66.41
Time (S) 37 43 11 106 19 18 9 23 50 224 41 175 97 229 197 242 2,210 1,735
MicroF1 89.52 91.95 91.08 91.03 89.32 91.25 90.35 91.55 89.23 91.66 91.87 91.29 89.17 92.23 91.97 91.69 91.99 93.74

AGNews MacroF1 89.50 91.93 91.06 90.99 89.30 91.25 90.32 91.53 89.23 91.65 91.85 91.27 89.16 92.22 91.96 91.68 91.97 93.74
Time (S) 2,308 4,198 115 1,099 10,433 12,707 2,097 4,373 8,434 881 2,180 3,364 5,243 7,019 1,151 2,769 33,206 11,257
MicroF1 29.69 37.53 30.51 20.31 32.88 32.99 27.01 28.00 29.17 38.64 33.75 29.02 29.76 37.03 34.58 30.02 25.08 39.00

IMdB Reviews MacroF1 24.96 27.43 26.10 12.00 28.12 25.39 19.50 19.62 26.55 32.35 28.19 20.31 26.39 30.72 27.96 20.93 16.26 34.09
Time (S) 50,817 23,658 1,977 26,885 43,005 42,525 13,476 68,117 72,658 4,818 35,155 15,988 35,543 123,705 59,634 91,562 59,749 34,426

Table 3: Effectiveness, based on MicroF1 and MacroF1, and efficiency, based on execution time, for all classification algorithms
and datasets considered in the our experiments. The algorithms are: (A) LinearSVM + FastText; (B) LinearSVM + PTE;
(C) LinearSVM + TFIDF; (D) LinearSVM + TFIDF+Mf; (F) KNN + FastTex; (G) KNN + PTE; (H) KNN + TFIDF; (I)
KNN + TFIDF+Mf; (J) LogisticRegression + FastTex; (K) LogisticRegression + PTE; (L) LogisticRegression + TFIDF; (M)
LogisticRegression + TFIDF+Mf; (N) XGBoost + FastTex; (O) XGBoost + PTE; (P) XGBoost + TFIDF; (Q) XGBoost +
TFIDF+Mf; (R) XLNet + Raw Documents; and (S) BERT + Raw Documents. The best results are highlighted in bold. When
we identified statistically ties between two or more algorithms, we chose the one with lower execution time. For example, for
the 20NG, we identified statistical ties for the algorithms M (LogisticRegression + TFIDF+Mf) and Q (XGBoost + TFIDF+Mf)
and choose the M that presents lower execution time.

Figure 1: Stacking Times

as good as (statistical tie) or better (see the ACM
case, with statistically significant gains of 3.1%)
than the best base algorithm, at a lower cost. In
fact, the gains in terms of cost (time) are very sig-
nificant (see Figure 1), ranging from 1.87x speedup
improvement (in Reuters) to 7.16x (in WebKB)1.
Even if we consider the two cases in which there
were some minimum effectiveness losses (0.39%
in AGNews and 2.66% in IMdB), there are some
significant speedups: 1.6x in AGNews and 2.15x
in IMdB. Some chosen stacked combinations are
interesting, such as FGHI in 20NG that contains
all versions of kNN, and JLM in ACM, containing
three versions of Logistic Regression. Both combi-
nations contains classifiers with Metafeatures.

Results for RQ2 (Table 5) are also very interest-
ing. In 5 out of 6 datasets it is possible to obtain

1Speedups in 20NG and ACM were 6x and 6.6x

Dataset Experiment MacroF1 Combination Most Costly

20NG
Best Base 90.58 M (Log. Reg. + MetaFeat)
RQ1 • 91.02 FGHI I

ACM
Best Base 69.32 Q (XGboost + MetaFeat)
RQ1 N 71.50 JLM M

Reut
Best Base 47.37 Q (XGboost + MetaFeat)
RQ1 • 46.98 KL K

WebKB
Best Base 77.76 R (XLNet)
RQ1 • 79.61 DIS S

AGNews
Best Base 93.74 S (BERT)
RQ1 H 93.37 NOPQ O

IMdB Best Base 34.09 S (BERT)
Reviews RQ1 H 33.18 KM M

Table 4: RQ1.

