
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 3945–3957
August 1–6, 2021. ©2021 Association for Computational Linguistics

3945

Constructing Flow Graphs from Procedural Cybersecurity Texts

Kuntal Kumar Pal∗, Kazuaki Kashihara∗, Pratyay Banerjee∗,
Swaroop Mishra, Ruoyu Wang, Chitta Baral

School of Computing, Informatics, and Decision Systems Engineering,
Arizona State University,

{kkpal, kkashiha, pbanerj6, srmishr1, fishw, chitta}@asu.edu

Abstract

Following procedural texts written in natural
languages is challenging. We must read the
whole text to identify the relevant informa-
tion or identify the instruction-flow to com-
plete a task, which is prone to failures. If
such texts are structured, we can readily visu-
alize instruction-flows, reason or infer a partic-
ular step, or even build automated systems to
help novice agents achieve a goal. However,
this structure recovery task is a challenge be-
cause of such texts’ diverse nature. This paper
proposes to identify relevant information from
such texts and generate information flows be-
tween sentences. We built a large annotated
procedural text dataset (CTFW) in the cyberse-
curity domain (3154 documents). This dataset
contains valuable instructions regarding soft-
ware vulnerability analysis experiences. We
performed extensive experiments on CTFW
with our LM-GNN model variants in multi-
ple settings. To show the generalizability of
both this task and our method, we also exper-
imented with procedural texts from two other
domains (Maintenance Manual and Cooking),
which are substantially different from cyberse-
curity. Our experiments show that Graph Con-
volution Network with BERT sentence embed-
dings outperforms BERT in all three domains.

1 Introduction

Many texts in the real-world contain valuable in-
structions. These instructions define individual
steps of a process and help users achieve a goal
(and corresponding sub-goals). Documents includ-
ing such instructions are called procedural texts,
ranging from simple cooking recipes to complex
instruction manuals. Additionally, discussion in a
shared forum or social media platform, teaching
books, medical notes, sets of advice about social
behavior, directions for use, do-it-yourself notices,

∗ These authors contributed equally to this work.

itinerary guides can all be considered as procedu-
ral texts (Delpech and Saint-Dizier, 2008). Most
of these texts are in the form of natural languages
and thus, lacking structures. We define structure
as sentence-level dependencies that lead to a goal.
These dependencies can vary based on the text-
domain. Some examples of such dependencies
are action traces, effects of an action, information
leading to the action, and instruction order. Con-
structing structured flow graphs out of procedural
texts is the foundation for natural language under-
standing and summarization, question-answering
(QA) beyond factoid QA, automated workflow vi-
sualization, and the recovery of causal relationships
between two statements. By flow-graph we mean
both information and action flows in a text. How-
ever, the lack of structures in such texts makes them
challenging to follow, visualize, extract inferences,
or track states of an object or a sub-task, which
ultimately makes constructing their flow graphs an
insurmountable task.

Procedural texts are common in cybersecurity,
where security analysts document how to discover,
exploit, and mitigate security vulnerabilities in ar-
ticles, blog posts, and technical reports, which are
usually referred to as security write-ups. Practi-
tioners in cybersecurity often use write-ups as ed-
ucational and researching materials. Constructing
structured flow graphs from security write-ups may
help with automated vulnerability discovery and
mitigation, exploit generation, and security educa-
tion in general. However, automatically analyzing
and extracting information from security write-ups
are extremely difficult since they lack structure.

Figure 1 illustrates the core of a security write-up
(broken into sentences) that carries instructions for
exploiting a vulnerability in an online shopping ser-
vice. S1, S3, and S4 are the author’s observations
about the service’s nature. Based on this informa-
tion, S5 and S6 are two possible paths of actions.

3946

Figure 1: An example flow graph from the CTFW. Sen-
tences in S2 are merged into one block for clarity.

The author chose S6 and ran the Python code in S8
to exploit the service. S0 and S2 are irrelevant for
the author’s goal of exploiting this service.

Here we propose a novel approach to extract ac-
tion paths out of structure-less, natural language
texts by identifying actions and information flows
embedded in and between sentences and construct-
ing action flow graphs. Specifically, our focus is
on procedural texts in the cybersecurity domain.
We also show that constructing flow graphs helps
extract paths of actions in domains besides cyberse-
curity, such as cooking and maintenance manuals.

Most previous works (Mori et al., 2014; Kiddon
et al., 2015; Malmaud et al., 2014; Maeta et al.,
2015; Xu et al., 2020; Mysore et al., 2019; Song
et al., 2011) focus on fine-grained knowledge ex-
traction from procedural texts in diverse domains.
There are also a handful of works (Delpech and
Saint-Dizier, 2008; Fontan and Saint-Dizier, 2008;
Jermsurawong and Habash, 2015) that study the
structure of natural language texts. Different from
previous works, we extract structures and construct
flow graphs from natural texts at the sentence level.
This is because fine-grained domain-entity extrac-
tion tasks require a large amount of annotated data
from people with specific in-depth domain knowl-
edge, whereas text structures can be generalized.
Dataset. We built a dataset from security write-
ups that are generated from past Capture The Flag
competitions (CTFs). CTFs are computer security
competitions that are usually open to everyone in

the world. Players are expected to find and exploit
security vulnerabilities in a given set of software
services, and through exploiting vulnerabilities, ob-
tain a flag—a unique string indicating a success-
ful attempt—for each exploited service. Once the
game is over, many players publish security write-
ups that detail how they exploited services during
the game. While these write-ups are a valuable ed-
ucational resource for students and security profes-
sionals, they are usually unstructured and lacking
in clarity. We collected 3617 CTF write-ups from
the Internet, created a procedural text dataset, and
invited domain experts to label each sentence for
the purpose of constructing flow graphs and identi-
fying action paths. To the best of our knowledge,
this is the first attempt to use the knowledge embed-
ded in security write-ups for automated analysis.
The data and the code is publicly available 1 for
future research.

This paper makes the following contributions:
• We built a new procedural text dataset, CTFW,

in the cybersecurity domain. To the best of
our knowledge, CTFW is the first dataset that
contains valuable information regarding vulner-
ability analysis from CTF write-ups.

