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Abstract

We introduce a new approach for the task of
Controllable Text Simplification, where sys-
tems rewrite a complex English sentence so
that it can be understood by readers at differ-
ent grade levels in the US K-12 system. It
uses a non-autoregressive model to iteratively
edit an input sequence and incorporates lexi-
cal complexity information seamlessly into the
refinement process to generate simplifications
that better match the desired output complexity
than strong autoregressive baselines. Analysis
shows that our model’s local edit operations
are combined to achieve more complex sim-
plification operations such as content deletion
and paraphrasing, as well as sentence splitting.

1 Introduction

Text simplification (TS) aims to automatically
rewrite text so that it is easier to read. What makes
text simple depends on its target audience (Xu
et al., 2015): replacing complex or specialized
terms with simpler synonyms might be helpful for
non-native speakers (Petersen and Ostendorf, 2007;
Allen, 2009) whereas restructuring text into short
sentences with simple words might better match the
literacy skills of children (Watanabe et al., 2009).
Studies of simplification tools for deaf or hard-of-
hearing users also show that they prefer lexical sim-
plification to be applied on-demand (Alonzo et al.,
2020). Yet, research in TS has mostly focused on
developing models that generate a generic simpli-
fied output for a given source text (Xu et al., 2015;
Zhang and Lapata, 2017; Alva-Manchego et al.,
2020). We contrast this Generic TS with Control-
lable TS which specifies desired output properties.

Prior work has addressed Controllable TS for ei-
ther high-level properties, such as the target reading
grade level for the entire text (Scarton and Specia,
2018; Nishihara et al., 2019), or low-level proper-
ties, such as the compression ratio or the nature of

Grade Text

10 Tesla is a maker of electric cars, which
do not need gas and can be charged by
being plugged into a wall socket.

5 Tesla cars can be charged by being
plugged in, like a phone. They do
not need any gas.

3 Tesla builds cars that do not need gas.

Table 1: Simplified text changes depending on the read-
ing grade level of the target audience. The bold font
highlights changes compared to the grade 10 version.

the simplification operation to use (Mallinson and
Lapata, 2019; Martin et al., 2020; Maddela et al.,
2020). Specifying the desired reading grade level
might be more intuitive for lay users. However, it
provides only weak control over the nature of sim-
plification. As illustrated in Table 1, simplifying
text to different grade levels results in diverse edits.
To rewrite the grade 10 original for grade 5, the
complex text is split into two sentences and para-
phrased. When simplifying for grade 3, phrases are
further simplified, and content is entirely deleted.

In this work, we adopt the intuitive framing for
Controllable TS where the desired reading grade
level is given as input, while providing fine-grained
control on simplification by incorporating lexical
complexity signals into our model. We adopt a non-
autoregressive sequence-to-sequence model (Xu
and Carpuat, 2020) that iteratively refines an input
sequence to reach the desired degree of simplifica-
tion and seamlessly integrate lexical complexity.

Unlike commonly used autoregressive (AR)
models for simplification (Specia, 2010; Nisioi
et al., 2017; Zhang and Lapata, 2017; Wubben
et al., 2012; Scarton and Specia, 2018; Nishihara
et al., 2019; Martin et al., 2020; Jiang et al., 2020,
among others), our model relies on explicit edit
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operations. It therefore has the potential of mod-
eling the simplification process more directly than
AR models which need to learn to copy opera-
tions implicitly. Unlike existing edit-based models
for simplification which rely on pipelines of in-
dependently trained components (Alva-Manchego
et al., 2017; Malmi et al., 2019; Mallinson et al.,
2020), our model is trained end-to-end via imita-
tion learning and thus learns to apply sequences
of edits to transform the original source into the
final simplified text. Furthermore, our approach
does not require a custom architecture for simplifi-
cation: it repurposes a non-autoregressive (NAR)
model introduced for Machine Translation (MT)
and can seamlessly incorporate lexical complex-
ity information derived from data statistics in the
initial sequence to be refined.

Based on extensive experiments on the Newsela
English corpus, we show that our approach gener-
ates simplified outputs that match the target reading
grade level better than strong AR baselines. Fur-
ther analysis shows that the model learns complex
editing operations such as sentence splitting, substi-
tution and paraphrasing, and content deletion and
applies these operations accordingly to match the
complexity of the desired grade level.