effectiveness gains with no increase in cost (remind
that in this scenario the cost is limited by that of
the best base algorithm). Effectiveness gains vary
from 0.4% in AGNews, 1.15% in 20NG2, 3.1% in
ACM, 5.4% in IMdB and 9% in WebKB. Reuters
is only considered a tie because of the high vari-
ability of the results across folds in this dataset
(due to the large number of classes and very high
skewness), which generates large standard devia-
tions/confidence intervals. In absolute terms, there
was a positive variation (non-statistically signifi-
cant gain) of more than 9.7%. Indeed, the MicroF1
stacking results confirms statistically significant
gains in Reuters (See Table 7).

As expected, to obtain gains in this scenario it
is necessary to include the best base algorithm in
the combination in most datasets, inserting diver-
sity/complementarity into the combination. Only

2Notice that improvements in 20NG and AGNews are very
hard to obtain given the already high effectiveness values.



4009

Dataset Experiment MacroF1 Combination Most Costly

20NG
Best Base 90.58 M (Log. Reg. + MetaFeat)
RQ2 N 91.63 JKLM M

ACM
Best Base 69.32 Q (XGBoost + MetaFeat)
RQ2 N 71.50 JLM M

Reut
Best Base 47.37 Q (XGBoost + MetaFeat)
RQ2 • 51.99 OPQ Q

WebKB
Best Base 77.76 R (XLNet)
RQ2 N 84.07 All R

AGNews
Best Base 93.74 S (BERT)
RQ2 N 94.12 DIQS S

IMdB Best Base 34.09 S (BERT)
Reviews RQ2 N 35.95 MS S

Table 5: RQ2.

in ACM, the base algorithm is not part of the combi-
nation. Notice also that, due to the time constraints,
the gains are somewhat limited due to the restricted
number of classifiers that can be combined. This
has some impacts on the results, for instance, in
IMdB only two algorithms belong to the best com-
bination while the combination in ACM has only
three classifiers. Only in WebKB the combination
includes all 18 classifiers as the base algorithm is
also the most expensive one. Another interesting
aspect of the combinations is that in all datasets, a
classifier using Metafeatures was included (e.g., M
and Q)

Finally, in the scenario with no time constraint
(RQ3), further gains can be obtained with the in-
clusion of more costly classifiers. There are further
gains in AGNews (0.94%), 20NG (2.06%), IMdB
(5.8%) and ACM (6.32%). Notice that in this sce-
nario, there is a tendency to include most algo-
rithms in the combinations, like in ACM, WebKB
and AGNews, to obtain further improvements. This
means that most algorithms have complementary
information that tends to contribute to the final re-
sults. Another interesting aspect to notice is that in
some cases, such as in 20NG, a completely differ-
ent combination than that chosen in scenario RQ2,
was picked. This combination exploits the most
effective and complementary algorithms, and may
not even include the base classifier. In other cases,
such as in IMdB, a combination of a few of the
most effective (and costly) algorithms suffices to
obtain larger gains. This means that the meta-layer
is really doing a good job in learning about the
individual performance of the algorithms and their
complementarity. Finally, these additional effec-
tiveness gains come with potential high increases
in cost, clearly seen in Figure 1 for the cases of
20NG, ACM and AGNews. In those datasets, the
costs have tripled (AGNews), quadrupled (ACM

and IMdB) or become 8x more cost expensive. It
is up to the application designer to decide whether
this cost-effectiveness tradeoff is worth it.

Dataset Experiment MacroF1 Combination Most Costly

20NG
Best Base 90.58 M (Log. Reg. + MetaFeat)
RQ3 N 92.45 DIRS R

ACM
Best Base 69.32 Q (XGBoost + MetaFeat)
RQ3 N 73.70 All R

Reut
Best Base 47.37 Q (XGBoost + MetaFeat)
RQ3 • 51.99 OPQ Q

WebKB
Best Base 77.76 R (XLNet)
RQ3 N 84.07 All R

AGNews
Best Base 93.74 S (BERT)
RQ3 N 94.63 All R

IMdB Best Base 34.09 S (BERT)
Reviews RQ3 N 36.06 QS Q

Table 6: RQ3.

