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Abstract

Multilingual transformers (XLM, mT5) have
been shown to have remarkable transfer skills
in zero-shot settings. Most transfer studies,
however, rely on automatically translated re-
sources (XNLI, XQuAD), making it hard to
discern the particular linguistic knowledge that
is being transferred, and the role of expert an-
notated monolingual datasets when develop-
ing task-specific models. We investigate the
cross-lingual transfer abilities of XLM-R for
Chinese and English natural language infer-
ence (NLI), with a focus on the recent large-
scale Chinese dataset OCNLI. To better un-
derstand linguistic transfer, we created 4 cat-
egories of challenge and adversarial tasks (to-
taling 17 new datasets1) for Chinese that build
on several well-known resources for English
(e.g., HANS, NLI stress-tests). We find that
cross-lingual models trained on English NLI
do transfer well across our Chinese tasks (e.g.,
in 3/4 of our challenge categories, they per-
form as well/better than the best monolingual
models, even on 3/5 uniquely Chinese lin-
guistic phenomena such as idioms, pro drop).
These results, however, come with important
caveats: cross-lingual models often perform
best when trained on a mixture of English and
high-quality monolingual NLI data (OCNLI),
and are often hindered by automatically trans-
lated resources (XNLI-zh). For many phenom-
ena, all models continue to struggle, highlight-
ing the need for our new diagnostics to help
benchmark Chinese and cross-lingual models.

1 Introduction

Recent pre-trained multilingual transformer mod-
els, such as XLM(-R) (Conneau and Lample, 2019;
Conneau et al., 2020), mT5 (Xue et al., 2020) and
others (Liu et al., 2020; Lewis et al., 2020) have

1All new datasets/code are released at https://github.com/
huhailinguist/ChineseNLIProbing.

been shown to be successful in NLP tasks for sev-
eral non-English languages (Khashabi et al., 2020;
Choi et al., 2021), as well as in multilingual bench-
marks (Devlin et al., 2019; Conneau et al., 2020;
Xue et al., 2020; Artetxe et al., 2020). A particular
appeal is that they can be used for cross-lingual and
zero-shot transfer. That is, after pre-training on a
raw, unaligned corpus consisting of text from many
languages, models can be subsequently fine-tuned
on a particular task in a resource-rich language
(e.g., English) and directly applied to the same task
in other languages without requiring any additional
language-specific training.

Given this recent progress, a natural question
arises: does it make sense to invest in large-scale
task-specific dataset construction for low-resourced
languages, or does cross-lingual transfer alone suf-
fice for many languages and tasks? A closely re-
lated question is: how well do multilingual mod-
els transfer across specific linguistic and language-
specific phenomena? While there has been much
recent work on probing multilingual models (Wu
and Dredze, 2019; Pires et al., 2019; Karthikeyan
et al., 2019), inter alia, a particular limitation is
that most studies rely on automatically translated
resources such as XNLI (Conneau et al., 2018) and
XQuAD (Artetxe et al., 2020), which makes it dif-
ficult to discern the particular linguistic knowledge
that is being transferred and the role of large-scale,
expert annotated monolingual datasets when build-
ing task- and language-specific models.

In this paper, we investigate the cross-lingual
transfer abilities of XLM-R (Conneau et al., 2020)
for Chinese natural language inference (NLI). Our
focus on Chinese NLI is motivated by the recent
release of the first large-scale, human-annotated
Chinese NLI dataset OCNLI (Original Chinese
NLI) (Hu et al., 2020)2, which we use to directly in-

2To our knowledge, OCNLI is currently the largest non-

https://github.com/huhailinguist/ChineseNLIProbing
https://github.com/huhailinguist/ChineseNLIProbing
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category n

C
hi

ne
se

H
A

N
S Lexical overlap 1,428

Subsequence 513

st
re

ss
te

st
s Distraction: 2 categories 8,000

Antonym 3,000
Synonym 2,000
Spelling 11,676
Numerical reasoning 8,613

di
ag

no
st

ic
s

CLUE (Xu et al., 2020) 514
CLUE expansion (ours) 796
World knowledge (ours) 38
Classifier (ours) 139
Chengyu/idioms (ours) 251
Pro-drop (ours) 198
Non-core arguments (ours) 186

se
m

an
tic

pr
ob

in
g

Negation 1,002
Boolean 1,002
Quantifier 1,002
Counting 1,002
Conditional 1,002
Comparative 1,002

sum 43,364

Table 1: Summary statistics of the four evaluation sets.

vestigate the role of high-quality task-specific data
vs. English-based cross-lingual transfer. To better
understand linguistic transfer, and help benchmark
recent SOTA Chinese NLI models, we created 4 cat-
egories of challenge/adversarial tasks (totaling 17
new datasets) for Chinese that build on several well-
established resources for English and the literature
on model probing (see Poliak (2020)). Our new re-
sources, which are summarized in Table 1, include:
a new set of diagnostic tests in the style of the
SuperGLUE (Wang et al., 2019) and CLUE (Xu
et al., 2020) diagnostics; Chinese versions of the
HANS dataset (McCoy et al., 2019) and NLI stress-
tests (Naik et al., 2018), as well as a collection of
the basic reasoning and logic semantic probes for
Chinese based on Richardson et al. (2020).

Our results are largely positive: We find that
cross-lingual models trained exclusively on En-
glish NLI do transfer relatively well across our
new Chinese tasks (e.g., in 3/4 of the challenge
categories shown in Table 1, they perform overall
as well or better than the best monolingual Chinese
models without additional specialized training on
Chinese data, and have competitive performance on
OCNLI). A particularly striking result is that such
models even perform well on 3/5 uniquely Chinese
linguistic phenomena such as idioms, pro drop,
providing evidence that many language-specific
phenomena do indeed transfer. These results, how-

English NLI dataset that was annotated in the style of English
MNLI without any translation.

ever, come with important caveats: on several phe-
nomena we find that models continue to struggle
and are far outpaced by conservative estimates of
human performance (e.g., our best model on Chi-
nese HANS remains ∼19% behind human perfor-
mance), highlighting the need for more language-
specific diagnostics tests. Also, fine-tuning models
on mixtures of English NLI data and high-quality
monolingual data (OCNLI) consistently performs
the best, whereas mixing with automatically trans-
lated datasets (XNLI-zh) can greatly hinder model
performance. This last result shows that high-
quality monolingual datasets still play an important
role when building cross-lingual models, however,
the particular type of monolingual dataset that is
needed can vary and is best informed by targeted
behavioral testing of the type we pursue here.

2 Related Work

There has been a lot of work on trying to understand
multilingual transformers (Wu and Dredze, 2019;
Pires et al., 2019), which has focused on either ex-
amining the representation of different layers in
the transformer architecture or the lexical overlap
between languages. Karthikeyan et al. (2019) in-
vestigate the role of network depth and number
of attention heads, as well as syntactic/word-order
similarity on the cross-lingual transfer performance.
In addition to studies cited at the outset, positive
results of cross-lingual transfer across a wide range
of languages are reported in Wu and Dredze; Nozza
et al. (2020), with a focus on transfer across spe-
cific tasks such as POS tagging, NER; in contrast,
we focus on different categories of linguistic trans-
fer, which has received less attention, as well as the
role of monolingual data for transfer in NLI.

Studies into the linguistic abilities and robust-
ness of current NLI models have proliferated in
recent years, partly owing to the discovery of sys-
tematic biases, or annotation artifacts (Gururangan
et al., 2018; Poliak et al., 2018), in benchmark NLI
datasets such as SNLI (Bowman et al., 2015) and
MNLI (Williams et al., 2018). This has been cou-
pled with the development of new adversarial tests
such as HANS (McCoy et al., 2019) and the NLI
stress-tests (Naik et al., 2018), as well as several
new linguistic challenge datasets (Glockner et al.,
2018; Richardson et al., 2020; Geiger et al., 2020;
Yanaka et al., 2019; Saha et al., 2020; Goodwin
et al., 2020), inter alia, that focus on a wide range
of linguistic and reasoning phenomena. All of this
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work focuses exclusively on English, whereas we
focus on constructing analogous probing datasets
tailored to Chinese to help advance research on
Chinese NLI and cross-lingual transfer.