2 An Edit-based approach for
Controllable TS

Task We frame Controllable TS as follows:
given a complex text c and a target grade level gt,
the task consists in generating a simplified output
s that is appropriate for grade level gt.

Approach Our approach, illustrated in Figure 1,
is based on EDITOR (Xu and Carpuat, 2020), a
NAR Transformer model where the decoder layer
is used to apply a sequence of edits on an initial
input sequence (possibly empty). The edits are of
two types: (1) reposition and (2) insertion. The
reposition layer predicts the new position of each
token (including deletions). The insertion layer has
two components: the first layer predicts the num-
ber of placeholders to be inserted and the fill-in
layer generates the actual target tokens for each
placeholder. At each iteration, the model applies
a reposition operation followed by insertion to the
current input. This is repeated until two consecu-
tive iterations return the same output, or a preset
maximum number of operations is reached. We
tailor EDITOR for the task of Controllable TS as
follows:

Figure 1: EDITOR iteratively refines a version of the
input where words predicted to be too complex for 3rd
grade readers have been deleted.

Control tokens The target complexity gt is en-
coded as a special token added at the start of the in-
put sequence. As in prior work with autoregressive
models (Scarton and Specia, 2018; Nishihara et al.,
2019), this token acts as a side-constraint, gets en-
coded in the encoder hidden states as any other vo-
cabulary token, and informs hypothesis generation
through the source-target attention mechanism.

Lexical complexity signals We automatically
identify the source words that are too complex for
the target grade and delete them from the initial
sequence to be refined by EDITOR. This simple
strategy provides finer-grained guidance to the sim-
plification process than the sequence-level side-
constraint, while leaving the EDITOR model the
flexibility to rewrite the output without constraints.
We quantify the relatedness between each vocabu-
lary word (w) and grade-level (g) using their Point-
wise Mutual Information (PMI) in the newsela cor-
pus (Nishihara et al., 2019; Kajiwara, 2019):

PMI(w, g) = log
p(w|g)
p(w)

(1)

Here, p(w|g) is the probability that word w ap-
pears in sentences of grade level g and p(w) is the
probability of word w in the entire training corpus.

While the desired grade level gt is known in the
task, we automatically predict the complexity gs
of each source sentence si using the Automatic
Readability Index (ARI; Senter and Smith (1967)).
The initial decoding sequence ŝi takes the source
sequence and deletes all words that are strongly
related to the source grade level and unlikely to
be found in text of the target grade level, with the
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exception of named entities:

ŝi = {w|w ∈ si ∧ ∼ (PMI(w, gs) > 0

∧ PMI(w, gt) < 0 ∧ w 6∈ Ei)}
(2)

where, Ei represents the set of entities in the source
sequence si. Our approach contrasts with prior
work where PMI has been used in the loss to re-
ward the generation of target grade-specific words
for Controllable TS (Nishihara et al., 2019) or to ex-
clude complex words from the decoding vocabulary
using hard constraints for Generic TS (Kajiwara,
2019). Our approach combines lexical complexity
information from both the source and target grade
level more flexibly. Starting from ŝi as an initial
sequence, EDITOR can still delete further content
to match the target grade level, insert new words to
fix fluency and preserve the original meaning, and
has the flexibility to re-generate tokens that were
incorrectly dropped from the initial sequence.

Training to generate & refine EDITOR uses
imitation learning to learn an appropriate sequence
of edit operations to generate the output sequence
by efficiently exploring the large space of valid
edit sequences that can reach a reference output. A
roll-in policy is used to generate sequences to be
refined and a roll-out policy is then used to estimate
cost-to-go for all possible actions given the roll-in
sequences. The model is trained to choose actions
that minimizes the cost-to-go estimates from the
roll-in sequences to the true reference by compar-
ing the model actions to the oracle actions gener-
ated by the Levenshtein edit distance algorithm.
The roll-in sequences are stochastic mixtures of the
initial sequences and outputs of the insertion and
reposition modules given an initial sequence. The
initial sequence is generated by applying random
word dropping (Gu et al., 2019) and random word
shuffle (Lample et al., 2018) with a probability of
0.5 and maximum shuffle distance of 3 to either
the target sequence for MT tasks (Xu and Carpuat,
2020) or to the source sequence for Automatic Post
Editing (Gu et al., 2019). For Controllable TS, we
combine both, training EDITOR to generate text
based on the corrupted target sequence first, and
then fine-tuning the model for refinement based on
the corrupted source sequence next.