Table 7 summarizes the effectiveness results. For
RQ1, there are 8 win/ties out of 12 possibilities (6
datasets, two metrics). Remind that in this scenario
ties are considered a good result due to the reduc-
tion in costs. For RQ2 and RQ3, there are 11 wins,
only 1 tie (in Macro in Reuters) no losses at all. In
terms of cost (Figure 1), significant reductions in
scenario 1 (RQ1) can be obtained in all 6 datasets,
with almost no loss (or minimal losses) in terms of
effectiveness. For scenario 2 (RQ2), effectiveness
gains can be obtained in almost all cases with no
additional cost when compared to the cost of the
base classifier. And for scenario 3 (RQ3) additional
effectiveness gains can be obtained, but sometimes
with a very high increase in cost.

RQ
MicroF1 MacroF1

Win Tie Loss Win Tie Loss

RQ1 2 2 2 1 3 2
RQ2 6 0 0 5 1 0
RQ3 6 0 0 5 1 0

Table 7: Win/Tie/Loss Summary.

4.2.2 Oracle Results
MacroF1 results of the Greedy Oracle predictor are
shown in Tables 8, 9 and 10. These results corre-
spond to an Oracle that uses the results of the base
algorithms trained with 30% of the training data
and predicting in a different training data portion
in a nested folded cross-validation procedure.

We start by answering ORQ1. Table 8 shows
that in half of the cases we can perform a good
prediction, i.e., one that predicts a combination of
methods that will tie or outperform the best base



4010

algorithm when trained with all the available train-
ing data (100%). It is very important to stress that
in a real situation we do not really know what will
be the best algorithm when using all the training
data nor its effectiveness. Indeed, with more data,
there is a tendency for some algorithms, such as
the transformers, to improve their effectiveness, but
their good performance may not be predicted with
few training data. Remind also that this is a very
strict scenario: even if we can predict which will
be the best base algorithm, we cannot use it in the
combination given the time constraints of ORQ1.

Dataset Experiment MacroF1 Combination Most Cost

20NG
Best Base 90.58 M (Log. Reg. + MetaFeat)
ORQ1 N 91.62 ABCDIL I

ACM
Best Base 69.32 Q (XGBoost + MetaFeat)
ORQ1 N 71.85 ABCDIJKLM D

Reut
Best Base 47.37 Q (XGBoost + MetaFeat)
ORQ1 H 32.55 ABDQR Q

WebKB
Best Base 77.76 R (XLNet)
ORQ1 • 75.79 BCF F

AGNews
Best Base 93.74 S (BERT)
ORQ1 H 93.16 BDGKOQ B

IMdB Best Base 34.09 S (BERT)
Reviews ORQ1 H 27.79 L L

Table 8: Oracle ORQ1.

Given all these limitations, mainly that only the
algorithms with a cost lower than the best base algo-
rithm (with 30% of training) can be considered, it is
impressive that we can make a prediction that will
surpass in effectiveness the best base algorithms
using 100% of training in 20NG and ACM and tie
with it, being cheaper, in WebKB. But even in the
case in which there were losses, some were mini-
mal, like in AGNews with a loss of only 2.5% with
potential gains in training time. Only in Reuters
and IMdB there were significant MacroF1 losses,
mainly due to the failure of predicting which would
be the best base algorithm3 and the impossibility
of including the predicted best base algorithm in
the combination.

When we are allowed to include the best-
predicted algorithm in the stacking (scenario for
ORQ2) results are even better – we can make a
good prediction in 5 out 6 cases (2 wins and 3 ties).
Notice that in this scenario we consider a tie as a
good result. We interpret that being able to predict
a combination that will tie with the best algorithm
with 100% of training in a dataset, without know-
ing which one will this best, at a very lost cost

3In case of Reuters, a XGBoost with Metafeatures (Q) and
in IMdB, BERT (S).