There has been a surge in the development of
NLI resources for languages other than English.
Such resources are often created in the following
two ways: (1) from scratch, in the style of MNLI
(Williams et al., 2018), where annotators are used
to produce hypotheses and inference labels based
on a provided set of premises, as pursued for Chi-
nese OCNLI (Hu et al., 2020), or SciTail (Khot
et al., 2018), where sentences are paired automati-
cally and labeled by annotators (Amirkhani et al.,
2020; Hayashibe, 2020). (2) Through automatic
(Conneau et al., 2018; Budur et al., 2020; Real et al.,
2020) or manual (Wijnholds and Moortgat, 2021)
translation from existing English datasets. Studies
on cross-lingual transfer for NLI have largely fo-
cused on XNLI (Conneau et al., 2018), which we
show has limited utility for Chinese NLI transfer.

3 Dataset creation

In this section, we describe the details of the 4 types
of challenge datasets we constructed for Chinese to
study cross-lingual transfer (see details in Table 1).
They fit into two general categories: Adversarial
datasets (Section 3.1) built largely from patterns
in OCNLI (Hu et al., 2020) and XNLI (Conneau
et al., 2018) and Probing/diagnostic datasets
(Section 3.2), which are built from scratch in a
parallel fashion to existing datasets in English.

While we aim to mimic the annotation protocols
pursued in the original English studies, we place
the additional methodological constraint that each
new dataset is vetted, either through human anno-
tation using a disjoint set of Chinese linguists, or
through internal mediation among local Chinese
experts; details are provided below.

3.1 Adversarial dataset

Examples from the 7 adversarial tests we created
are illustrated in Table 2.3 Chinese HANS is built
from patterns extracted in the large-scale Chinese
NLI dataset OCNLI (Hu et al., 2020), whereas the
Distraction, Antonym, Synonym and Spelling
subsets are built from an equal mixture of OCNLI
and XNLI-zh (Conneau et al., 2018) data; in the
latter case, such a difference allows us to fairly

3A more detailed description of the data creation process
can be found in Appendix A.

compare the effect of training on expert-annotated
(i.e., OCNLI) vs. automatically translated data (i.e.,
XNLI-zh) as detailed in Section 4.

Chinese HANS McCoy et al. (2019) dis-
covered systematic biases/heuristics in the
MNLI dataset, which they named “lexi-
cal/subsequence/constituent” overlap. “Lexical
overlap” is defined to be the pairs where the
vocabulary of the hypothesis is a subset of the
vocabulary of the premise. For example, “The boss
is meeting the client.” and “The client is meeting
the boss.”, which has an entailment relation.
However, lexical overlap does not necessarily
mean the premise will entail the hypothesis, e.g.,
“The judge was paid by the actor.” does not entail
“The actor was paid by the judge.” (examples from
McCoy et al. (2019)). Thus a model relying on the
heuristic will fail catastrophically in the second
case.

Inspired by the English HANS, we examine
whether OCNLI also possesses such biases, as it
has a similar annotation procedure as MNLI. We
follow the design of the original HANS experi-
ments, and adapt their scripts4 to extract examples
in OCNLI that satisfy the two heuristics. We find a
heavy bias towards “entailment”, where 79.5% of
such examples are “entailment”, similar to MNLI.
To construct a Chinese HANS, we first look into
syntactic structures of the examples having the two
heuristics. Then we write 29 templates for the
lexical overlap heuristic and 11 templates for sub-
sequence overlap.5 Using the templates and a vo-
cabulary of 263 words, we generated 1,941 NLI
pairs. See Table 2 for examples and Appendix A
for details.

Distraction We add distractions to the premise
or hypothesis, similar to the “length mismatch”
and “word overlap” conditions in the NLI stress
tests of Naik et al. (2018). The distractions are
either tautologies (“true is not false”) or a true
statement from our world knowledge (“Finnland
is not a permanent member of the UN security
council”), which should not influence the infer-
ence label. We control whether the distraction con-
tain a negation or not, and thus create four con-
ditions: premise-negation, premise-no-negation,
hypothesis-negation, and hypothesis-no-negation.
See Table 2 for examples.

4https://github.com/tommccoy1/hans
5For details of the templates, see our Github repository.

https://github.com/tommccoy1/hans
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category n premise hypothesis label

C
hi

ne
se

H
A

N
S Lexical

overlap
1428 我们把银行职员留在电影院了。We left the bank clerk in the cinema. 银行职员把我们留在电影院了。The bank

clerk left us in the cinema.
C

Subsequence 513 谁说律师都是穿西装的。Who told you that all lawyers wear suits. 律师都是穿西装的。All lawyers wear suits. C
st

re
ss

te
st

s

Distraction
(add to
premise)

4000 国 有 企 业 改 革 的 思 路 和 方 针 政 策 已 经 明 确,而 且
刚做完手术出院的病人不应剧烈运动。The policy of the reform of
state-owned enterprises is now clear, and patients who just had surgery
shouldn’t have intense exercise.

根本不存在国有企业。The state-owned en-
terprises don’t exist.

C

Distraction
(add to
hypothesis)

4000 这时李家院子挤满了参观的人。During this time, the Li family’s
backyard is full of people who came to visit.

这 地 方 有 个 姓 李 的 人 家,
而且真的不是假的。There is a Li fam-
ily here, and true is not false.

E

Antonym 3000 一些地方财政收支矛盾较大。The disagreement about local revenue
is relatively big.

一些地方财政收支矛盾较小。The disagree-
ment about local revenue is relatively small.

C

Synonym 2000 海部组阁困难说明了什么。What can you tell from the difficulties
from Kaifu’s attempt to set up a cabinet?

海部组阁艰难说明了什么。What can you
tell from the hardships from Kaifu’s attempt
to set up a cabinet?

E

Spelling 2980 身上裹一件工厂发的棉大衣,手插在袖筒里。(Someone is) wrapped
up in a big cotton coat the factory gave with hands in the sleeves

身上质少一件衣服。There’s at least [typo]
one coat on the body.

E

Numerical
reasoning

8613 小红每分钟打不到510个字。Xiaohong types fewer than 510 words
per min.

小红每分钟打110个字。Xiaohong types
110 words per min.

N

Table 2: Example NLI pairs in Chinese HANS and stress tests with translations.

Antonym We replace a word in the premise with
its antonym to form a contradiction. To ensure the
quality of the resulting NLI pairs, we manually
examine the initially generated data and decided to
only replace nouns and adjectives, as they are more
likely to produce real contradictions.

Synonym We replace a word in the premise with
its synonym to form an entailment.

Spelling We replace one random character in the
hypotheses with its homonym (character with the
same pinyin pronunciation ignoring tones) as this
is one of the most common types of misspellings
in Chinese.

Numerical reasoning We create a probing set
for numerical reasoning, following simple heuris-
tics such as the following. When the premise is
Mary types x words per minute, the entailed hy-
pothesis can be: Mary types less than y words per
minute, where x < y. A contradictory hypothesis:
Mary types y words per minute, where x > y or x <
y. Then a neutral pair can be produced by reversing
the premise and hypothesis of the above entailment
pair. 4 heuristic rules (with 6 words for quantifica-
tion) are used and the seed sentences are extracted
from Ape210k (Zhao et al., 2020), a dataset of
Chinese elementary-school math problems. The
resulting data contains 8,613 NLI pairs.