3 Experimental Settings

3.1 Data
The Newsela website provides high quality data to
study text simplification (Xu et al., 2015). It con-

sists of news articles rewritten by professional edi-
tors for students in different grade levels. We use
English Newsela samples as extracted by Agrawal
and Carpuat (2019) since their process preserves
grade level information for each segment. We re-
strict the length of each segment to be between 5
and 80 resulting in 470k/2k/19k for training, devel-
opment and test sets respectively. We pre-process
the dataset using Moses tools for normalization,
and truecasing. We refer to the resulting dataset
as newsela-grade. We further segment tokens into
subwords using a joint source-target byte pair en-
coding model with 32, 000 operations. We use
spacy1 to identify entities in the source sequence.

3.2 Model configurations

Architecture We adopt the base Transformer ar-
chitecture (Vaswani et al., 2017) with dmodel =
512, dhidden = 2048, nheads = 8, nlayers = 6, and
pdropout = 0.1 for all our models. We add dropout
to embeddings (0.1) and label smoothing (0.1). AR
models are trained with the Adam optimizer with
a batch size of 4096 tokens. Training stops after
8 checkpoints without improvement of validation
perplexity. We decode with a beam size of 5 for
the AR models. All NAR models are trained us-
ing Adam with initial learning rate of 0.0005 and
a batch size of 16,000 tokens. We select the best
checkpoint based on validation perplexity. Grade
side-constraints are defined using a distinct spe-
cial token for each grade level (from 2 to 12). All
models are implemented using the Fairseq toolkit.

Preliminary We establish that our Transformer
architecture choice is strong on the more standard
Generic TS task, as it performs comparably to the
state-of-the-art2 (Jiang et al., 2020) on the Newsela-
Auto corpus (Table 2).3

Experimental Conditions We compare our ap-
proach, i.e.,“NAR + PMI-based initialization”, de-
scribed in Section 2 to three auto-regressive base-
lines for Controllable TS:

1. AR is a Transformer model which uses grade

1https://spacy.io/
2The Bert-initialized Transformer has parameters dmodel =

768, dhidden = 3072, nheads = 12, nlayers = 12, and pdropout
= 0.1. The encoder and decoder follow the BERT-base archi-
tecture. The encoder is initialized with a pre-trained check-
point and the decoder is randomly initialized.

3This corpus contains complex-simple pairs extracted from
1,506 articles for training, 188 for validation and 188 for
testing for Generic TS.

https://spacy.io/
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SARI add-F1 keep-F1 del-P

Results as reported in Jiang et al. (2020)
EditNTS 35.8 2.4 29.4 75.6
Transformer-BERT 36.6 4.5 31.0 74.3

AR Transformer (ours) 36.1 3.8 33.5 71.1

Table 2: Generic TS Evaluation on Newsela-Auto: our
Transformer baseline is comparable to SOTA models.

level tokens as side constraints (Scarton and
Specia, 2018).

2. AR + PMI-based constraints is an AR
Transformer model which incorporates lexi-
cal complexity information as hard constraints
during decoding (Kajiwara, 2019): complex
words are excluded from beam search using
the dynamic beam allocation algorithm (Post
and Vilar, 2018). While this approach was
introduced for Generic TS, we adapt it to Con-
trollable TS by defining hard constraints using
the same criteria as for deleting words in ini-
tial sequences for EDITOR (Section 2).

3. AR + PMI weighted loss (Nishihara et al.,
2019) is an AR Transformer model trained
with a loss that weights words based on their
PMI values with the desired target grade level.

3.3 Automatic Evaluation Metrics

We evaluate the output of the models using the
following text simplification evaluation metrics:

SARI (Xu et al., 2016) measures lexical simpli-
fication based on the words that are added, deleted
and kept by the systems by comparing system out-
put against references and against the input sen-
tence. It computes the F1 score for the n-grams
that are added (add-F1). The model’s deletion capa-
bility is measured by the F1 score for n-grams that
are kept (keep-F1) and precision for the deleted
n-grams (del-P) 4.

Pearson’s correlation coefficient (PCC) mea-
sures the strength of the linear relationship between
the complexity of our system outputs and the com-
plexity of reference outputs. We estimate the read-
ing grade level of the system outputs and reference
text using the ARI score.