Dataset Experiment MacroF1 Combination Most Cost

20NG
Best Base 90.58 M (Log. Reg. + MetaFeat)
ORQ2 N 91.52 ABCDILM M

ACM
Best Base 69.32 Q (XGBoost + MetaFeat)
ORQ2 N 71.56 ABDMQ Q

Reut
Best Base 47.37 Q (XGBoost + MetaFeat)
ORQ2 • 47.37 DMQ M

WebKB
Best Base 77.76 R (XNet)
ORQ2 • 78.22 BCFGIJ J

AGNews
Best Base 93.74 S (BERT)
ORQ2 • 94.10 BCDGIKLMOPQR R

IMdB Best Base 34.09 S (BERT)
Reviews ORQ2 H 31.11 K K

Table 9: Oracle ORQ2.

(Figure 2), as an excellent result. Notice that the
best results in this scenario (i.e., 20NG and ACM)
are obtained when we can in fact predict what will
be the best base algorithm with 100% of training.
But even when we cannot predict, as in the case
of WebKB and AGNews4, we can find a combi-
nation of simpler (and potentially less expensive)
algorithms that can tie with the best. Again, IMdB
was the only case in which we could not make a
good prediction exactly by the failure in predicting,
with 30% of training, that BERT would be the best
algorithm when all the training data is used.

Finally, when no time constraints are imposed
the oracle’s prediction results are excellent: 4 wins,
1 tie and only one loss (in IMdB). This last loss
is explained by the same reasons as in the previ-
ous scenario: the failure of predicting BERT as the
future best algorithm. But even in this case, the
prediction for using algorithm K: LogisticRegres-
sion with PTE as the sole combination (an unusual
prediction) produced minimal losses: only 1.05%
at a cost much smaller than using BERT. And in
the case of Reuters, we obtain an absolute increase
in MacroF1 values (6% increase), though not sta-
tistically significant due to the high variability.

When looking at the costs of making the predic-
tions in each scenario (ORQ1, ORQ2, and ORQ3),
shown in Figure 2, we can see that in all cases (but
20NG for ORQ3), the oracle’s predictions times
are much smaller, in many cases negligible5, when
compared to the time to run the base algorithm
with 100% of training. Given the time constraints
imposed by ORQ1 and ORQ2 and the fact even in
the scenario for ORQ3, only a portion of the 18
available algorithms needed to be stacked (in most
cases) to produce effectiveness gains, the advan-

4In both the best base algorithms with 100% were the
neural transformers XLNet and BERT

5Some differences are in the orders of magnitude.



4011

Dataset Experiment MacroF1 Combination Most Cost

20NG
Best Base 90.58 M (Log. Reg. + MetaFeat)
ORQ3 N 92.17 ABCDILMS M

ACM
Best Base 69.32 Q (XGBoost + MetaFeat)
ORQ3 N 73.48 ABDMQ Q

Reut
Best Base 47.37 Q (XGBoost + MetaFeat)
ORQ3 • 50.18 DMQ M

WebKB
Best Base 77.76 R (XLNet)
ORQ3 N 83.12 ABCFJLMNOPQR J

AGNews
Best Base 93.74 S (BERT)
ORQ3 N 94.63 All R

IMdB Best Base 34.09 S (BERT)
Reviews ORQ3 H 33.73 K K

Table 10: Oracle ORQ3.

Figure 2: Oracle Times

tage’s of running the oracle’s predictions in terms
of cost stand for themselves.

Table 11 summarizes the results in terms of Mi-
cro and MacroF1: considering all 36 results (three
RQs, 6 datasets, 2 metrics) the oracle predicted
17 wins, 10 ties (most of them (8) in scenarios
ORQ1 and ORQ2, which can be considered good
results) and only 9 losses, six of them in a single
dataset (IMdB) for the simple reason that we failed
in predicting a neural network winner with fewer
data. This is certainly a point to be improved in
our methodology. One idea is to look not only at
the absolute effectiveness values with a single train-
ing point (30%) but look also at the tendency of
growing considering several points (5%, 10%, ..).