For quality control and to compute human per-
formance, we randomly sampled 50 examples from
all subsets and asked 5 Chinese speakers to verify.
Our goal is to mimic the human annotation proto-
col from Nangia and Bowman (2019), which gives
us a conservative estimate of human performance
given that our annotators received very little in-

structions. Their majority vote agrees with the gold
label 90.0% of the time, which suggests that our
data is of high quality and allows us to later com-
pare against model performance.6

3.2 Probing/diagnostic datasets
While the Chinese HANS and stress tests are de-
signed to adversarially test the models, we also cre-
ate probing or diagnostic datasets which are aimed
at examining the models’ linguistic and reasoning
abilities.

Hand-crafted diagnostics We expanded the di-
agnostic dataset from the Chinese NLU Bench-
mark (CLUE) (Xu et al., 2020) in the following
two ways:

First, 6 Chinese linguists (PhD students) created
diagnostics for 4 Chinese-specific linguistic phe-
nomena. Here are two of the phenomena:7 (1) pro-
drop: subjects or objects in Chinese can be dropped
when they can be recovered from the context (Li
et al., 1981). Thus the model needs to figure out the
subject/object from the context. (2) four-character
idioms (i.e., 成语 Chengyu). They are a special
type of Chinese idioms that has exactly four char-
acters, usually with a figurative meaning different
from the literary meaning, e.g.,打草惊蛇 hit hay
startle snake (behaving carelessly and causing your
enemy to become vigilant). We construct examples
to test whether models understand the figurative
meaning in the idioms. Specifically, we first create
a premise P which includes the idiom, where there
is enough context so that a human is highly likely to

6Specifically: 98.0% on Chinese HANS, 86.0% on the
stress tests. For comparison, different subsets of the English
stress tests receives 85% to 98% agreement (Naik et al., 2018).

7For the other two, please refer to Appendix A.
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interpret the idiom figuratively. Then we create an
entailed hypothesis that is based on the figurative
(correct) interpretation, and a neutral/contradictory
hypothesis that uses the literal (incorrect) meaning
(see Table 11 in the Appendix for an example). For
each P we write 3 hypothesis, one for each infer-
ence relation. We also added diagnostics involving
world knowledge.

Second, we double the number of diagnostic
pairs for all 9 existing linguistic phenomena in
CLUE with pairs whose premises are selected from
a large news corpus8 and hypotheses are hand-
written by our linguists, to accompany the 514 ar-
tificially created data in CLUE. The resulting new
diagnostics is 4 times as large as the original one,
with a total of 2,122 NLI pairs. For quality con-
trol, each pair is double-checked by local Chinese
linguists not involved in this study and the con-
troversial cases were discarded after a discussion
among the 6 linguists. See Table 11 in Appendix A
for examples.

Semantic fragments Following Richardson et al.
(2020) and Salvatore et al. (2019), we design syn-
thesized fragments to examine models’ understand-
ing ability of six types of linguistic and logic infer-
ence: boolean, comparative, conditional, count-
ing, negation and quantifier, where each category
has 2-4 templates. See example templates and NLI
pairs in Table 3.

The data is generated using context-free gram-
mar rules and a vocabulary of 80,000 person names
(Chinese and transliterated), 8659 city names and
expanded predicates and comparative relations in
Richardson et al. (2020) to make the data more
challenging. As a result, we generated 1,000 exam-
ples for each fragment. For quality control, each
template was checked by 3 linguists/logicians; also
20 examples from each category were checked for
correctness by local experts.

4 Experimental setup

Our main goal is to test whether cross-lingual trans-
fer are robust against the adversarial and probing
data we created when evaluated without additional
training. Thus we need to compare the best Chi-
nese monolingual models with the best multilingual
models trained either on English NLI data alone,

8We use the BCC corpus (Xun et al., 2016): http://bcc.
blcu.edu.cn/.

or on combinations of Chinese and English data.9

Chinese monolingual models We experimented
with two current state-of-the-art transformer mod-
els: RoBERTa-large (Liu et al., 2019) and Electra-
large-discriminator (Clark et al., 2019). We use the
Chinese models released from (Cui et al., 2020)10

implemented the Huggingface Transformer library
(Wolf et al., 2020).

Multilingual model We use XLM-RoBERTa-
large (Conneau et al., 2020). We choose XLM-R
over mT5 (Xue et al., 2020) because XLM-R gen-
erally performs better than mT5 under the same
model size (see original paper for details). Also,
XLM-R as a RoBERTa model is most related archi-
tecturally to existing Chinese pre-trained models.

Fine-tuning data for Chinese models & XLM-
R (1) XNLI: the full Chinese training set in the
machine-translated XNLI dataset, with 390k exam-
ples (Conneau et al., 2018). (2) XNLI-small: 50k
examples from XNLI, the same size as the train-
ing data of OCNLI. (3) OCNLI: Original Chinese
NLI dataset (Hu et al., 2020). It is a Chinese NLI
dataset collected from scratch, following the MNLI
procedure, with 50k training examples. We use this
to measure the effect of the quality of training data;
that is, whether it is better to use small, high-quality
training data (OCNLI), or large, low-quality MT
data (XNLI). (4) OCNLI + XNLI: a combination
of the two training sets, 440k examples.

Fine-tuning data for XLM-R To examine cross-
lingual transfer, we finetune XLM-R on English
NLI data alone and English + Chinese NLI data: (1)
MNLI: 390k examples from MNLI.train (Williams
et al., 2018). (2) English all NLI: we combine
MNLI (Williams et al., 2018), SNLI (Bowman
et al., 2015), FeverNLI (Thorne et al., 2018; Nie
et al., 2019) with ANLI (Nie et al., 2020), a total
of 1,313k examples. (3) OCNLI + English all NLI.
(4) XNLI + English all NLI. These two are set to
examine whether combining Chinese and English
fine-tuning data is helpful.

9We also run the same experiments for Chinese-to-English
transfer, i.e., fine-tuning XLM-R with OCNLI and evaluate
on the four English counterpart datasets. We find that trans-
ferring from OCNLI to English does not perform as well as
monolingual English models, likely due to the small size of
OCNLI. Detailed results are reported in Appendix C.

10We use hfl/chinese-roberta-wwm-ext-large
from https://github.com/ymcui/Chinese-BERT-wwm and
hfl/chinese-electra-large-discriminator
from https://github.com/ymcui/Chinese-ELECTRA.

http://bcc.blcu.edu.cn/
http://bcc.blcu.edu.cn/
https://github.com/ymcui/Chinese-BERT-wwm
https://github.com/ymcui/Chinese-ELECTRA


3775

category premise hypothesis label

Negation 库尔图尔只到过湛江市麻章区，丰隆格只到过大连市普兰店区. . . . . .
person1 only went to location1; person2 only went to location2; ....

库尔图尔没到过大连市普兰店区。
person1 has not been to location2.

E

Boolean 何峥、管得宽、李国柱. . . . . .只到过临汾市襄汾县。
person1, person2 ... have only been to location1.

何峥没到过遵义市红花岗区。
person1 has not been to location2.

E

Quantifier 有人到过每一个地方，拥抱过每一个人。
Someone has been to every place and hugged every person.

王艳没拥抱过包一。person1 hasn’t hugged
person2.

N

Counting 韩声雄只拥抱过罗冬平、段秀芹. . . . . .赵常。
person1 only hugged person2, person3 ... person8.

韩声雄拥抱过超过10个人。
person1 hugged more than 10 people.

C

Conditional . . . . . .，穆肖贝夸到过赣州市定南县，如果穆肖贝夸没到过赣州市定南县，
那么张本伟到过呼伦贝尔市阿荣旗。... personn has been to locationn. If
personn hasn’t been to locationn, then personm has been to locationm.

张本伟没到过呼伦贝尔市阿荣旗。personm
hasn’t been to locationm.