4https://github.com/cocoxu/
simplification

Adjacency ARI Accuracy represents the per-
centage of sentences where the system output grade
level is within 1 grade of the reference text accord-
ing to the ARI score (Heilman et al., 2008).

Mean Squared Error (MSE) between the pre-
dicted ARI grade level of the system output and
the desired target grade level (Scarton and Specia,
2018; Nishihara et al., 2019).

4 Evaluation of Controllable TS

4.1 Automatic Evaluation

Table 3 summarizes the automatic evaluation of our
approach on Controllable TS: our approach,
“NAR + PMI-based initialization”, improves all
metrics—SARI, PCC, ARI-accuracy and MSE—
compared to the AR baselines. It also outper-
forms the AR + PMI-based constraints
baseline across all metrics except MSE which over-
simplifies the source text by always deleting the
complex tokens, as shown by a decrease in keep-
F1 (-6.1) and improved del-P (+4.6). This results
in lower MSE but worse PCC and ARI-Accuracy.
By contrast, our approach uses lexical com-
plexity information to provide an initial canvas and
yields simplified sentences that match the desired
target complexity better than the AR baselines.
This is reflected in the higher SARI obtained by the
PMI-based initialization baseline rela-
tive to the Source, which represents outputs gen-
erated by deleting complex tokens from the source
text and hence by itself is not a well-formed. AR
+ PMI weighted loss performs comparably
to the AR baseline across all the metrics except
PCC, which could be due to PMI values being
a relatively noisy signal at the token level during
training, especially for the target grade levels where
the data is scarce.5

We further compare our approach with the
model that uses the Oracle-keep sequence, i.e.,
tokens from the source sequence that are present
in the target sequence. As expected, the oracle sig-
nificantly outperforms all models that do not have
access to the reference, further confirming EDI-
TOR’s ability to make good use of the provided
initial sequence. More interestingly, our method for
identifying grade-specific complex tokens (Equa-
tion 2) achieves a recall of 91.3% and precision of

5We note that the improvement in SARI reported in prior
work (Nishihara et al. (2019): +0.15) is within the confidence
interval (+0.5) of the AR baseline (Table 3).

https://github.com/cocoxu/simplification
https://github.com/cocoxu/simplification
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Model SARI ↑ keep-F1 ↑ add-F1 ↑ del-P ↑ %PCC ↑ %ARI-ACC ↑ MSE ↓ %Unchanged

Source 22.5 67.7 0.0 0.0 63.2 29.4 4.92 100.0

Reference 91.1 98.9 88.1 86.3 100.0 100.0 1.91 10.6

PMI-based initialization 37.1 60.5 1.3 49.3 61.4 26.4 3.69 3.4

AR 38.7 ±0.5 68.3 ±0.3 4.6 ±0.3 43.2 ±1.4 73.0 ±0.3 37.1 ±0.4 3.39 ±0.24 36.2

+ PMI-based constraints 38.3 ±0.1 62.2 ±0.7 4.9 ±0.3 47.8 ±0.3 69.1 ±0.2 35.0 ±0.5 2.21 ±0.22 12.1

+ PMI weighted loss 38.5 ±0.5 68.2 ±0.3 4.5 ±0.3 42.9 ±1.3 72.4 ±0.2 36.6 ±0.5 3.32 ±0.21 35.9

NAR 39.1 ±0.1 66.7 ±0.1 3.1 ±0.1 47.6 ±0.4 73.1 ±0.1 36.4 ±0.0 3.56 ±0.04 17.7

+ PMI-based initialization
(our approach)

39.7 ±0.1 66.5 ±0.1 3.5 ±0.1 49.0 ±0.4 73.7 ±0.0 38.1 ±0.1 3.30 ±0.05 16.0

Oracle-keep 41.8 ±0.3 70.0 ±0.1 5.0 ±0.1 50.3 ±0.7 75.6 ±0.3 41.8 ±0.3 2.97 ±0.06 16.9

Table 3: Automatic evaluation results on Newsela-Grade test set: our approach outperforms AR baselines on
SARI, PCC and ARI accuracy.

Figure 2: Our approach substitutes “analyzed” correctly as well as splits the source sentence into two simple
sentences to generate a simplified output that matches the lexical complexity of the desired grade-level 6. The
tokens identified as complex using the proposed method in the source are bold.