RQ
MicroF1 MacroF1

Win Tie Loss Win Tie Loss

ORQ1 2 0 4 2 1 3
ORQ2 2 4 0 2 3 1
ORQ3 5 1 0 5 1 0

Table 11: Oracle Win/Tie/Loss Summary

5 Conclusion and Future Work

We presented two important contributions to the
application of Stacking in ATC: a thorough study
of cost-effectiveness trade-offs and the proposal of
a new oracle method to predict the best ensemble
combination for a dataset at a low cost. Our
extensive experiments, composed of 4 textual
representation methods, 6 datasets, 4 non-neural
based algorithms and 2 neural-based algorithms,
provided us with answers to questions that had not
yet been explored in the literature. By performing
stacking with different time constraints, we showed
that it was possible to obtain combinations that
positively answered the posed questions regarding
the time-constrained stacking and the oracle predic-
tions in terms of both, effectiveness and efficiency.

We highlight general and practical guidelines
based on our extensive experiments. First, we
notice the consistent appearance of recent meta-
features on the best combinations of base learners
obtained for each evaluated research question (Ta-
bles 4–6). In fact, due to the focus of meta-features
on summarizing relevant distance-based informa-
tion from the original features, we strongly suggest
their exploitation in ensemble combinations. More-
over, the largest datasets benefit from additional
data to fine tune BERT for the classification task.
Therefore, combinations including both of these
recent and distinct paradigms (meta-features and
BERT) for stacking were able to produce very effec-
tive results on most datasets (as shown in Table 10).
We suggest that stacking methods should start by
exploiting these two paradigms in conjunction.
Finally, our experiments show the need of specific
stacking solutions for different scenarios/datasets.
The application of our proposed Oracle effi-
ciently predicts effective best base models on
time-constrained scenarios, allowing adaptable
solutions that automatically optimize the choice of
base learners for each specific dataset. We suggest
to exploit the Oracle in all these situations.

In the future, we will explore different Oracle
configurations, explore multi-objective feature
selection in the stacking meta-layer (Viegas et al.,
2018), study other types of constraints (e.g.,
labeling effort) and apply the Oracle in fields such
as recommender systems.

Acknowledgments

This work was supported by CNPq, CAPES,
FAPEMIG, AWS, NVIDIA and Google (Awards).



4012

References
Ibrahim S. I. Abuhaiba and Hassan M. Dawoud. 2017.

Combining different approaches to improve arabic
text documents classification. International Jour-
nal of Intelligent Systems and Applications(IJISA),
9(4):39 – 52.

Naomi S Altman. 1992. An introduction to kernel
and nearest-neighbor nonparametric regression. The
American Statistician, 46(3):175–185.

James Bergstra, Brent Komer, Chris Eliasmith, Dan
Yamins, and David D Cox. 2015. Hyperopt: a
python library for model selection and hyperparame-
ter optimization. Computational Science & Discov-
ery, 8(1):014008.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Raphael Campos, Sérgio Canuto, Thiago Salles, Cleb-
son C.A. de Sá, and Marcos André Gonçalves. 2017.
Stacking bagged and boosted forests for effective au-
tomated classification. In Proceedings of the 40th
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, page 105–114.

S. Canuto, D. X. Sousa, M. A. Gonçalves, and T. C.
Rosa. 2018. A thorough evaluation of distance-
based meta-features for automated text classification.
IEEE Transactions on Knowledge and Data Eng.
(TKDE), 30(12):2242–2256.

Sérgio Canuto, Marcos André Gonçalves, and Fabrı́cio
Benevenuto. 2016. Exploiting new sentiment-based
meta-level features for effective sentiment analysis.
In Proc. of the ninth ACM international conference
on web search and data mining, pages 53–62.

Sergio Canuto, Thiago Salles, Thierson C Rosa, and
Marcos A Gonçalves. 2019a. Similarity-based syn-
thetic document representations for meta-feature
generation in text classification. In Proc. of the 42nd
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 355–364.

Sergio Canuto, Thiago Salles, Thierson C. Rosa, and
Marcos A. Gonçalves. 2019b. Similarity-based
synthetic document representations for meta-feature
generation in text classification. In Proc. of the
42Nd International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
SIGIR’19, pages 355–364.