N

Comparative 龙银凤比武书瑾、卢耀辉. . . . . .奈德哈特都小，龙银凤和亚厄纳尔普一样
大。person1 is younger than person2, ..., personn; person1 is as old as personm

亚厄纳尔普比梁培娟大。personm is older than
personn−2.

C

Table 3: Example NLI pairs for semantic/logic probing with translations. Each label for each category has 2 to 4
templates; we are only showing 1 template for 1 label. 1,000 examples are generated for each category.

Model Fine-tuned on Acc Scenario

RoBERTa zh MT: XNLI-small 67.44 monolingual
RoBERTa zh MT: XNLI 70.29 monolingual
RoBERTa zh ori: OCNLI 79.11 monolingual
RoBERTa zh: OCNLI + XNLI 78.43 monolingual
XLM-R zh MT: XNLI 72.55 monolingual
XLM-R zh ori: OCNLI 79.24 monolingual
XLM-R zh: OCNLI + XNLI 80.31 monolingual

XLM-R en: MNLI 71.98 zero-shot
XLM-R en: En-all-NLI 73.73 zero-shot

XLM-R mix: OCNLI + En-all-NLI 82.18 mixed
XLM-R mix: XNLI + En-all-NLI 74.12 mixed

Table 4: Results on OCNLI dev. “Scenario” indicates
whether the model is fine-tuned on Chinese only data
(monolingual), English data (zero-shot) or mixed En-
glish and Chinese data; results in gray show best per-
formance for each scenario. Best overall result in bold.
Same below.

We fine-tune the models on OCNLI-dev. Ac-
knowledging that different training runs can pro-
duce very different checkpoints for behavioral test-
ing (D’Amour et al., 2020), we run 5 models on
different seeds and report the mean accuracy of the
models with the best hyper-parameter setting (for
details see Appendix B).

5 Results and discussion

5.1 Results on OCNLI dev
Results on the dev set of OCNLI are presented
in Table 4. For monolingual RoBERTa, we see
a similar performance as reported in the OCNLI
paper (Hu et al., 2020), with 79.11% accuracy. The
monolingual Electra achieves a very close accuracy
of 79.02% (not shown in the Table). As we see the
same trend in the following experiments, we will
therefore only report results on RoBERTa.

For XLM-R, fine-tuning on MNLI or En-all-NLI
gives us reasonable results of around 72% to 74%,
which is better than models fine-tuned on XNLI, in-
dicating that fine-tuning on an English data (MNLI)

alone can outperform monolingual models fine-
tuned on the same data but machine-translated into
Chinese (XNLI).11 This is consistent with previous
results on Korean (Choi et al., 2021) and Persian
(Khashabi et al., 2020) for other NLU tasks.

What is also interesting is that combining OC-
NLI and En-all-NLI gives us a boost of 2% to
82.18% (a result that is comparable to the current
published SOTA), showing the power of mixing
high-quality English and Chinese training data.

5.2 Chinese HANS

Table 5 shows results of the Chinese HANS data
tested on the aforementioned monolingual models
and cross-lingual model.

Cross-lingual transfer achieves strong re-
sults. We first notice that when XLM-R is fine-
tuned solely on the English data (En-all-NLI), the
performance (∼69%) is only slightly worse than
the best monolingual model (∼71%). This suggests
that cross-lingual transfer from English to Chinese
is quite successful for an adversarial dataset like
HANS. Second, adding OCNLI to En-all-NLI in
the training data gives a big boost of about 9%,
and achieves the overall best result. This is about
12% higher than combining XNLI and the English
data, demonstrating the advantage of the expert-
annotated OCNLI over machine translated XNLI,
even though the latter is about 8 times the size of
the former. Despite these results, however, we note
that all models continue to perform below human
performance, suggesting more room for improve-
ment.

Our results also suggest that examples involving
the sub-sequence heuristics are more difficult than

11For these experiments we also tested with another Chinese
machine-translated MNLI (CMNLI), translated by a different
MT system, which was released by CLUE (https://github.
com/CLUEbenchmark/CLUE), and obtained similar results.

https://github.com/CLUEbenchmark/CLUE
https://github.com/CLUEbenchmark/CLUE
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Model Fine-tuned on Overall Lexical Overlap Sub-sequence Entailment Non-Entailment ∆

RoBERTa zh MT: XNLI-small 49.48 58.12 25.42 99.22 30.26 37.18
RoBERTa zh MT: XNLI 60.80 68.99 38.01 99.74 45.76 24.53
RoBERTa zh ori: OCNLI 71.72 75.39 61.48 99.67 60.91 18.20
RoBERTa zh: OCNLI+XNLI 69.33 74.73 54.27 99.89 57.51 20.92
XLM-R zh ori: OCNLI 61.82 65.83 50.68 99.89 47.11 32.13
XLM-R zh MT: XNLI 57.74 66.47 33.45 99.96 41.42 31.13
XLM-R zh: OCNLI+XNLI 70.31 74.25 59.34 100.00 58.84 21.47

XLM-R en: En-all-NLI 69.56 77.62 47.13 100.00 57.80 15.93
XLM-R en: MNLI 66.74 73.12 48.97 100.00 53.89 18.09

XLM-R mix: OCNLI+En-all-NLI 78.82 81.57 71.15 100.00 70.63 11.55
XLM-R mix: XNLI+En-all-NLI 66.90 76.25 40.90 99.93 41.89 32.23

Human 98.00

Table 5: Accuracy on Chinese HANS. ∆ = the difference of accuracy between OCNLI dev and Non-Entailment.

those targeting the lexical overlap heuristics for
the transformers models we tested (see the “sub-
sequence” and “lexical overlap” columns in Ta-
ble 5). This is in line with the results reported in
the English HANS paper (specifically Table 15 in
McCoy et al. (2019) which also shows that the sub-
sequence examples are more difficult for the En-
glish BERT model). Second, for the sub-sequence
heuristics, results from monolingual model are 12%
higher than those from XLM-R under the zero-shot
transfer setting (61.48% versus 48.79% in “sub-
sequence” column in Table 5). This stands in con-
trast with the lexical overlap heuristic, where the
best monolingual model performs similarly to the
best zero-shot cross-lingual transfer (75.39% ver-
sus 77.62%). This is one of the few cases where
cross-lingual transfer under-performs the monolin-
gual setting by a large margin, suggesting that in
certain situations monolingual models may be pre-
ferred.

5.3 Stress tests

Table 6 presents the accuracies on all the stress
tests. We first see that cross-lingual zero-shot trans-
fer using all English NLI data performs even better
than the best monolingual model (∼74% vs. ∼71%).
This demonstrates the power of the cross-lingual
transfer-learning. Adding OCNLI to all English
NLI gives another increase of about 3 percentage
points (to 77%), while adding XNLI hurts the per-
formance, again showing the importance of having
expert-annotated language-specific data.

Antonyms and Synonyms All models except
those fine-tuned on OCNLI achieved almost per-
fect score on the synonym test. However, for
antonyms, both monolingual and multilingual mod-
els fine-tuned with OCNLI perform better than
XNLI. XLM-R fine-tuned with English NLI data

only again outperforms the best of monolingual
models (∼80% vs. ∼72%). Interestingly, adding
XNLI to all English NLI data hurts the accuracy
badly (a 14% drop), while adding OCNLI to the
same English data improves the result slightly.

As antonyms are harder to learn (Glockner et al.,
2018), we take our results to mean that either
expert-annotated data for Chinese or a huge English
NLI dataset is needed for a model to learn decent
representations about antonyms, as indicated by
the high performance of RoBERTa fine-tuned with
OCNLI (71.81%), and XLM-R fine-tuned with En-
all-NLI (80.36%), on antonyms. That is, using
machine-translated XNLI will not work well for
learning antonyms (∼55% accuracy).