• We proposed a new NLU task of generating
flow graphs from natural language procedural
texts at the sentence level without identifying
fine-grained named entities.

• We proposed four variations of a graph neu-
ral network-based model (LM-GNN) to learn
neighbor-aware representation of each sentence
in a procedural text and predict the presence of
edges between any pair of sentences.

• We evaluated our models on CTFW. To the best
of our knowledge, this is the first attempt in au-
tomated extraction of information from security
write-ups. We also evaluated our models across
three datasets in different domains and showed
the generalizability of our approach.

2 Our Approach

We map each sentence of a procedural text as a
node in a graph, and the action or information flows
as edges. The task is then simplified into an edge
prediction task: Given a pair of nodes, find if there
is an edge between them. We learn feature rep-
resentations of nodes using language models like
BERT/RoBERTa (Devlin et al., 2018; Liu et al.,

1https://github.com/kuntalkumarpal/FlowGraph

3947

Dataset Statistics COR MAM CTFW

Documents 297 575 3154
Avg size of document 9.52 8.12 17.11
Avg length of sentence 65.46 34.81 92.87
Edges (|e+|) 2670 5043 54539
|e+| : (|e+|+ |e−|) 0.18 0.12 0.07
Avg degree of node 1.83 1.76 1.88

Table 1: Dataset Statistics. |e+| is the total number of
actual edges, and |e+| + |e−| is the total number of
edges possible. The in-degree of the starting node and
out-degree of the end node are both 0.

2019). Then, to make the nodes aware of their
neighboring sentences, we use Graph Neural Net-
work (GNN) to update the node representations.
We check for the edge between every pair of nodes
in a graph and reduce the task to a binary classifica-
tion during inference. This formulation enables us
to predict any kind of structure from a document.

3 Dataset Creation

In this section, we present how we created three
datasets on which we evaluated our approach. Ta-
ble 1 shows the statistics for each datasets used.

3.1 CTF Write-ups Dataset (CTFW)
Each CTF competition has multiple challenges or
tasks. Each task may have multiple write-ups by
different authors. We crawled 3617 such write-ups
from GitHub and CTFTime (CTFTime). Write-ups
are unique and diverse but have common inherent
principles. For each write-up, we provide two kinds
of annotations: sentence type and flow structure.
The writing style is informal with embedded code
snippets and often contains irrelevant information.

Part of the annotations were provided as an op-
tional, extra-credit assignment for the Information
Assurance course. These CTF write-ups were di-
rectly related to the course-content, where students
were required to read existing CTF write-ups and
write write-ups for other security challenges they
worked on during the course. Then students were
given the option of voluntarily annotating CTF
write-ups they read for extra credits in the course.
For this task, we followed all the existing annota-
tion guidelines and practices. We also ensured that
(1) The volunteers were aware of the fact that their
annotations would be used for a research project
(2) They were aware that no PII was involved or
would be used in the research project (3) They were

aware that extra credits were entirely optional, and
they could refrain from submitting at any point
of time without any consequences (4) Each vol-
unteer was assigned only 10-15 write-ups based
on a pilot study we did ahead of time, annotating
an average-length CTF write-up took about two
minutes (maximum ten mins).

Remaining annotations were performed by the
Teaching Assistants (TA) of the course. These an-
notations were done as part of the course prepara-
tion process, which was part of their work contract.
All the TAs were paid bi-weekly compensation by
the university or by research funding. It was also
ensured that the TAs knew these annotations would
be used for a research project, their PII was not
involved and annotations were to be anonymized
before using. We verified the annotations by ran-
domly selecting write-ups from the set. Figure 1
shows a sample annotation.

Sentence Type Annotations. We split the docu-
ments into sentences using natural language rules.
We then ask the volunteers to annotate the type of
each statement as either Action (A), Information
(I), Both (A/I), Codes (C), or irrelevant (None).
Action sentences are those where the author spec-
ifies actions taken by them, whereas, Information
statements mention observations of the author, the
reasons and effects of their action. Sentences con-
taining codes are assigned as C, and those which
can be considered as both information and actions
are marked as Both (A/I).

Flow structure Annotations. The second level
of annotations is regarding the write-up structure.
Each volunteer is given a csv file for each docu-
ment with a set of sentence IDs and text for each
write-up. They are asked to annotate the flow of
information in the document by annotating the sen-
tence id of some next possible sentences, which
indicate the flow. We filter those write-ups which
are irrelevant and those which did not have much
detail (single line of valuable information). We
call a write-up as irrelevant if it has no action-
information annotations or if it has direct codes
without any natural language description of steps
to detect vulnerabilities. We only keep write-ups
written in the English language for this work. Fi-
nally, we have 3154 write-ups with sentence type
and structure annotations.

CTFTime website states that the write-ups are
copyrighted by the authors who posted them and
it is practically impossible to contact each author.

3948

Such data is also allowed to use for academic re-
search purposes(usc; euc). Thus, we follow the pre-
vious work using data from CTFTime (Švábenskỳ
et al., 2021), and share only the urls of those write-
ups which we use. We do not provide the scraper
script since it would create a local copy of the write-
up files unauthorized by the users. Interested read-
ers can replicate the simple scraper script from the
instructions in Appendix A and use it after review-
ing the conditions under which it is permissible to
use. We, however, share our annotations for those
write-up files.

3.2 Cooking Recipe Flow Corpus (COR)
This corpus (Yamakata et al., 2020) provides 300
recipes with annotated recipe named entities and
fine-grained interactions between each entity and
their sequencing steps. Since we attempt to gener-
ate action flow graphs without explicitly identifying
each named entity, we aggregate the fine-grained
interactions between recipe named entities to gener-
ate sentence-level flows for each recipe. We reject
three single-sentence recipes.

3.3 Maintenance Manuals Dataset (MAM)
This dataset (Qian et al., 2020) provides multi-
grained process model extraction corpora for the
task of extracting process models from texts. It
has over 160 Maintenance Manuals. Each manual
has fine-grained interactions between each entity
and its sequencing steps. We use the annotations
from sentence-level classification data and seman-
tic recognition data for generating annotations of
sentence-level flows for each process. Here also,
we reject single sentence processes.