Sergio Canuto, Daniel Xavier Sousa, Marcos Andre
Goncalves, and Thierson Couto Rosa. 2018. A thor-
ough evaluation of distance-based meta-features for
automated text classification. IEEE Transactions
on Knowledge and Data Engineering, 30(12):2242–
2256.

Jonnathan Carvalho and Alexandre Plastino. 2020. On
the evaluation and combination of state-of-the-art

features in twitter sentiment analysis. Artificial In-
telligence Review.

Tianqi Chen and Carlos Guestrin. 2016a. Xgboost: A
scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16,
page 785–794.

Tianqi Chen and Carlos Guestrin. 2016b. Xgboost: A
scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowl-
edge discovery and data mining, pages 785–794.

Washington Cunha, Sérgio D. Canuto, Felipe Viegas,
Thiago Salles, Christian Gomes, Vı́tor Mangaravite,
Elaine Resende, Thierson Rosa, Marcos André
Gonçalves, and Leonardo C. da Rocha. 2020. Ex-
tended pre-processing pipeline for text classification:
On the role of meta-feature representations, sparsifi-
cation and selective sampling. Inf. Process. Manag.,
57(4):102263.

Washington Cunha, Vı́tor Mangaravite, Christian
Gomes, Sérgio D. Canuto, Elaine Resende, Cecilia
Nascimento, Felipe Viegas, Celso França, Welling-
ton Santos Martins, Jussara M. Almeida, Thierson
Rosa, Leonardo C. da Rocha, and Marcos André
Gonçalves. 2021. On the cost-effectiveness of neu-
ral and non-neural approaches and representations
for text classification: A comprehensive compara-
tive study. Inf. Process. Manag., 58(3):102481.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Weimin Ding and Shengli Wu. 2020. A cross-entropy
based stacking method in ensemble learning. Jour-
nal of Intelligent & Fuzzy Systems, pages 1–12.

Saso Džeroski and Bernard Ženko. 2004. Is combining
classifiers with stacking better than selecting the best
one? Machine learning, 54(3):255–273.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008a. Liblinear: A
library for large linear classification. Journal of Ma-
chine Learning Research, 9(61):1871–1874.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008b. Liblinear: A
library for large linear classification. the Journal of
machine Learning research, 9:1871–1874.

A. Gupta and A. R. Thakkar. 2014. Optimization
of stacking ensemble configuration based on vari-
ous metahueristic algorithms. In 2014 IEEE In-
ternational Advance Computing Conference (IACC),
pages 444–451.

Zhihao Hou, Kun Ma, Yufeng Wang, Jia Yu,
Ke Ji, Zhenxiang Chen, and Ajith Abraham. 2021.
Attention-based learning of self-media data for mar-
keting intention detection. Eng. Appl. Artif. Intell.,
98:104118.

https://doi.org/10.5815/ijisa.2017.04.05
https://doi.org/10.5815/ijisa.2017.04.05
https://doi.org/10.1145/3077136.3080815
https://doi.org/10.1145/3077136.3080815
https://doi.org/10.1109/TKDE.2018.2820051
https://doi.org/10.1109/TKDE.2018.2820051
https://doi.org/10.1145/3331184.3331239
https://doi.org/10.1145/3331184.3331239
https://doi.org/10.1145/3331184.3331239
https://doi.org/10.1007/s10462-020-09895-6
https://doi.org/10.1007/s10462-020-09895-6
https://doi.org/10.1007/s10462-020-09895-6
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1016/j.ipm.2020.102263
https://doi.org/10.1016/j.ipm.2020.102263
https://doi.org/10.1016/j.ipm.2020.102263
https://doi.org/10.1016/j.ipm.2020.102263
https://doi.org/10.1016/j.ipm.2020.102481
https://doi.org/10.1016/j.ipm.2020.102481
https://doi.org/10.1016/j.ipm.2020.102481
https://doi.org/10.1016/j.ipm.2020.102481
http://jmlr.org/papers/v9/fan08a.html
http://jmlr.org/papers/v9/fan08a.html
https://doi.org/10.1109/IAdCC.2014.6779365
https://doi.org/10.1109/IAdCC.2014.6779365
https://doi.org/10.1109/IAdCC.2014.6779365
https://doi.org/10.1016/j.engappai.2020.104118
https://doi.org/10.1016/j.engappai.2020.104118


4013

Jeremy Howard and Sebastian Ruder. 2018. Fine-
tuned language models for text classification. CoRR,
abs/1801.06146.