Distraction Results in Table 6 show that adding
distractions to the hypotheses has a more nega-
tive negative impact on models’ performance, com-
pared with appending distractions to the premises.
The difference is about 20% for all models (see
“Distr H” columns and “Distr P” columns in Ta-
ble 6), which has not been reported in previous
studies, to the best of our knowledge. Including
a negation in the hypothesis makes it even more
challenging, as we see another one percent drop
in the accuracy for all models. This is expected as
previous literature has demonstrated the key role
negation plays when hypotheses are produced by
the annotators (Poliak et al., 2018).

Spelling This is another case where cross-lingual
transfer with English data alone falls behind mono-
lingual Chinese models (by about 4%). Also the
best results are from fine-tuning XLM-R with OC-
NLI + XNLI, rather than a combination of En-
glish and Chinese data. Considering the data is
created by swapping Chinese characters with oth-
ers of the same pronunciation, we take it to suggest
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Model Fine-tuned on Overall Ant. Syn. Distr H Distr H-n Distr P Distr P-n
Spell-
ing num.

RoBERTa zh MT: XNLI-small 59.41 43.38 99.64 51.61 51.41 70.66 71.19 69.93 28.70
RoBERTa zh MT: XNLI 66.22 52.28 99.79 54.83 53.8 74.55 74.57 72.22 53.53
RoBERTa zh ori: OCNLI 64.49 71.81 73.66 52.95 51.8 73.43 73.86 71.79 54.16
RoBERTa zh: OCNLI + XNLI 71.01 59.39 99.06 55.87 54.64 76.83 76.50 75.48 70.18
XLM-R zh ori: OCNLI 69.08 71.29 88.63 55.93 55.05 76.84 77.00 71.42 65.51
XLM-R zh MT: XNLI 66.87 55.53 99.96 56.11 55.29 77.69 77.9 74.37 46.81
XLM-R zh: OCNLI + XNLI 71.49 61.85 99.45 58.15 57.92 79.16 79.28 77.93 61.88

XLM-R en:MNLI 67.94 65.77 99.2 55.14 54.6 75.75 75.76 70.76 50.90
XLM-R en: En-all-NLI 74.52 80.36 97.58 54.74 53.56 73.96 73.92 71.02 82.73

XLM-R mix: OCNLI + En-all-NLI 77.36 81.93 95.09 59.23 58.00 79.88 79.92 74.53 87.77
XLM-R mix: XNLI + En-all-NLI 73.57 66.15 99.68 57.02 55.51 78.38 78.53 75.15 80.33

Human 85.00 85.00 98.00 83.00 83.00 83.00 83.00 78.00 98.00

Table 6: Accuracy on the stress test. Distr H/P(-n): distraction in Hypothesis/Premise (with negation).
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RoBERTa zh MT: XNLI-small 62.9 65.8 64.7 55.2 80.5 60.0 59.6 67.4 54.3 61.4 48.3 60.9 59.7 66.2 39.0
RoBERTa zh MT: XNLI 67.7 67.6 66.2 59.4 82.3 65.1 69.9 72.0 56.8 70.4 64.2 67.5 61.7 72.9 52.1
RoBERTa zh ori: OCNLI 67.8 62.0 68.0 59.4 80.7 77.5 70.3 70.0 56.0 66.6 64.2 68.4 61.7 72.4 57.9
RoBERTa zh: OCNLI + XNLI 69.3 66.3 67.1 58.6 83.0 74.0 70.1 73.5 54.9 74.1 67.5 69.1 62.5 76.0 60.0
XLM-R zh ori: OCNLI 68.0 57.6 70.1 58.0 79.6 76.3 67.4 70.3 55.3 69.8 75.8 71.1 62.5 71.1 62.1
XLM-R zh MT: XNLI 60.9 61.2 62.3 50.4 71.9 59.7 60.3 63.3 51.7 65.2 54.9 61.0 53.5 66.9 58.3
XLM-R zh: OCNLI + XNLI 71.5 70.4 71.6 57.5 84.6 77.8 74.5 74.7 55.3 75.5 76.7 72.8 62.7 76.3 65.3

XLM-R en: MNLI 70.2 70.1 73.9 57.5 86.4 70.8 69.3 72.9 48.9 76.0 62.5 67.8 62.6 77.0 62.1
XLM-R en: En-all-NLI 71.9 71.8 74.3 56.2 87.4 75.7 74.9 74.8 49.1 80.5 70.8 69.1 63.8 77.8 64.2

XLM-R mix: OCNLI + En-all-NLI 74.9 72.7 74.3 60.1 88.5 84.5 77.3 78.1 56.6 81.3 79.2 77.2 65.6 78.0 67.9
XLM-R mix: XNLI + En-all-NLI 71.4 70.2 58.5 85.5 71.3 75.2 75.5 55.1 79.2 70.0 69.1 62.4 76.2 72.1 71.3

Table 7: Accuracy on the expanded diagnostics. Uniquely Chinese linguistic features are prefixed with ∗.

that monolingual models are still better at pick-
ing up the misspellings or learning the connections
between characters at the phonological level.

Numerical Reasoning Results in the last col-
umn of Table 6 suggest a similar pattern: using all
English NLI data for cross-lingual transfer outper-
forms the best monolingual model. However, fine-
tuning a monolingual model with the small OCNLI
(50k examples, accuracy: 54%) achieves better ac-
curacy than using a much larger MNLI (390k exam-
ples, accuracy: 51%) for cross-lingual transfer, al-
though both are worse than XLM-R fine-tuned with
all English NLI which has more than 1,000k exam-
ples (accuracy: 83%). This suggests that there are
cases where a monolingual setting (RoBERTa with
OCNLI) is competitive against zero-shot transfer
with a large English dataset (XLM-R with MNLI).
However, that competitiveness may disappear when
the English dataset grows to an order of magnitude
larger in size or becomes more diverse (En-all-NLI
contains 4 different English NLI datasets).

5.4 Hand-written diagnostics

Results on the expanded diagnostics are presented
in Table 7. We first see that XLM-R fine-tuned

with only English performs very well, at 70.2% and
71.9%, even slightly higher than the best monolin-
gual Chinese model (69.3%).

Most surprisingly, in 3/5 categories with
uniquely Chinese linguistic features, zero-
shot transfer outperforms monolingual models.
Only in “non-core arguments” and “time of event”
do we see higher performance of OCNLI as the
fine-tuning data. What is particularly striking is
that for “idioms (Chengyu)”, XLM-R fine-tuned
only on English data achieves the best result, sug-
gesting that the cross-lingual transfer is capable of
learning meaning representation beyond the surface
lexical information, at least for many of the idioms
we tested. The overall results (accuracy of 74.3%)
indicate that cross-lingual transfer is very success-
ful in most cases. Manual inspection of the results
shows that for many NLI pairs with idioms, XLM-
R correctly predicts the figurative interpretation of
the idiom as entailment, and the literal interpreta-
tion as non-entailment, as described in section 3.2.
Looking at OCNLI and XNLI, we observe that they
perform similarly when fine-tuned on monolingual
RoBERTa. However, when fine-tuned with XLM-
R, OCNLI has a clear advantage (68.0% versus
60.9%), suggesting that OCNLI may produce more
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model finetune on overall boolean comparative conditional counting negation quantifier

RoBERTa zh MT: XNLI-small 46.57 32.81 34.41 61.48 81.82 33.27 35.63
RoBERTa zh MT: XNLI 50.64 33.35 39.02 66.55 84.51 40.92 39.50
RoBERTa zh ori: OCNLI 47.53 35.81 34.81 62.87 69.64 49.84 32.24
RoBERTa zh: OCNLI + XNLI 51.13 38.16 37.98 66.19 75.73 53.31 35.43
XLM-R zh ori: OCNLI 54.33 54.19 49.02 52.46 79.70 59.52 31.08
XLM-R zh MT: XNLI 50.79 33.39 35.33 66.01 87.23 33.17 49.60
XLM-R zh: OCNLI + XNLI 52.43 34.51 36.93 59.98 88.70 54.37 40.08

XLM-R en: MNLI 49.09 33.27 37.98 66.25 89.70 34.69 32.65
XLM-R en: En-all-NLI 55.37 33.43 39.70 66.65 92.34 64.11 35.99

XLM-R mix: OCNLI + En-all-NLI 57.95 40.70 44.49 63.67 91.54 74.47 32.81
XLM-R mix: XNLI + En-all-NLI 57.73 40.30 37.82 66.67 93.19 61.52 46.87

Table 8: Accuracy on the Chinese semantic probing datasets, designed following Richardson et al. (2020).

stable results than XNLI. Furthermore, when cou-
pled with English data to be used with XLM-R, we
see again that OCNLI + En-all-NLI results in an
accuracy 3 percent higher than XNLI + En-all-NLI.