4 Model Description

Our goal is to find paths or traces of actions or
information between texts. This needs an under-
standing of each sentence’s interconnection. Hence,
we modeled the problem into an edge prediction
task in a graph using GNNs. We represent each sen-
tence as a node and directed edges as information
flows. Since this is procedural text (unidirectional
nature) of instructions, we consider only the di-
rected edges from one sentence Sn to any of its
next sentences Sn+i. The node representations are
learned using language models (LM) and GNNs.

4.1 Document to Sentence Pre-processing
Given a natural language document, first we split
the document into sentences based on simple rules

and heuristics. COR and MAM datasets already
have document split into separate sentences. In the
flow graph creation task, we filter out irrelevant
sentences for the CTFW dataset based on the sen-
tence type annotations. After this pre-processing
task, each document (Di) is converted into a series
of sentences (Sj) where n is the number of valid
sentences in a document.

Di = {S0, S1, S2...Sn−1}

Figure 2: Node Representation Learning for a docu-
ment with four sentences in single-layer GNN. Left:
Semi-Complete Structure, Right: Linear Structure.
During training, the sentence representation (CLS i)
are enriched using appropriate message passing tech-
niques from the connected 1-hop neighbors.

4.2 Document to Graph Representation

A graph (G = (V,E)) is formally represented as a
set of nodes (V = {v0, v1, ..}) connected by edges
(E = {e0, e1, ..} where ei = {vm, vn}). We con-
sider the sentences (Sj) of any document (Di) as
nodes of a directed graph (Gi). We experiment
with two graph structure types for learning better
node representation using GNN. First, we form
local windows (WN , where N = 3, 4, 5, all sen-
tences) for each sentence and allow the model to
learn from all of the previous sentences in that win-
dow. We form the document graph by connecting
each sentence with every other sentence in that
window, with directed edges only from Si to Sj
where i < j. We do this since procedural lan-
guages are directional. We call this configuration
Semi-Complete. Second, we consider connecting
the nodes linearly where every Si is connected to
Si+1 except the last node. We call this Linear set-
ting. Figure 2 shows the settings. We use LMs
like BERT and RoBERTa to generate initial sen-
tence representations. For each sentence (Si), we
extract the pooled sentence representation (CLSSi)
of contextual BERT/RoBERTa embeddings (hSi).

3949

We use CLSSi as node features for the graph (Gi).

hSi = BERT ([CLS]s0s1...sn−1 [SEP])

4.3 Neighbor Aware Node Feature Learning
Since the LM sentence vectors are generated indi-
vidually for each sentence in the document, they
are not aware of other local sentences. So, through
the semi-complete graph connection, the model can
learn a global understanding of the document. How-
ever, the linear connection helps it learn better node
representation conditioned selectively on its prede-
cessor. We call the connected nodes as the neigh-
bor nodes. We use Graph Convolutional Network
(GCN) (Kipf and Welling, 2016) and Graph Atten-
tion Network (GAT) (Veličković et al., 2017) to
aggregate the neighbor information for each node
following the generic graph learning function (1)

Hl+1 = f(Hl,A) (1)

where A is the adjacency matrix of the graph, Hl

and H(l+1) are the node representations at lth and
(l+ 1)th layer of the network and f is the message
aggregation function. In GCN, each node i, ag-
gregates the representations of all of its neighbors
N(i) based on A and itself at layer l and com-
putes the enriched representation hl+1

i based on
the weight matrix Θ of the layer normalized by
degrees of source d(i) and its connected node d(j)
as per (2). In GAT, messages are aggregated based
on multi-headed attention weights (α) learned from
the neighbor node representations hl

j following (3).

hl+1
i = Θ

∑
j∈N(i)∪{i}

1√
d(i)d(j)

hl
j (2)

hl+1
i = αiiΘhl

i +
∑

j∈N(i)

αijΘhl
j (3)

4.4 Projection
We concatenate the neighbor aware node repre-
sentations of each pair of nodes (hi;hj) from a
graph and pass it through two projection layers
with a GELU (Hendrycks and Gimpel, 2016) non-
linearity in between. We use the same non-linearity
functions used by the BERT layers for consistency.
We steadily decrease the parameters of each pro-
jection layer by half. During testing, given a docu-
ment, we are unaware of which two sentences are
connected. So, we compare each pair of nodes.
This leads to an unbalanced number of existing (1)
and non-existing (0) edge labels. Hence, we use

weighted cross-entropy loss function as in equation
(4) and (5), where L is the weighted cross-entropy
loss, wc is the weight for class c, i is the data in
each mini-batch.

L(x, c) = wc

(
− xc + log

(∑
j

exp(xj)
))

(4)

L =

∑N
i=1 L(i, ci)∑N

i=1wci

(5)

4.5 Training and Inference
Our training data comprises a set of sentences and
the connections as an adjacency matrix for each
document. Batching is done based on the number
of graphs. GCN/GAT updates the sentence repre-
sentations. A pair of node representations are as-
signed a label of 1 if there is an edge between them;
otherwise, we assign them 0. Thus, we model it as
a binary classification task as in equation (6) where
f is the projection function, g is the softmax func-
tion, and y is the binary class output. Depending
on the weighted cross-entropy loss, the node rep-
resentations get updated after each epoch. During
inference, the model generates node representa-
tions of each sentence in a test document, and we
predict whether an edge exists between any two
nodes in a given document graph.

yc = argmax
k

g(f(hi;hj), k) c ∈ {0, 1} (6)

5 Experiments

Datasets and Tasks: Each dataset is split into
train, validation, and test sets in 70:10:20 ratio.
The first task is identifying relevant information
from raw CTF write-ups by classifying the type
of each sentence. The second task is identifying
information flows between sentences by predicting
edges between sentence pairs, if any.
Metrics: We use accuracy as the evaluation metric
for the Sentence Type classification task on CTFW.
For the second task, because of the label imbalance
we compare based on the area under Precision-
Recall curve (PRAUC) and also report the corre-
sponding F1-score. Hence do not report area under
the ROC curve or accuracy.