76.4% with the oracle on the development set, indi-
cating that the initial sequences contain appropriate
vocabulary. Table 3 shows that our approach
partially closes the gap in performance with the
oracle by using this modified source sequence as
opposed to the original source sequence (NAR).

Figure 2 illustrates the refinement process that
generates the simplified output. Reposition and in-
sertion operations are used in consecutive steps to
perform complex editing operations (e.g., sentence
splitting and lexical substitution) , which requires
that the model learns to perform these operations

sequentially. Furthermore, our approach re-
covers the tokens that were incorrectly identified
as complex and thus deleted in the initial sequence,
highlighting the benefits of the flexible refinement
process.

4.2 Human evaluation

We randomly sample 60 source sentences from
the Newsela-Grade dataset, among sources that are
simplified toward four distinct grade levels (∼240
examples). For each of these target grades, we ob-
tain ratings of system outputs and reference from
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Model SARI ↑ %PCC ↑ %ARI-Acc ↑ MSE ↓ Iteration %Unchanged

our approach 40.2 ±0.0 73.9 ±0.3 36.1 ±0.2 3.73 ±0.03 2.32 ±0.04 17.6

−PMI-based Initialization 39.2 ±0.1 73.1 ±0.9 34.5 ±0.4 4.01 ±0.06 2.23 ±0.06 19.2

−Finetune 37.6 ±0.4 63.7 ±0.5 28.0 ±0.1 5.12 ±0.01 1.14 ±0.00 20.6

−Src Initialization 37.2 ±0.2 72.2 ±0.3 34.4 ±0.4 3.59 ±0.09 2.13 ±0.07 34.1

−Joint 39.7 ±0.1 68.1 ±1.7 31.6 ±0.2 4.70 ±0.05 1.00 ±0.00 11.0

Single Iteration 40.3 ±0.2 72.6 ±0.1 35.7 ±0.5 3.99 ±0.01 1.00 ±0.00 15.0

Gold Source Grade 40.2 ±0.1 74.1 ±0.5 36.5 ±0.3 3.71 ±0.04 2.33 ±0.03 17.3

Table 4: Ablation analysis on model design choices for our approach on Newsela-Grade development set.

Meaning Grammar Simplicity
Mean Mean Mean Abs. Diff ↓ Adj. Acc ↑

Reference 2.763 3.193 5.325 - -
AR 2.803 3.171 5.157 2.035 0.533
our approach 2.647 3.081 5.310 1.895 0.575

Table 5: Human Evaluation Results: our approach gen-
erates output that match the reference judgements bet-
ter than the AR baseline.

five Amazon Mechanical Turk workers. Following
prior annotation protocols (Jiang et al., 2020), we
ask workers to rate outputs on three dimensions: a)
is the output grammatical? [0-4] b) to what extent
is the meaning expressed in the original sentence
preserved in the output? [0-4] and c) how simpli-
fied is the output with respect to the original source
sentence? [0-10]. Different from prior work, we
use a 10-point scale for evaluating simplicity to
map the rating resolution to the gold grade differ-
ences. The detailed instructions provided to the
workers are in the Appendix B.

We compute the absolute difference (“AbsD-
iff”) in the simplicity ratings between the refer-
ence and the system output by the same annotator,
and aggregate over all examples and all ratings.
Table 5 shows that our outputs are closer to the
reference according to the simplicity judgements
than the AR system outputs. The “Mean” ratings
indicate that the two models make different trade-
offs: where the AR model under-simplifies the
source sentence and preserves the meaning, our
approach almost matches the mean simplicity of
the reference at the cost of lower meaning preser-
vation. Our outputs are also less grammatical than
those of the AR model and the references, prob-
ably due to the independence assumptions made
by the non-autoregressive model. The Adjacency
Accuracy, representing the percentage of system

outputs within a difference of one rating with the
reference, is also higher for our approach relative
to the AR model.

4.3 Ablation Experiments

Table 4 summarizes the impact of the de-
sign choices described in Section 2: Re-
moving lexical information (-PMI-based
Initialization) hurts both SARI and
the grade specific metrics. Further, using the
baseline EDITOR model that is trained only to
generate, without fine-tuning for refinement,
significantly hurts the performance across the
board. In that setting, EDITOR never learns to
delete tokens from the source, but only learns
to delete tokens inserted by the model. Using
EDITOR to generate the output from scratch
instead (-Src Initialization) recovers the
performance on SARI and grade specific metrics
but fails to match the performance of our approach.
This shows that fine-tuning for refinement and
providing initial sequences informed by lexical
complexity are both key to the performance of the
EDITOR for Controllable TS.