5.5 Semantic fragments

Results on the semantic probing datasets (shown in
Table 8) are more mixed. First, the results are in
general much worse than the other evaluation data,
but overall, XLM-R fine-tuned with OCNLI and
all English data still performs the best. The over-
all lower performance is likely due to the longer
length of premises and hypotheses in the semantic
probing datasets, compared with the other three
evaluation sets. Second, zero-shot transfer is better
or on par with monolingual Chinese RoBERTa in
4/6 semantic fragments (except Boolean and quanti-
fier). Third, for Boolean and comparative, XLM-R
fine-tuned with OCNLI has a much better result
than all other monolingual models or XLM-R fine-
tuned with mixed data. We also observe that all
models have highest performance on the “count-
ing” fragment. Note that none of the models have
seen any data from the “counting” fragment during
fine-tuning. That is, all the knowledge come from
the pre-training and fine-tuning on general NLI
datasets. The surprisingly good performance of
XLM-R model (w/ En-all-NLI, 92.34%) suggests
that it may have already acquired a mapping from
counting the words/names to numbers, and this
knowledge can be transferred cross-linguistically.

6 Conclusion and Future Work

In this paper, we examine the cross-lingual trans-
fer ability of XLM-R in the context of Chinese
NLI through four new sets of aversarial/probing
tasks and a total of 17 new high quality and lin-
guistically motivated challenge datasets. We find
that multilingual transfer via fine-tuning solely on

benchmark English data generally yields impres-
sive performance. In 3/4 on our task categories,
such zero-shot transfer outperforms our best mono-
lingual models trained on benchmark Chinese NLI
data, including 3/5 of our hand-crafted challenge
tasks that test uniquely Chinese linguistic phenom-
ena. These results suggest that multilingual models
are indeed capable of considerable cross-lingual lin-
guistic transfer and that zero-shot NLI may serve
as a serious alternative to large-scale dataset devel-
opment for new languages.

These results come with several important
caveats. Model performance is still outperformed
by conservative estimates of human performance
and our best models still have considerable room
for improvement; we hope that our new resources
will be useful for continuing to benchmark progress
on Chinese NLI. We also find that high-quality Chi-
nese NLI data (e.g., OCNLI) can help improve
results further, which suggests an important role
for certain types of expertly annotated monolingual
data in a training pipeline. In virtue of our study be-
ing limited to behavioral testing, the exact reason
for why cross-lingual zero-shot transfer generally
performs well, especially on some Chinese-specific
phenomena, is an open question that requires fur-
ther investigation. In particular, we believe that
techniques that couple behavioral testing with inter-
vention techniques (Geiger et al., 2020; Vig et al.,
2020) and other analysis methods (Giulianelli et al.,
2018; Belinkov and Glass, 2019) might provide in-
sight, and that our new Chinese resources can play
an important role in such future work.
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Heuristic entailment contradiction neutral

lexical overlap 944 155 109
subsequence 190 10 18

Table 9: Distribution of the two heuristics in OCNLI.

Heuristic entailment contradiction neutral

lexical overlap 441 647 340
subsequence 100 193 220

Total 541 840 560

Table 10: Distributional statistics of our synthesized
Chinese HANS dataset.

A Details for dataset creation

In this section, we list example NLI pairs and their
translations. For examples of the Chinese HANS
and stress tests, see Table 2. For the expanded
diagnostics, see Table 11. For the semantic/logic
probing dataset, see Table 3.

Chinese HANS Table 9 lists the number of ex-
amples in OCNLI for each inference label that sat-
isfy the two heuristics we are examining. We ob-
serve that entailment examples take the majority
for both heuristics. Therefore, we hypothesize that
if the heuristics are learned, the entailment exam-
ples are likely to be correctly predicted while non-
entailment (contradiction and neutral) examples
are prone to receive wrong prediction.

To guarantee the generated sentences are syntac-
tically and semantically sound, we add features for
our vocabulary so that subject- predicate and verb-
object constraints are satisfied, e.g., some verbs
can only take animate subjects and objects. We
then generate 50 premise-hypothesis pairs for each
template described in our Github repository.12 Ex-
cluding duplicated examples, our generated dataset
has 1,941 pairs and the distribution of the three
labels is shown in Table 10.

Antonym After looking at the quality of initially
generated data, we decided to replace only the
nouns and adjectives with their antonyms since
such replacements are most likely result in gram-
matical and contradictory hypotheses.13

12https://github.com/huhailinguist/ChineseVariousNLI
13We use the LTP toolkit (https://github.com/HIT-SCIR/ltp)

to annotate the POS tags and our antonym list is from https:
//github.com/liuhuanyong/ChineseAntiword.

Synonym After inspecting the initially generated
data, we decided to perform replacements only to
verbs and adjectives. To ensure the quality of syn-
onyms, we rank the synonyms from a commonly
used synonym dictionary by their vector similar-
ity to the original word, and pick the top ranking
synonym.14

Distraction We created the distraction data simi-
lar to the stress test setting (Naik et al., 2018) but ex-
perimented with variations as to where “distractor
statement”—either a tautology or a true statement—
was added: the premise or the hypothesis. The
distractor statement also varied w.r.t. whether it
contains a negation:

• Premise-no-negation: A distractor statement
is added to the end of the premise and it con-
tains no negation.

• Premise-negation: A distractor statement
containing a negation is added to the premise.

• Hypothesis-no-negation: A distractor state-
ment is added to the end of the hypothesis.

• Hypothesis-negation: Same as the previous
condition except that the distractor contains a
negation.

Only two tautologies are used in Naik et al.
(2018). In this paper, to thoroughly examine the in-
fluence of different true statements, we designed 50
tautology/statements varied in three factors: length,
out-of-vocabulary, and negation word. There are
25 statements pairs in total (1 tautology and 24
true statements); each pair includes a true state-
ment and its corresponding true statement with
negation form. All the statements range from 5
to 16 characters. For the true statements in nega-
tion form, two common Chinese negation words
不 and 没 are used for negation. For the 24 true
statement pairs, half of them contains at least one
Out-of-Vocabulary word in OCNLI.

Experiments show that length, Out-of-
Vocabulary words, and the choice of negator have
little effects on the results.

Spelling We generate a set of data containing
“spelling errors” by replacing one random charac-
ter in the hypotheses with its homonym, which is
defined as a character with the same pinyin pronun-
ciation ignoring tones. We also limit the frequency

14We use the synonym list from https://github.com/
Keson96/SynoCN and the similarity score from the
Python package Synonyms at https://github.com/chatopera/
Synonyms.

https://github.com/huhailinguist/ChineseVariousNLI
https://github.com/HIT-SCIR/ltp
https://github.com/liuhuanyong/ChineseAntiword
https://github.com/liuhuanyong/ChineseAntiword
https://github.com/Keson96/SynoCN
https://github.com/Keson96/SynoCN
https://github.com/chatopera/Synonyms
https://github.com/chatopera/Synonyms
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of the homonym as within the range of 100 to 6000
so that the character is neither too rare nor too fre-
quent.