We consider four settings for this task. The no
window setting (Wall) checks whether there is an
edge between any two statements in the given doc-
ument. The comparisons required in this setting
are directly proportional to the document’s size. In
CTFW, the size of each write-up is quite large. So,

3950

Models CTFW COR MAM

PRAUC F1 PRAUC F1 PRAUC F1

Baselines

Random - 50.49 - 42.78 - 47.82
Weighted Random - 37.81 - 39.13 - 44.10
BERT-NS 0.5751 26.12 0.5638 43.14 0.5873 29.73
RoBERTa-NS 0.5968 32.44 0.5244 42.99 0.6236 39.65

Ours

BERT-GCN 0.7075 69.26 0.6312 58.13 0.6888 63.75
RoBERTa-GCN 0.7221 69.04 0.6233 61.44 0.6802 65.73
BERT-GAT 0.5585 61.93 0.4553 41.93 0.4568 62.18
RoBERTa-GAT 0.5692 64.51 0.4358 24.74 0.4585 59.55

Table 2: Comparison with Baselines on Best Test Area under Precision-Recall Curve (PRAUC) and its correspond-
ing F1 for CTFW (CTFwrite-up), COR (Cooking), MAM (Maintenance) datasets. NS is the next sentence based
prediction approach. Our best model performance is bold, while maximum baseline performance is underlined.

to reduce unnecessary comparisons, we apply sim-
ple heuristics that instructions in procedural text,
in general, does not have longer direct dependen-
cies. Thus, using the windows, we can control each
sentence’s number of comparisons (node). To un-
derstand how the performances change we evaluate
with a sliding windows of N sentences (WN) where
N = 3, 4, 5. The comparisons are only made with
the next N sentences from a given sentence. For
example, in case of W5, for first sentence (S1) we
check for edges with S2, S3, S4, S5, S6 and not
S7 on-wards. However, to have a fair comparison,
we keep labeled out-of-window gold edges, if any.
The ratios of existing and total edges in CTFW are
0.07 (Wall), 0.24 (W5), 0.29 (W4), 0.38 (W3).
Training: We use Pytorch Geometric (Fey and
Lenssen, 2019) for GNN and transformers (Wolf
et al., 2020) for LM implementations. Training
is done with AdamW (Loshchilov and Hutter,
2017) optimizer along with linear warmup sched-
uler on 4 Tesla V100 16GB GPUs. We use bert-
base-uncased, bert-large-uncased, roberta-base and
roberta-large versions as base model. We store the
model with the best PRAUC score. Batch size of
{4,8,16} and learning rates of {1e-5,5e-6} are used.
Maximum sequence length varies between {64, 80,
128}. GNN depths are kept 128 (layer 1) and 64
(layer 2). We use a dropout of 0.4 in selected layers.
For GAT, we keep four attention heads in layer 1.
Details are present in Appendix C.

6 Results and Discussion

6.1 Sentence Type Classification (STC)

We use large and base versions of BERT and
RoBERTa for this task to predict the type of sen-
tences in a given text to establish a baseline for
this task. This task helps to identify relevant and

irrelevant sentences in a document. Each sentence
is classified into any of Action, Information, Both,
Code, and None. These fine-grained annotations
can be used in later works for creating automated
agents for vulnerability analysis. The processed
data consists of 120751 samples for training, 17331
for validation, and 34263 for testing. Table 3 shows
that RoBERTa-large performs better than the rest.

Model Val Test

BERT-Base 78.48±0.25 77.42±0.10
BERT-Large 78.19±0.48 77.13±0.20
RoBERTa-Base 78.85±0.25 77.37±0.11
RoBERTa-Large 79.02±0.16 77.66±0.12

Table 3: Sentence Type Classification (Mean Accuracy
from three seed values). Best performance in bold.

6.2 Flow Structure Prediction

Here we present the performance results for the
flow structure prediction.
Random Baseline: In the Random baseline, for
every pair of nodes in each document we randomly
select 0 (no-edge) or 1 (edge). For Weighted Ran-
dom baseline, we choose randomly, based on the
percentage of edge present in the train set. We only
report F1 since there is no probability calculation.
Next Sentence-based Prediction (NS) Baseline:
We use LMs like BERT and RoBERTa in a next sen-
tence prediction setting to get the baselines. Each
pair of sentences is concatenated using [SEP] token
and passed through these language models. Using
the pooled LM representation, we classify whether
an edge exists between them or not. We show max-
imum PRAUC and its corresponding F1 for each
dataset from the results of each of our window set-
tings (W3, W4, W5, Wall).

3951

Figure 3: Effect of GNN Layers (L0, L1, L2) on performance (PRAUC) of the models for Wall, W5, W4, W3

settings on the three datasets

Models: We compare four variants of our LM-
GNN models both with baseline and among each
other in Table 2. The scores are overall best scores
across single and double layers GNN (GCN/GAT)
and LM (BERT/RoBERTa) after experiments with
both base and large version, trained with pre-
trained and randomly initialized weights.

We see that the best LM-GCN models outper-
form the best baseline model by 0.12, 0.07, 0.06
in PRAUC for CTFW, COR, and MAM datasets,
respectively. However, the best LM-GAT scores
falls short of the baselines indicating that the graph
attentions on LM sentence representations cannot
learn robust representation to perform this edge
prediction task. Another thing to notice here is
that, the best BERT-GCN models perform better
than RoBERTa-GCN for COR and MAM datasets
while performs poorly in the CTFW dataset. We
hypothesize that this is because, the CTFW dataset
has ten times more data than COR and six times
more than MAM, which helps the RoBERTa model
correctly predict the edges.