We also compare our approach with the variant
of the model that is trained to perform reposition
independent of the insertion operation (-Joint),
similar to Mallinson et al. (2020). Even though
this variant is able to match SARI, the difference
in grade-specific metrics is significant, showing
the benefits of joint training of the insertion and
reposition components.

Iterative refinement helps match the target grade
better than single step refinement as suggested by
ARI Accuracy, MSE and PCC. Figure 3 shows the
number of iterations of refinement performed by
our approach as the function of desired target grade
level: simplifying to lower grade levels (2 or 3)
requires on average 1 additional refinement step
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Figure 3: Our approach requires more number of iter-
ations when simplifying to a lower grade level. The
number of iterations performed by the model monoton-
ically increases with the edit distance between source
and reference.

than simplifiying to grade 8 or 9. This suggests that
the iterative process helps simplification when the
gap between source and target grades is wider.

Method Precision Recall

Target Only 76.4 80.2

Source (ARI) Only 76.6 78.2

Source (ARI) + Target 76.4 91.3

Table 6: Using both source and target grade to filter
complex words yields maximum overlap with the set
of tokens that are preserved from the source in the ref-
erence on the Newsela-Grade development set.

Finally, we verify that using ARI to estimate
the complexity of the source is effective. Replac-
ing the ARI predictions with the gold-standard
grade-level improves the grade-specific metrics
only marginally. Table 6 further shows the advan-
tage of combining source and target grade informa-
tion when identifying complex tokens (Equation 2)
over using source or target grade only.

5 Analysis

Per Grade Analysis How does our model com-
pare against the AR baselines for each target grade-
levels? Figure 4a and 4b show the SARI and Ad-
jacency Accuracy bucketed by target grade level.
We observe that our approach achieves comparable
or higher accuracy than the AR baselines for all
grades except 2 and 3. Further analysis suggests
that this is due to samples where the source grade
level is 12, and where our approach deletes words
too aggressively to simplify for the large grade gap
(Figure 4c and 4d).

Model Edit operations We compare the number
of edit operations performed by our model and the
oracle Levenshtein Edit Distance (Section 2) when
simplifying to different target grade levels. Figure 5

shows that the number of operations performed
by our approach to generate its output track the
number of oracle Levenshtein edits overall. The
main differences are that our approach performs
more than twice as many repositions than the oracle
(5c) for grades 4 and above which suggest that the
sequence of operations performed is suboptimal.
Furthermore our approach overdeletes words for
target grade levels lower than 4 (5b), and performs
fewer insertions than the oracle (5a). We turn to
manual analysis to shed more light on these results.

Simplification Operations Table 7 reports a
manual annotation of the simplification operations
observed for 50 randomly sampled segments, us-
ing an operation taxonomy from prior work (Xu
et al., 2015; Jiang et al., 2020). Our approach per-
forms content deletion in 7.5% more sentences
than needed to generate the references. At the
same time, it performs fewer insertions – in partic-
ular, our approach is unable to generate the elab-
orations and explanations found in the Newsela
references (Srikanth and Li, 2020). This would
require knowledge-based reasoning, which is be-
yond the capacity of the current model. However,
our approach can model sentence splitting and sub-
stitution, which often require a sequence of inser-
tion/deletion/reposition operations to be performed
sequentially.

Type % reference % output

Lexical Substitution 25.0 17.5

Deletion 25.0 32.5

Reordering/Paraphrasing 35.0 20.0

Splitting 27.5 15.0

Content Elaboration 10.0 0.0

Unchanged 22.5 37.5

Table 7: Simplification Operations observed in the ref-
erence and output by our approach in 50 randomly sam-
pled examples from the Newsela-Grade dataset.

6 Related Work

AR Models for TS Generic TS is often framed
as machine translation where an autoregressive
sequence-to-sequence model learns to model sim-
plification operations implicitly from pairs of
complex-simple training samples (Specia, 2010;
Nisioi et al., 2017; Zhang and Lapata, 2017;
Wubben et al., 2012; Scarton and Specia, 2018;
Nishihara et al., 2019; Martin et al., 2020; Jiang
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(a) ARI Accuracy (b) SARI

(c) ARI Accuracy (d) SARI

Figure 4: Analysis of automatic metrics for different target grade levels on the Newsela-Grade development set:
our approach achieves higher or comparable SARI and ARI scores compared to the AR baselines for all grade
levels except 2 or 3.