Numerical reasoning We extracted sentences
from Ape210k (Zhao et al., 2020), a large-scale
math word problem dataset containing 210K Chi-
nese elementary school-level problems15. We gen-
erate entailed, contradictory and neutral hypotheses
for each premise, with the rules below:

1. Entailment: Randomly choose a number x
and change it to y from the hypothesis. If the
y > x, prefix it with one phrase that translate to
“less than”; if y < x, prefix it with one phrase
that translate to “more than”.
Premise: Mary types 110 words per minute.
Hypothesis: Mary types less than 510 words
per minute.

2. Contradiction: Perform either 1) randomly
choose a number x from the hypothesis and
change it; 2) randomly choose a number from
the hypothesis and prefix it with one phrase
that translate to “less than” or “more than”.
Premise: Mary types 110 words per minute.
Hypothesis: Mary types 710 words per
minute.

3. Neutral: Reverse the corresponding entailed
premise-hypothesis pairs.
Premise: Mary types less than 510 words per
minute. Hypothesis: Mary types 110 words
per minute.

The result contains 2,871 unique premise sentences
and 8,613 NLI pairs.

Diagnostics The diagnstics for classifiers (or
measure word) and non-core arguments are ex-
plained in detail below (see examples in Table 11).

1. classifiers (or measure word): in Chinese,
when modified by a numeral, a noun must
be preceeded by a category of words called
classifier. They can be semantically vacuous
but sometimes also carry semantic content:
一匹狼 one pi wolf (one wolf); 一群狼 one
qun wolf (one pack of wolves). Our examples
require the model to understand the semantic
content of the classifiers.

15We split all problems into individual sentences and filter
out sentences without numbers. Then we remove sentences
without any named entities (“PERSON”, “LOCATION” and
“ORGANIZATION”) using the NER tool provided by LTP
toolkit (Che et al., 2020).

2. non-core arguments: in Chinese syntax, some-
times a noun phrase at the argument position
(e.g., object) is not serving as an object: 今
天吃筷子，不吃叉子。today eat chopsticks,
not eat fork (We eat with chopsticks today,
not with fork). Sun (2009) shows that this
structure is very productive in Chinese and we
take example sentences from her dissertation.

Additionally, for the pro-drop examples, they
are constructed such that the models return the cor-
rect inference relation only when they successfully
identify what the dropped pro refers to. That is,
our constructed premises involve several entities
the dropped pro could potentially refer to, and the
entailed hypothesis identifies the correct referent
while the neutral/contradictory hypothesis does not
(see Table 11 for an example).

B Hyperparameters for experiments

Table 12 presents the hyperparameters used for
the models. The learning-rate search space for
RoBERTa is: 1e-5, 2e-5, 3e-5, 4e-5 and 5e-5, for
XLM-R: 5e-6, 7e-6, 9e-6, 2e-5 and 5e-5.

C Chinese-to-English transfer

We present Chinese-to-English transfer results in
this section. As mentioned in the main text, for
most of the cases, zero-shot transfer learning does
not work well mostly likely due to the small size of
OCNLI. However, for 3 out of the 4 datasets, XLM-
R fine-tuned with the mix data outperforms the
monolingual setting, suggesting that even OCNLI
is only 1/20 of En-all-NLI, XLM-R can still acquire
some useful information from OCNLI, in addition
to what is present in En-all-NLI.

Specifically, (1) for English HANS, XLM-R fine-
tuned with OCNLI is about 13 percentage points
below the best English monolingual model, shown
in Table 13. (2) For stress tests shown in Table 14,
the gap is about 5 percent (XLM-R with OCNLI
= 74%; RoBERTa with En-all-NLI = 79%). Inter-
estingly, XLM-R with OCNLI performs the best
for Negation and Word overlap. It even outper-
forms RoBERTa w/ MNLI on the Antonym, which
seems to be consistent with the high performance of
OCNLI-trained models on the Chinese Antonym
in our constructed stress tests. (3) For semantic
probing data, as shown in Table 15, XLM-R with
OCNLI is 5 percent behind monolingual model
fine-tuned with all English NLI, but performs bet-
ter than the monolingual RoBERTa fine-tuned with
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category n premise hypothesis label

CLUE (Xu et al., 2020) 514 有些学生喜欢在公共澡堂里唱歌。
Some students like to sing in public
showers.

有些女生喜欢在公共澡堂里唱歌。
Some female students like to sing in pub-
lic showers.

N

CLUE expansion (ours) 800 雷克雅未克所有旅馆的床位加在一
起才一千六百个。
There are only one thousand six hundred
beds in all hotels in Reykjavik.

雷克雅未克有旅馆的床位超过一千
个。
Some hotel in Reykjavik has over a thou-
sand beds.

N

World Knowledge
(ours)

37 上海在北京的南边。
Shanghai is to the south of Beijing.

北京在上海的南边。
Beijing is to the south of Shanghai.

C

Classifier (ours) 138 这些孩子吃了一个苹果。
These children ate an apple.

这些孩子吃了一筐苹果。
These children ate a basket of apples.

N

Chengyu/idioms (ours) 250 这帮人可狡猾得很啊，你一个电
话打过去，打草惊蛇，后果不堪设
想。
These people are so cunning! If you call
them, it would alert them, and as we say
in a Chinese idiom ”if you hit the grass,
it would alert the snakes.” The conse-
quences would be unimaginable.

你打电话过去会让这帮人察觉，造
成不好的结果。
If you call them, it will alert them, and
bring negative consequences.

E

same as above 这些狡猾的人养了很多蛇。
These cunning people have raised a lot
of snakes.

N

Pro-drop (ours) 197 见了很多学生，又给老师们开了两
个小时会，校长和主任终于可以下
班了。
After (pro) meeting many students and
(pro) having two hours of meeting with
the teachers, the principal and the direc-
tor can finally get off work.

校长见了很多学生。
The principal met many students.

E

same as above 老师们见了很多学生。
The teachers met many students.

N

Non-core arguments
(ours)

185 平时范志毅都踢后卫的，今天却改
当前锋了。
Zhiyi Fan usually plays full back in soc-
cer, but today he switched to playing
forward.

范志毅经常用腿踢对方的后卫。
Zhiyi Fan usually uses his legs to kick
the other team’s full back.

N

Table 11: Example NLI pairs in expanded diagnostics with translations.

Model Training Data LR

RoBERTa zh MT: XNLI-small 3e-05
RoBERTa zh MT: XNLI 2e-05
RoBERTa zh ori: OCNLI 2e-05
RoBERTa zh: OCNLI + XNLI 3e-05

XLM-R zh ori: OCNLI 5e-06
XLM-R zh MT: XNLI 7e-06
XLM-R zh: OCNLI + XNLI 7e-06
XLM-R en:MNLI 5e-06
XLM-R en: En-all-NLI 7e-06
XLM-R mix: OCNLI + En-all-NLI 7e-06
XLM-R mix: XNLI + En-all-NLI 7e-06

Table 12: Hyper-parameters used for fine-tuning the
models. All models are fine-tuned for 3 epochs with
maximum length of 128.

MNLI (53.6% vs. 51.3%). This is quite surprising
since the size of OCNLI is only 1/8 of MNLI. (4)
For the English diagnostics as shown in Table 16
and Table 17, XLM-R with OCNLI is 7 percent
behind RoBERTa fine-tuned with MNLI.

We leave it for future work to thoroughly ex-
amine transfer learning from a “low-resource” lan-
guage such as Chinese to the high-resource one
such as English.