6.3 Analysis

Effect of Graph Connection Type: Table 4
shows how the models behave with semi-complete
(SC) and linear (L) graph connection. For each

W3 W4 W5 Wall

CTFW-SC 0.6630 0.5985 0.5733 0.5590
CTFW-L 0.7221 0.6520 0.6150 0.3962
CTFW-EP 0.3700 0.2900 0.2400 0.0700

COR-SC 0.5639 0.5129 0.4731 0.5580
COR-L 0.6456 0.6012 0.5274 0.4034
COR-EP 0.3700 0.3100 0.2600 0.1700

MAM-SC 0.6528 0.6219 0.6091 0.6718
MAM-L 0.6888 0.6362 0.6137 0.4161
MAM-EP 0.4500 0.3700 0.3200 0.1500

Table 4: Effect of Semi-Complete(SC) and Lin-
ear(L) Graph Connection on 3 datasets in Area under
Precision-Recall Curve (PRAUC). We also keep edge-
percent (EP) in four window settings for comparison.

dataset, we compare the PRAUC results for each
window to draw more granular insight on the effect
of neighbor aware representation learning. When
we restrict graph learning by creating small win-
dows (W3, W4, W5), the linear model works better
because of its selective learning conditioned on its
predecessor. On the other hand, the semi-complete
connection helps to learn a global awareness and
works best in the Wall setting. It is important to
note that each model performs better than the aver-
age PRAUC performance, which is the percentage
of edges in the data indicating that the model is

3952

able to learn using the graph connections.
Effect of Graph Layers: We study how the depth
of the GNNs affects the performance. We compare
PRAUC across all four variations of the model in
No-Window (Wall), W5, W4, W3 settings in Fig-
ure 3. We experimented with no (L0), single (L1)
and double (L2) GNN layers. In all three datasets,
we find the performance improves when we use a
single layer and degrades beyond that for each of
the windows with GCN based models. We do not
go beyond two layers because of this observation
and the graph connection types we use. We believe
the reason for this drop (0.03-0.08 PRAUC) is that
information from 2-hop neighbors might hinder the
learning of the current node and confuse the model
to predict wrongly. The GAT-based models mostly
remain unaffected with the graph layers for both
COR and MAM while showing some improvement
in CTFW for one layer setting.

Figure 4: Performance for CTFW, COR, MAM trained
from scratch and fine-tuned with pre-trained weights.

Effect of Pre-trained LM Weights: We study
the impact of pre-trained weights of BERT and
RoBERTa on the performance in Figure 4. We no-
tice, for the three datasets, the performance slightly
decreases when the pre-trained model weights are
used. This observation may be because the texts’
nature is quite different from the type of texts these
LMs have been pre-trained on. The CTFW data

Figure 5: Performance on CTFW, COR, MAM trained
with base and large version of the model.

often contains code fragments embedded in sen-
tences, emoticons, or common conversational lan-
guages used in public forums.
Effect of LM Size: We also experimented with the
size of sentence embeddings to see if that makes
any difference to the performance. We use base
and large version of BERT and RoBERTa for the
experiments across three datasets. We present the
impact on F1 and PRAUC in Figure 5. The perfor-
mance of the larger versions of the models drop in
all three datasets. This drop, we believe, is because
the sentences in these texts are relatively short and
help the smaller versions of the models with lesser
parameters to learn better.
Other experiments: We also experimented with
modifications of other parts of the models like
changing the number of projection layers, projec-
tion layer sizes, the number of attention heads in
the GAT model, or dropout percent in selected lay-
ers and modes of message aggregation (add, max,
mean). We do not report them since they do not
significantly change PRAUC values.

7 Related Work

Procedural knowledge extraction: There are at-
tempts to extract structured knowledge from cook-
ing instructions in the form of named entities (Mal-

3953

maud et al., 2014), their sentence-level dependen-
cies (Mori et al., 2014; Maeta et al., 2015; Xu et al.,
2020), and action-verb argument flow across sen-
tences (Jermsurawong and Habash, 2015; Kiddon
et al., 2015; Pan et al., 2020). In other domains,
extraction of clinical steps from medline abstracts
(Song et al., 2011), extraction of material synthe-
sis operations and its arguments in material sci-
ence (Mysore et al., 2019), providing structures
to how-to procedures (Park and Motahari Nezhad,
2018), and action-argument retrieval from web de-
sign tutorials (Yang et al., 2019) mostly focus on
fine-grained entity extractions rather than action
or information traces. The goal of our paper is
constructing flow graphs from free-form, natural-
language procedural texts without diverse domain
knowledge. Hence, we refrain from training spe-
cialized named-entity recognizers for each domain
to find specific entities. Our work is related to
event or process discovery in process modeling
tasks (Epure et al., 2015; Honkisz et al., 2018; Qian
et al., 2020; Hanga et al., 2020), but our goal is not
finding specific events or actions from procedural
texts. In addition, the recent research proposed a
method to create the forum structures from an un-
structured forum based on the contents of each post
using BERT’s Next Sentence Prediction (Kashihara
et al., 2020). However, we focus on building flow
graphs for procedural texts using GNNs.

Graph Neural Networks: GNNs are important in
reasoning with graph-structured data in three ma-
jor tasks, node classification (Kipf and Welling,
2016; Hamilton et al., 2017), link prediction
(Schlichtkrull et al., 2018), and graph classification
(Ying et al., 2018; Pan et al., 2015, 2016; Zhang
et al., 2018). GNNs help learn better node represen-
tations in each task using neural message passing
(Gilmer et al., 2017) among connected neighbors.
We consider two widely used GNNs, GCN (Graph
Convolutional Network) (Kipf and Welling, 2016)
and GAT (Graph Attention Networks) (Veličković
et al., 2017) to learn sentence representation to pro-
vide a better edge prediction.

Edge Prediction Task: Edge or link prediction
tasks (Li et al., 2018; Zhang and Chen, 2018;
Pandey et al., 2019; Haonan et al., 2019; Bacciu
et al., 2019) work mainly on pre-existing networks
or social graphs as inputs and predict the existence
of future edges between nodes by extracting graph-
specific features. Different from existing work, we
modeled the task of generating a graph-structure

from a given natural-language text as an edge pre-
diction task in a graph and learning representations
of sentences considered as nodes.
Combinations of BERT and GCN: Recent works
have used concatenation of BERT and GCN rep-
resentations of texts or entities to improve perfor-
mance of tasks like commonsense knowledge-base
completion (Malaviya et al., 2019), text classifica-
tion (Ye et al.; Lu et al., 2020), multi-hop reason-
ing (Xiao et al., 2019), citation recommendation
(Jeong et al., 2019), medication recommendation
(Shang et al., 2019), relation extraction (Zhao et al.,
2019). Graph-BERT (Zhang et al., 2020) solely
depends on attention layers of BERT without us-
ing any message aggregation techniques. However,
we differ from each of the previous methods in
terms of model architecture, where we use BERT
to learn initial sentence representations and GCN or
GAT to improve them by learning representations
from its neighboring connected sentences. BERT-
GAT for MRC (Zheng et al., 2020) created the
graph structure from the well-structured wikipedia
data whereas we explore two predefined natures of
graph structures because of the free-formed text na-
ture without such well-defined text-sections, pres-
ence of code-fragments, emoticons, and unrelated-
token.