(a) Insertion (b) Deletion (c) Reposition

Figure 5: Edit operations accumulated over iterations for different target grade levels relative to the reference.

et al., 2020). There have been efforts at control-
ling a different aspect of the simplified output, such
as controlling for a specific grade-level (Scarton
and Specia, 2018; Nishihara et al., 2019) or em-
ploying lexical or syntactic constraints (Mallinson
and Lapata, 2019; Martin et al., 2020), where the
complexity of a word is either determined by its
frequency or by manually tagging the tokens at
inference time. We instead use the association of
a word with the grade-level to define lexical con-
straints automatically. Furthermore, these models
lack interpretability in terms of the type of oper-

ations performed, and need to generate the entire
output sequence from scratch thus potentially wast-
ing capacity in learning copying operations.

Edit-based Generic TS Recent work incorpo-
rates edit operations into neural text simplifications
more directly. These approaches rely on custom
multi-step architectures. They first learn to tag the
source token representing the type of edit oper-
ations to be performed, and then use a secondary
model for in-filling new tokens or executing the edit
operation. The tagging and editing model are either
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trained independently (Alva-Manchego et al., 2017;
Malmi et al., 2019; Kumar et al., 2020; Mallinson
et al., 2020) or jointly (Dong et al., 2019). By con-
trast, we use a single model trained end-to-end to
generate sequences of edit operations to transform
the entire source sequence.

Lexical Complexity for TS Nishihara et al.
(2019) introduced a training loss for Controllable
TS that weights words that frequently appear in
the sentences of a specific grade-level. By contrast,
we use lexical complexity information to define
the initial sequence for refinement, which does not
require any change to the model architecture nor
to the training process. For Generic TS, Kajiwara
(2019) used complex words as negative constrained
for decoding with an autoregressive model. By con-
trast our approach provides more flexibility to the
model which results in better outputs in practice.

Non-autoregressive Seq2Seq Models They
have primarily been used to speed up Machine
Translation by allowing parallel edit operations
on the output sequence (Lee et al., 2018; Gu
et al., 2018; Ghazvininejad et al., 2019; Stern
et al., 2019; Chan et al., 2020; Xu and Carpuat,
2020). Refinement approaches have been used to
incorporate terminology constraints in machine
translation, including as hard (Susanto et al., 2020)
and soft constraints (Xu and Carpuat, 2020). They
have also shown promise for Automatic Post
Editing (APE) (Gu et al., 2019; Wan et al., 2020) ,
and grammatical error correction (Awasthi et al.,
2019). In this work, we show that they are a good
fit to incorporate lexical complexity information
for Controllable TS.

7 Conclusion

We introduced an approach that repurposes a non-
autoregressive sequence-to-sequence model to in-
corporate lexical complexity signals in Control-
lable TS. An extensive empirical study showed that
our approach generates simplified outputs that bet-
ter match the desired target-grade complexity than
AR models. Analysis revealed promising directions
for future work, such as improving grammaticality
while encouraging tighter control on complexity by
better aligning the model’s atomic edit operations
with more complex simplification operations.
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Vinı́cius Rodriguez Uzêda, Renata Pontin de Mattos
Fortes, Thiago Alexandre Salgueiro Pardo, and San-
dra Maria Aluı́sio. 2009. Facilita: reading assistance
for low-literacy readers. In Proceedings of the 27th
ACM international conference on Design of commu-
nication, pages 29–36.

Sander Wubben, Antal van den Bosch, and Emiel Krah-
mer. 2012. Sentence simplification by monolingual
machine translation. In Proceedings of the 50th An-
nual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 1015–
1024, Jeju Island, Korea. Association for Computa-
tional Linguistics.

Wei Xu, Chris Callison-Burch, and Courtney Napoles.
2015. Problems in current text simplification re-
search: New data can help. Transactions of the Asso-
ciation for Computational Linguistics, 3:283–297.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze
Chen, and Chris Callison-Burch. 2016. Optimizing
statistical machine translation for text simplification.
Transactions of the Association for Computational
Linguistics, 4:401–415.