Jeremy Howard and Sebastian Ruder. 2020. A survey
on text classification: From shallow to deep learning.
IEEE TRANSACTIONS ON NEURAL NETWORKS
AND LEARNING SYSTEMS, 31.

David Hull. 1993. Using statistical testing in the evalu-
ation of retrieval experiments. In Proceedings of the
16th annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 329–338.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics, pages 427–431.

Filippos Kokkinos and Alexandros Potamianos. 2017.
Structural attention neural networks for improved
sentiment analysis. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 586–591.

Leah S. Larkey and W. Bruce Croft. 1996. Combining
classifiers in text categorization. In Proceedings of
the 19th Annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, SIGIR ’96, page 289–297.

Agapito Ledezma, Ricardo Aler, Araceli Sanchis, and
Daniel Borrajo. 2010. Ga-stacking: Evolutionary
stacked generalization. Intelligent Data Analysis,
14:89–119. 1.

Aytug Onan, Serdar Korukoglu, and Hasan Bulut. 2016.
Lda-based topic modelling in text sentiment classifi-
cation: An empirical analysis. Int. J. Comput. Lin-
guistics Appl., 7(1):101–119.

Rogers Pelle, Cleber Alcântara, and Viviane P. Moreira.
2018. A classifier ensemble for offensive text detec-
tion. In Proceedings of the 24th Brazilian Sympo-
sium on Multimedia and the Web, page 237–243.

Sam Reid and Greg Grudic. 2009. Regularized linear
models in stacked generalization. In Multiple Clas-
sifier Systems, pages 112–121, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Marina Sokolova and Guy Lapalme. 2009. A system-
atic analysis of performance measures for classifica-
tion tasks. Information processing & management,
45(4):427–437.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang.
2019. How to fine-tune bert for text classification?
In China National Conference on Chinese Computa-
tional Linguistics, pages 194–206. Springer.

Jian Tang, Meng Qu, and Qiaozhu Mei. 2015a. Pte:
Predictive text embedding through large-scale het-
erogeneous text networks. In Proceedings of the
21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’15,
page 1165–1174, New York, NY, USA. Association
for Computing Machinery.

Jian Tang, Meng Qu, and Qiaozhu Mei. 2015b. Pte:
Predictive text embedding through large-scale het-
erogeneous text networks. In Proceedings of the
25th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD),
pages 1165–1174.

Julián Urbano, Harlley Lima, and Alan Hanjalic. 2019.
Statistical significance testing in information re-
trieval: an empirical analysis of type i, type ii and
type iii errors. In Proceedings of the 42nd Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pages 505–514.

Felipe Viegas, Leonardo C. da Rocha, Marcos André
Gonçalves, Fernando Mourão, Giovanni Sá, Thiago
Salles, Guilherme Andrade, and Isac Sandin. 2018.
A genetic programming approach for feature selec-
tion in highly dimensional skewed data. Neurocom-
puting, 273:554–569.

W. Weng, C. Chen, S. Wu, Y. Li, and J. Wen. 2019. An
efficient stacking model of multi-label classification
based on pareto optimum. IEEE Access, 7:127427–
127437.

David H. Wolpert. 1992. Stacked generalization. Neu-
ral Networks, 5(2):241 – 259.

Yuelong Xia, Ke Chen, and Yun Yang. 2020. Multi-
label classification with weighted classifier selection
and stacked ensemble. Information Sciences.