3785

Model Fine-tuned on Overall Lexical overlap Subsequence Constituent Entailment Non-entailment

RoBERTa en: En-all-NLI 76.54 96.79 67.77 65.06 99.81 53.27
RoBERTa en: MNLI 77.63 95.60 68.08 69.21 99.74 55.52
XLM-R en: En-all-NLI 75.72 95.52 62.99 68.63 99.91 51.52
XLM-R en: MNLI 74.80 92.92 65.24 66.23 98.83 50.76
XLM-R zh ori: OCNLI 64.37 71.28 54.42 67.41 98.39 30.35
XLM-R zh MT: XNLI 68.83 81.67 62.07 62.74 99.13 38.53
XLM-R zh mix: OCNLI+XNLI 71.30 82.52 61.72 69.66 99.08 43.52
XLM-R mix: OCNLI+En-all-NLI 78.56 96.92 64.91 73.84 99.92 57.20
XLM-R mix: XNLI+En-all-NLI 74.65 93.93 60.97 69.04 99.96 49.34

Table 13: Results of English HANS (McCoy et al., 2019).

Model Fine-tuned on Overall Antonym
Content

word
swap

Function
word
swap

Keyboard Swap Length
mismatch

Negation
Numerical
reasoning

Word
overlap

RoBERTa en: En-all-NLI 79.48 82.91 86.22 88.71 87.8 87.48 88.28 60.25 79.26 62.85
RoBERTa en: MNLI 77.9 69.03 85.74 88.75 87.39 87.05 88.23 59.19 65.46 61.48
XLM-R en: En-all-NLI 79.6 86.25 85.26 87.38 86.31 86.72 87.25 61.06 82.84 65.79
XLM-R en: MNLI 77.6 74.65 85.09 87.33 86.08 86.42 86.96 60.95 54.66 65.13
XLM-R zh ori: OCNLI 74.31 72.52 75.12 77.71 76.27 76.39 77.23 72.86 55.85 72.79
XLM-R zh MT: XNLI 77.78 65.12 85.11 86.64 85.79 85.71 85.91 63.52 43.95 71.63
XLM-R zh mix: OCNLI+XNLI 77.83 66.83 84.96 86.69 85.81 85.87 85.98 63.97 51.56 68.38
XLM-R mix: OCNLI+En-all-NLI 80.01 86.33 85.22 87.40 86.26 86.77 87.23 62.52 81.79 67.54
XLM-R mix: XNLI+En-all-NLI 79.38 85.27 85.35 87.20 86.28 86.74 87.22 60.29 80.50 66.19

Table 14: Results of English stress test (Naik et al., 2018).

Model Fine-tuned on Overall Boolean Comparative Conditional Counting Monotonicity
hard

Monotonicity
simple Negation Quantifier

RoBERTa en: MNLI 51.31 43.58 39.60 66.24 63.34 61.28 60.10 37.26 39.08
RoBERTa en: En-all-NLI 58.72 60.18 40.28 66.30 66.22 59.60 58.98 64.46 53.74
XLM-R en: MNLI 53.54 59.16 41.62 66.30 61.72 63.26 62.82 33.52 39.92
XLM-R en: En-all-NLI 59.85 71.58 45.18 66.30 60.40 63.86 62.02 65.68 43.78
XLM-R zh ori: OCNLI 53.61 66.02 60.62 41.10 58.00 47.86 49.88 51.88 53.50
XLM-R zh MT: XNLI 52.29 43.24 39.00 66.22 65.66 58.08 62.74 34.12 49.24
XLM-R zh mix: OCNLI+XNLI 54.68 54.64 38.84 66.28 67.38 58.18 61.38 41.88 48.82
XLM-R mix: OCNLI+En All NLI 60.20 71.20 42.58 66.30 62.40 64.72 60.90 68.58 44.88
XLM-R mix: XNLI+En-all-NLI 60.06 65.8 46.86 66.30 65.54 61.56 61.44 68.50 44.48

Table 15: Results of English semantic probing datasets (Richardson et al., 2020).
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RoBERTa en: MNLI 66.87 62.35 67.59 69.47 62.50 78.00 63.50 69.62 85.00 39.47 92.86 19.33 65.29 65.00 62.06 95.00 60.43
RoBERTa en: En-all-NLI 68.03 61.76 70.00 69.33 63.75 82.50 68.00 75.77 85.00 41.58 92.14 18.67 67.65 65.00 62.35 94.00 59.57
XLM-R en: MNLI 63.03 61.76 62.76 59.73 55.62 76.00 61.50 61.54 85.00 26.84 91.43 16.00 64.12 69.00 51.47 90.00 60.00
XLM-R en: En-all-NLI 64.57 61.76 65.17 61.47 60.00 76.00 66.00 65.77 85.00 33.16 89.29 14.00 62.94 71.00 58.53 90.00 60.87
XLM-R zh ori: OCNLI 59.67 60.00 59.31 57.20 58.12 70.00 56.50 61.54 85.00 30.00 67.14 17.33 54.71 66.00 46.18 90.00 59.57
XLM-R zh MT: XNLI 61.76 61.18 64.14 60.67 58.75 72.50 60.00 60.77 85.00 33.16 91.43 12.67 58.24 64.00 48.24 90.00 57.83
XLM-R zh mix: OCNLI+XNLI 61.78 61.76 62.76 56.93 57.50 74.50 61.00 61.54 85.00 31.05 90.00 12.00 57.65 65.00 48.53 90.00 57.39
XLM-R mix: OCNLI+En-all-NLI 64.51 61.76 63.45 61.60 58.75 76.00 66.00 67.31 85.00 35.26 90.71 15.33 60.59 68.00 60.59 91.00 60.87
XLM-R mix: XNLI+En All LI 64.37 61.18 64.83 62.27 61.88 73.00 65.00 65.38 85.00 35.26 91.43 14.67 63.53 70.00 57.94 94.00 60.87

Table 16: Results of English Diagnostics from GLUE-Part I (Wang et al., 2018).
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RoBERTa en: MNLI 54.74 66.71 89.23 57.22 66.59 82.14 56.00 86.18 78.46 79.23 63.75 55.38 67.86 56.25 84.44 76.47 48.51
RoBERTa en: En-all-NLI 63.16 71.57 89.23 61.11 69.02 84.29 57.33 84.41 74.62 73.85 63.75 53.08 70.00 69.38 83.33 73.53 49.55
XLM-R en: MNLI 45.79 65.57 84.62 61.11 61.95 82.14 52.00 85.88 82.69 78.46 62.50 52.31 57.14 51.25 80.00 74.12 44.03
XLM-R en: En-all-NLI 45.79 69.71 84.62 61.67 64.15 85.71 48.67 84.71 79.23 69.23 63.12 46.15 59.29 60.00 77.78 75.29 45.82
XLM-R zh ori: OCNLI 39.47 56.29 75.38 41.11 53.41 73.57 51.33 85.59 63.08 83.08 62.50 70.77 64.29 54.38 62.22 78.82 47.31
XLM-R zh MT: XNLI 42.11 60.14 84.62 61.11 61.95 74.29 53.33 86.76 73.46 84.62 60.62 60.00 57.86 40.62 84.44 68.24 47.31
XLM-R zh mix: OCNLI+XNLI 43.68 59.29 83.08 63.33 62.20 74.29 52.00 86.76 76.92 85.38 62.50 60.77 59.29 43.75 82.22 67.65 47.61
XLM-R mix: OCNLI+En-all-NLI 45.26 69.86 85.38 62.22 65.12 85.71 50.67 85.00 74.62 69.23 68.12 47.69 60.71 56.25 77.78 75.29 45.67
XLM-R mix: XNLI+En All LI 44.21 67.29 86.15 62.22 63.90 83.57 49.33 84.71 75.00 70.77 66.88 46.92 58.57 57.50 74.44 74.12 45.82

Table 17: Results of English Diagnostics from GLUE-Part II (Wang et al., 2018).