8 Conclusion and Future Work

We introduce a new procedural sentence flow ex-
traction task from natural-language texts. This
task is important for procedural texts in every do-
main. We create a sufficiently large procedural
text dataset in the cybersecurity domain (CTFW)
and construct structures from the natural form. We
empirically show that this task can be generalized
across multiple domains with different natures and
styles of texts. In this paper, we only focus on En-
glish security write-ups. As part of future work, we
plan to build automated agents in the cybersecurity
domain to help and guide novices in performing
software vulnerability analysis. We also plan to in-
clude non-English write-ups. We hope the CTFW
dataset will facilitate other works in this research
area.

Acknowledgement

The authors acknowledge support from the Defense
Advanced Research Projects Agency (DARPA)
grant number FA875019C0003 for this project.

3954

Impact Statement

The dataset introduced here consists of write-ups
written in public forums by students or security
professionals from their personal experiences in
the CTF challenges. The aggregated knowledge of
such experiences is immense. This in-depth knowl-
edge of the analysis tools and the approach to a
problem is ideal for students working in software
vulnerability analysis to learn from. Automated
tutors built using such knowledge can reduce the ef-
forts and time wasted in manually reading through
a series of lengthy write-up documents.

CTFTime website states that the write-ups are
copyrighted by the authors who posted them and it
was practically impossible to contact each authors.
It is also allowed to use the data for research pur-
poses (usc; euc) Thus, we follow the previous work
(Švábenskỳ et al., 2021) using data from CTFTime
and share only the urls of those write-ups from
the CTFTime website which we use. We do not
provide the scraper script since it would create a
local copy of the write-up files unauthorized by the
users. Interested readers can replicate the simple
scraper script from the instructions in Appendix
A and use it after reviewing the conditions under
which it is permissible to use. We, however, share
our annotations for those write-ups files.

Part of the annotations were provided as an op-
tional, extra-credit assignment for the Information
Assurance course. These CTF write-ups were di-
rectly related to the course-content, where students
were required to read existing CTF write-ups and
write write-ups for other security challenges they
worked on during the course. Then students were
given the option of voluntarily annotating CTF
write-ups they read for extra credits in the course.
For this task, we followed all the existing anno-
tation guidelines and practices. We also ensured
that

• The volunteers were aware of the fact that
their annotations would be used for a research
project.

• They were aware that no PII was involved or
would be used in the research project.

• They were aware that extra credits were en-
tirely optional, and they could refrain from
submitting at any point of time without any
consequences.

• Each volunteer was assigned only 10-15 write-
ups based on a pilot study we did ahead of
time, annotating an average-length CTF write-
up took about two minutes (maximum ten
mins).

Remaining annotations were performed by the
Teaching Assistants (TA) of the course. These an-
notations were done as part of the course prepara-
tion process, which was part of their work contract.
All the TAs were paid bi-weekly compensation by
the university or by research funding. It was also
ensured that the TAs knew these annotations would
be used for a research project, their PII was not
involved and annotations were to be anonymized
before using.

References
European union, copyright in the

eu, 2020. https://europa.eu/
youreurope/business/running-business/
intellectual-property/copyright/index_
en.htm. Accessed: 2021-05-01.

Us copyright office, copyright law of the united
states, 2016. https://www.copyright.gov/
title17/92chap1.html#107. Accessed: 2021-
05-01.

Davide Bacciu, Alessio Micheli, and Marco Podda.
2019. Graph generation by sequential edge predic-
tion. In ESANN.

CTFTime. CTFTime. https://ctftime.org. Ac-
cessed: 2021-05-01.

Estelle Delpech and Patrick Saint-Dizier. 2008. Inves-
tigating the structure of procedural texts for answer-
ing how-to questions. In Proceedings of the Sixth In-
ternational Conference on Language Resources and
Evaluation (LREC’08), Marrakech, Morocco. Euro-
pean Language Resources Association (ELRA).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Elena Viorica Epure, Patricia Martı́n-Rodilla, Char-
lotte Hug, Rebecca Deneckère, and Camille Salinesi.
2015. Automatic process model discovery from tex-
tual methodologies. In 2015 IEEE 9th International
Conference on Research Challenges in Information
Science (RCIS), pages 19–30. IEEE.

Matthias Fey and Jan Eric Lenssen. 2019. Fast
graph representation learning with pytorch geomet-
ric. arXiv preprint arXiv:1903.02428.

https://europa.eu/youreurope/business/running-business/intellectual-property/copyright/index_en.htm
https://europa.eu/youreurope/business/running-business/intellectual-property/copyright/index_en.htm
https://europa.eu/youreurope/business/running-business/intellectual-property/copyright/index_en.htm
https://europa.eu/youreurope/business/running-business/intellectual-property/copyright/index_en.htm
https://www.copyright.gov/title17/92chap1.html#107
https://www.copyright.gov/title17/92chap1.html#107
https://ctftime.org
http://www.lrec-conf.org/proceedings/lrec2008/pdf/20_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/20_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/20_paper.pdf

3955

Lionel Fontan and Patrick Saint-Dizier. 2008. Ana-
lyzing the explanation structure of procedural texts:
Dealing with advice and warnings. In Semantics
in Text Processing. STEP 2008 Conference Proceed-
ings, pages 115–127.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley,
Oriol Vinyals, and George E Dahl. 2017. Neu-
ral message passing for quantum chemistry. arXiv
preprint arXiv:1704.01212.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017.
Inductive representation learning on large graphs. In
Advances in neural information processing systems,
pages 1024–1034.