Yan-Shi Dong and Ke-Song Han. 2004. A comparison
of several ensemble methods for text categorization.
In IEEE International Conference onServices Com-
puting, 2004. (SCC 2004). Proceedings. 2004, pages
419–422.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in neural in-
formation processing systems, pages 5753–5763.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. CoRR, abs/1509.01626.

http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1801.06146
https://www.aclweb.org/anthology/E17-2068
https://www.aclweb.org/anthology/E17-2068
https://www.aclweb.org/anthology/E17-2093
https://www.aclweb.org/anthology/E17-2093
https://doi.org/10.1145/243199.243276
https://doi.org/10.1145/243199.243276
https://doi.org/10.3233/IDA-2010-0410
https://doi.org/10.3233/IDA-2010-0410
http://www.ijcla.bahripublications.com/2016-1/IJCLA-2016-1-pp-101-119-preprint.pdf
http://www.ijcla.bahripublications.com/2016-1/IJCLA-2016-1-pp-101-119-preprint.pdf
https://doi.org/10.1145/2783258.2783307
https://doi.org/10.1145/2783258.2783307
https://doi.org/10.1145/2783258.2783307
https://doi.org/10.1016/j.neucom.2017.08.050
https://doi.org/10.1016/j.neucom.2017.08.050
https://doi.org/10.1109/ACCESS.2019.2931451
https://doi.org/10.1109/ACCESS.2019.2931451
https://doi.org/10.1109/ACCESS.2019.2931451
https://doi.org/https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/https://doi.org/10.1016/j.ins.2020.06.017
https://doi.org/https://doi.org/10.1016/j.ins.2020.06.017
https://doi.org/https://doi.org/10.1016/j.ins.2020.06.017
https://doi.org/10.1109/SCC.2004.1358033
https://doi.org/10.1109/SCC.2004.1358033
https://doi.org/10.18653/v1/N16-1174
https://doi.org/10.18653/v1/N16-1174
http://arxiv.org/abs/1509.01626
http://arxiv.org/abs/1509.01626


4014

Appendix

Algorithm Parameters Value

XLNet Pretrained Model XLNet-Base
batch size 32

epochs 5

max len 64

learning rate 5e-5
max grad norm 1.0

weight decay rate 0.01

BERT Pretrained Model BERT-Base
batch size 32

patience 5

max len 150

initial learning rate 5e-5

Table 12: Neural networks parameters and pretrained
models.

Method Parameters Value

TFIDF Normalization L2
Stopwords NLTK, English
Max Features Small Datasets: ∞

Large Datasets: 50k
MinDF 2
Sublinear TF

PTE Window 5
MinDF 2
Dimensions 300

FastText Window 5
Epochs 500
Model Skipgram
Dimensions 300

MetaFeatures k [10, 15, 20, 30, 35,
40, 45, 50]

Table 13: Text representations.

Algorithm Parameters Tunned Range
Values

Linear
SVM

C uniform(0,
20)

penalty [l1, l2]

kNN n neighbors range(1, 100,
1)

metrics [cosine,
l1, l2,
minkowski,
euclidean]

weights [uniform,
distance]

Logistic
Regres-
sion

C uniform(0,
20)

penalty [l2, None]
solver [newton-cg,

lbfgs, sag,
saga]

class weight [None, bal-
anced]

XGBoost n estimators range(100,
1000, 50)

learning rate quniform(0.01,
0.5, 0.01)

eta quniform(0.025,
0.5, 0.025)

max depth range(1, 14,
1)

min child weight quniform(1,
6, 1)

subsample quniform(0.5,
1.0, 0.05)

gamma quniform(0.0,
1.0, 0.05)

colsample bytree quniform(0.5,
1.0, 0.05)

Table 14: Algorithms and parameters. The implemen-
tations of LinearSVM, kNN and LogisticRegression
are from scikit-learn and XGBoost is from the respec-
tive authors implementation-based package. Omitted
parameters are the libraries default. This table has
the range functions and the uniform and quniform
distributions functions, which are used to define the
search space of some algorithms. The range(low, high,
step) function returns a number between [low, high)
in a step interval. The uniform(low, high) function re-
turns a value uniformly between low and high. The
quniform(low, high, q) function returns a value like
round(uniform (low, high) / q) * q and differs from the
uniform by a smooth factor.