Weijia Xu and Marine Carpuat. 2020. Editor: an edit-
based transformer with repositioning for neural ma-
chine translation with soft lexical constraints. arXiv
preprint arXiv:2011.06868.

Xingxing Zhang and Mirella Lapata. 2017. Sentence
simplification with deep reinforcement learning. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
584–594.

https://doi.org/10.18653/v1/2020.acl-main.325
https://doi.org/10.18653/v1/2020.acl-main.325
https://www.aclweb.org/anthology/P12-1107
https://www.aclweb.org/anthology/P12-1107


3768

A Appendix

A.1 Dataset Statistics
Table 8 provides the statistics of grade pair distri-
bution in the Newsela-Grade dataset.

A.2 Implementation Details
We train all our models on two GeForce GTX
1080Ti GPUs. The average training time for a
single seed of AR model is ∼8-9 hrs and for the
EDITOR model is ∼20-22 hrs. Fine-tuning EDI-
TOR takes additional 4-5 hrs.

B Human Annotation

Quality Control We set the location restriction
to the United States to control for the quality of an-
notations. The correlation between the target grade
levels and the simplicity ratings of the reference
text is 0.582, which suggest that workers do rank
simpler output higher than a relatively complex
reference of the same source sentence.

Compensation We compensate the Amazon Me-
chanical Turk workers at a rate of $0.03 per HIT.

Instructions We provide the following instruc-
tions to the Amazon Mechanical Turk workers to
evaluate generated simplified sentences.

Meaning You are given one sentence and 3
rewrites of the same sentence. Carefully read the
instructions provided and then use the sliders to
indicate the extent to which the meaning expressed
in the original sentence is preserved in the rewrites
(Agirre et al., 2016).

Score Category

4 they convey the same key idea
3 they convey the same key idea but differ in some

unimportant details
2 they share some ideas but differ in important details
1 they convey different ideas on the same topic
0 Completely different from the first sentence

Grammar You are given three sentences. Care-
fully read the instructions provided and then use
the sliders to indicate the extent to which each of
the sentence is grammatical (Heilman et al., 2014).

Score Category

4 Perfect: The sentence is native-sounding.
3 Comprehensible: The sentence may contain one or

more minor grammatical errors
2 Somewhat Comprehensible: The sentence may con-

tain one or more serious grammatical errors,
1 Incomprehensible: The sentence contains so many

errors that it would be difficult to correct
0 Other/Incomplete This sentence is incomplete

Simplicity You are given one sentence and 3
rewrites of the same sentence. Carefully read the
instructions provided and use the sliders to indi-
cate how simple is each of the rewrite as compared
to the original sentence (0: not simplified at all,
10: most simplified). We provide the following
examples for your reference.
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Src / Tgt 2 3 4 5 6 7 8 9 10

3 2488 0 0 0 0 0 0 0 0
4 466 7737 0 0 0 0 0 0 0
5 2080 18143 22888 0 0 0 0 0 0
6 1742 6952 20041 20212 0 0 0 0 0
7 545 7857 13556 31297 10315 0 0 0 0
8 557 3277 12557 16301 21457 11241 0 0 0
9 106 4338 4714 18143 4384 28690 2016 0 0
10 6 33 218 306 367 277 386 134 0
11 0 0 15 19 11 16 28 0 0
12 1039 6320 17703 32361 27144 39143 28545 29261 82

Table 8: Number of text segments per grade level pair in the Newsela-Grade dataset.

Original sentence: Craig and April Likhite drove to Chicago from Evanston with their 10-year-old son, Cade, because
they wanted to see history made with other fans as close to Wrigley Field as possible.

Rewrites: Simplicity:

1. Craig and April Likhite drove to Chicago. They wanted to see history made with other fans as close to
Wrigley Field as possible.

7

Explanation: long and complex sentence has been split into two simple sentences, complex words are dropped

2. Craig and April Likhite to Chicago with their son Cade. 8
Explanation: drastic content deletion

3. Craig and April Likhite drove to Chicago from Evanston with their 10-year-old son, Cade. They wanted
to see history made with other fans as close to Wrigley Field as possible.

4

Explanation: long sentence is split into two simple sentences

4. Craig and April Likhite drove to Chicago because they wanted to see history made with other fans as
close to Wrigley Field as possible.

6

Explanation: paraphrasing and deletion

Table 9: Example illustrating ratings for simplified rewrites of an originally complex sentence.