Khadijah Muzzammil Hanga, Yevgeniya Kovalchuk,
and Mohamed Medhat Gaber. 2020. A graph-based
approach to interpreting recurrent neural networks
in process mining. IEEE Access, 8:172923–172938.

Lu Haonan, Seth H Huang, Tian Ye, and Guo Xiuyan.
2019. Graph star net for generalized multi-task
learning. arXiv preprint arXiv:1906.12330.

Dan Hendrycks and Kevin Gimpel. 2016. Gaus-
sian error linear units (gelus). arXiv preprint
arXiv:1606.08415.

Krzysztof Honkisz, Krzysztof Kluza, and Piotr
Wiśniewski. 2018. A concept for generating busi-
ness process models from natural language descrip-
tion. In International Conference on Knowledge Sci-
ence, Engineering and Management, pages 91–103.
Springer.

Chanwoo Jeong, Sion Jang, Hyuna Shin, Eunjeong
Park, and Sungchul Choi. 2019. A context-
aware citation recommendation model with bert
and graph convolutional networks. arXiv preprint
arXiv:1903.06464.

Jermsak Jermsurawong and Nizar Habash. 2015. Pre-
dicting the structure of cooking recipes. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 781–786.

Kazuaki Kashihara, Jana Shakarian, and Chitta Baral.
2020. Social structure construction from the forums
using interaction coherence. In Proceedings of the
Future Technologies Conference, pages 830–843.

Chloé Kiddon, Ganesa Thandavam Ponnuraj, Luke
Zettlemoyer, and Yejin Choi. 2015. Mise en place:
Unsupervised interpretation of instructional recipes.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
982–992.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Ji-chao Li, Dan-ling Zhao, Bing-Feng Ge, Ke-Wei
Yang, and Ying-Wu Chen. 2018. A link predic-
tion method for heterogeneous networks based on

bp neural network. Physica A: Statistical Mechan-
ics and its Applications, 495:1–17.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Zhibin Lu, Pan Du, and Jian-Yun Nie. 2020. Vgcn-bert:
Augmenting bert with graph embedding for text clas-
sification. In European Conference on Information
Retrieval, pages 369–382. Springer.

Hirokuni Maeta, Tetsuro Sasada, and Shinsuke Mori.
2015. A framework for procedural text understand-
ing. In Proceedings of the 14th International Con-
ference on Parsing Technologies, pages 50–60.

Chaitanya Malaviya, Chandra Bhagavatula, Antoine
Bosselut, and Yejin Choi. 2019. Exploiting
structural and semantic context for commonsense
knowledge base completion. arXiv preprint
arXiv:1910.02915.

Jonathan Malmaud, Earl Wagner, Nancy Chang, and
Kevin Murphy. 2014. Cooking with semantics. In
Proceedings of the ACL 2014 Workshop on Semantic
Parsing, pages 33–38.

Shinsuke Mori, Hirokuni Maeta, Yoko Yamakata, and
Tetsuro Sasada. 2014. Flow graph corpus from
recipe texts. In LREC, pages 2370–2377.

Sheshera Mysore, Zach Jensen, Edward Kim, Kevin
Huang, Haw-Shiuan Chang, Emma Strubell, Jef-
frey Flanigan, Andrew McCallum, and Elsa Olivetti.
2019. The materials science procedural text cor-
pus: Annotating materials synthesis procedures
with shallow semantic structures. arXiv preprint
arXiv:1905.06939.

Liang-Ming Pan, Jingjing Chen, Jianlong Wu,
Shaoteng Liu, Chong-Wah Ngo, Min-Yen Kan, Yu-
gang Jiang, and Tat-Seng Chua. 2020. Multi-modal
cooking workflow construction for food recipes.
In Proceedings of the 28th ACM International
Conference on Multimedia, pages 1132–1141.

Shirui Pan, Jia Wu, Xingquan Zhu, Guodong Long, and
Chengqi Zhang. 2016. Task sensitive feature explo-
ration and learning for multitask graph classification.
IEEE transactions on cybernetics, 47(3):744–758.

Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang,
and S Yu Philip. 2015. Joint structure feature explo-
ration and regularization for multi-task graph clas-
sification. IEEE Transactions on Knowledge and
Data Engineering, 28(3):715–728.

3956

Babita Pandey, Praveen Kumar Bhanodia, Aditya
Khamparia, and Devendra Kumar Pandey. 2019. A
comprehensive survey of edge prediction in social
networks: Techniques, parameters and challenges.
Expert Systems with Applications, 124:164–181.

Hogun Park and Hamid Reza Motahari Nezhad. 2018.
Learning procedures from text: Codifying how-to
procedures in deep neural networks. In Companion
Proceedings of the The Web Conference 2018, pages
351–358.

Chen Qian, Lijie Wen, Akhil Kumar, Leilei Lin, Li Lin,
Zan Zong, Jianmin Wang, et al. 2020. An approach
for process model extraction by multi-grained text
classification. In International Conference on Ad-
vanced Information Systems Engineering, pages
268–282. Springer.

Kenneth Reitz. Requests: Http for humans. https://
requests.readthedocs.io/en/master/. Ac-
cessed: 2020-10-23.

Leonard Richardson. 2007. Beautiful soup documenta-
tion. April.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In European Semantic Web Confer-
ence, pages 593–607. Springer.

Junyuan Shang, Tengfei Ma, Cao Xiao, and Jimeng
Sun. 2019. Pre-training of graph augmented trans-
formers for medication recommendation. arXiv
preprint arXiv:1906.00346.

Sa-kwang Song, Heung-seon Oh, Sung Hyon Myaeng,
Sung-Pil Choi, Hong-Woo Chun, Yun-Soo Choi,
and Chang-Hoo Jeong. 2011. Procedural knowledge
extraction on medline abstracts. In International
Conference on Active Media Technology, pages 345–
354. Springer.

spaCy. 2017. spacy v2.0. https://spacy.io/
models/en#en_core_web_md.

Valdemar Švábenskỳ, Pavel Čeleda, Jan Vykopal, and
Silvia Brišáková. 2021. Cybersecurity knowledge
and skills taught in capture the flag challenges. Com-
puters & Security, 102:102154.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks. arXiv preprint
arXiv:1710.10903.

Thomas Wolf, Julien Chaumond, Lysandre Debut, Vic-
tor Sanh, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Morgan Funtowicz, Joe Davison, Sam
Shleifer, et al. 2020. Transformers: State-of-the-
art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 38–45.

Yunxuan Xiao, Yanru Qu, Lin Qiu, Hao Zhou, Lei Li,
Weinan Zhang, and Yong Yu. 2019. Dynamically
fused graph network for multi-hop reasoning. arXiv
preprint arXiv:1905.06933.

Frank F Xu, Lei Ji, Botian Shi, Junyi Du, Gra-
ham Neubig, Yonatan Bisk, and Nan Duan. 2020.
A benchmark for structured procedural knowledge
extraction from cooking videos. arXiv preprint
arXiv:2005.00706.

Yoko Yamakata, Shinsuke Mori, and John A Carroll.
2020. English recipe flow graph corpus. In Proceed-
ings of The 12th Language Resources and Evalua-
tion Conference, pages 5187–5194.

Longqi Yang, Chen Fang, Hailin Jin, Walter Chang,
and Deborah Estrin. 2019. Creative procedural-
knowledge extraction from web design tutorials.
arXiv preprint arXiv:1904.08587.

Zhihao Ye, Gongyao Jiang, Ye Liu, Zhiyong Li, and
Jin Yuan. Document and word representations gen-
erated by graph convolutional network and bert for
short text classification.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang
Ren, Will Hamilton, and Jure Leskovec. 2018. Hi-
erarchical graph representation learning with differ-
entiable pooling. In Advances in neural information
processing systems, pages 4800–4810.

Jiawei Zhang, Haopeng Zhang, Li Sun, and Congying
Xia. 2020. Graph-bert: Only attention is needed
for learning graph representations. arXiv preprint
arXiv:2001.05140.

Muhan Zhang and Yixin Chen. 2018. Link predic-
tion based on graph neural networks. In Advances
in Neural Information Processing Systems, pages
5165–5175.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and
Yixin Chen. 2018. An end-to-end deep learning ar-
chitecture for graph classification. In Thirty-Second
AAAI Conference on Artificial Intelligence.

Yi Zhao, Huaiyu Wan, Jianwei Gao, and Youfang Lin.
2019. Improving relation classification by entity
pair graph. In Asian Conference on Machine Learn-
ing, pages 1156–1171.

Bo Zheng, Haoyang Wen, Yaobo Liang, Nan Duan,
Wanxiang Che, Daxin Jiang, Ming Zhou, and Ting
Liu. 2020. Document modeling with graph attention
networks for multi-grained machine reading compre-
hension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6708–6718, Online. Association for Computa-
tional Linguistics.

https://requests.readthedocs.io/en/master/
https://requests.readthedocs.io/en/master/
https://spacy.io/models/en#en_core_web_md
https://spacy.io/models/en#en_core_web_md
https://doi.org/10.18653/v1/2020.acl-main.599
https://doi.org/10.18653/v1/2020.acl-main.599
https://doi.org/10.18653/v1/2020.acl-main.599

3957

A Extraction and Processing of
Write-ups:

The extraction of CTF Write-up involved the fol-
lowing three phases.

Writeup URL extraction : We loop through all
the write-up pages on ctftime website from page
numbers 1 to 25500). We use a simple python
scraper to scrape the content of each page using
python requests (Reitz) library. We look for key-
word “Original write-ups” and extracted the href
component if present. These URLs are stored for
each writeup indexed with the page numbers.

Write-up Content extraction : We use these
URLs and extract the contents of the write-ups
using python libraries requests and BeautifulSoup
(Richardson, 2007). We extract all the text lines
ignoring contents in html tags like style, scripts,
head, title. The contents are stored in a text file
named with the same page ids of the URLs.

Processing of Write-up : We processed and filter
out sentences which do not have any verb forms us-
ing spacy (spaCy, 2017) POS-Tagger. We cleaned
and removed unnecessary spaces and split them
into sentences. The processing script is available
in the github.

B CTFW Data Statistics

In CTFW, there are write-ups for 2236 unique tasks.
Only four out of those having more than 5 write-
ups each. 72% of the tasks have single write-up.
The write-ups are from 311 unique competitions,
ranging from years 2012-2019. A task having mul-
tiple write-ups vary in contents. In CTFW, only 3%
of the tasks have more than three write-ups, and
9% have more than two.

C Training Details:

The correct set of hyperparameters are found by
running three trials. We run for {50, 100} epochs
and store the model with the best PRAUC score.
Each training with evaluation takes around 1-3
hours for base version of models and around
6 hours for larger versions depending upon the
dataset used. The model parameters are directly
proportional to the model parameters of language
models, since the GNN only allow few more pa-
rameters as compared to the LMs.

D Baseline NS with weighted
cross-entropy

Table 5 shows the PRAUC values when we use
weighted cross-entropy with base version of BERT
on unbalanced data during training. The results are
not much different than the Next-Sentence baseline
shown previously.

Dataset W3 W4 W5 Wall

CTFW 0.4613 0.4397 0.2546 0.3681
COR 0.4724 0.4748 0.4837 0.4761
MAM 0.5318 0.2318 0.2297 0.4724

Table 5: BERT-base-uncased performance with NS pre-
diction when Weighted Cross-Entropy used with Un-
balanced Training Data

E Number of comparisons Reduction
using Windows

We can control the total number of comparisons
required to predict the edges in a graph by using the
windows (WN where N = 3, 4, 5, all). The num-
ber of comparisons for each window is given by
the equation 7. We can reduce the number of com-
parisons considerably for large documents using
shorter windows of 3, 4, 5 sentences. The number
of comparison C is defined by

C =

{
max{(n− s), 0}s+ s(s−1)

2 n = 3, 4, 5(
n
2

)
n = all

(7)

F CTFW STC Label statistics

Table 6 shows the label distributions of Sentence
Type Classification data.

Label Train Val Test

A 11143 1499 3321
I 23279 3075 6882
A/I 2931 380 826
C 1386 185 338
NONE 82012 12192 22896

Table 6: CTFW Sentence Type Classification

