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Abstract

Multi-modal machine translation (MMT)
aimed at using images to help disambiguate
the target during translation and improving
robustness, but some recent works showed
that the contribution of visual features is either
negligible or incremental. In this paper, we
show that incorporating pre-trained (vision)
language model (VLP) on the source side can
improve the multi-modal translation quality
significantly. Motivated by BERT, VLP aims
to learn better cross-modal representations
that improve target sequence generation. We
simply adapt BERT to a cross-modal domain
for the vision language pre-training, and the
downstream multi-modal machine translation
can substantially benefit from the pre-training.
We also introduce an attention based modality
loss to promote the image-text alignment in
the latent semantic space. Ablation study
verifies that it is effective in further improving
the translation quality. Our experiments on
the widely used Multi-30K dataset show
increased BLEU score up to 6.2 points
compared with the text-only model, achieving
the state-of-the-art results with a large margin
in the semi-unconstrained scenario and
indicating a possible direction to rejuvenate
the multi-modal machine translation.

1 Introduction

Joint models of language and vision have achieved
remarkable results, such as in image caption
(Karpathy and Fei-Fei, 2015) and visual question
answering (Antol et al., 2015). Multi-modal ma-
chine translation (MMT) was first introduced as
a shared competition task at the 2016 Conference
on Machine Translation (WMT16) (Specia et al.,
2016) as an interdisciplinary study to incorporate a
visual element into the multilingual translation task.
This task continued for three years until WMT18,
and the findings presented by the organizers sug-
gest that the text-only systems remain competi-
tive, and that the contribution of visual modality

Data used img src tgt examples
Multi-30K X X X most works

+external data
X X (Grönroos et al., 2018)

X X (Helcl et al., 2018)
X X (Yin et al., 2020), ours

Table 1: Different unconstrained scenarios in MMT.

is not entirely convincing (Specia et al., 2016; El-
liott et al., 2017; Barrault et al., 2018). Moreover,
the experiments in (Elliott, 2018) find that a pub-
licly available MMT system produces great trans-
lations with random, incongruent images, further
undermining the importance of visual features. The
empirical results have so far raised doubts about
whether the visual features can really help MMT,
and there is evidence pointing to a negative answer.

We hypothesize that one reason is the data scale
of the benchmarking Multi-30K (Elliott et al.,
2016) – it is likely insufficient for a deep model to
learn better cross-modality or cross-lingual repre-
sentations. However, the pre-training techniques
such as BERT (Devlin et al., 2019) or cross-lingual
language model (XLM) (Conneau and Lample,
2019) can capture rich representations of the inputs
from languages and be applied to various down-
stream tasks by providing context-aware embed-
dings, leading to remarkable improvements even on
small datasets. Furthermore, the pre-trained vision
and language model LXMERT (Tan and Bansal,
2019) pioneers the cross-modality pre-training and
sets an influential record in vision and language
reasoning tasks. These advances lead us to believe
that a better cross-modality representation can help
multi-modal machine translation as well.

In this work, we discuss the unconstrained sce-
nario of MMT, but unlike previous setting in most
WMT 2018 submissions (Grönroos et al., 2018;
Helcl et al., 2018), we did not include any external
data of the parallel source and target textual corpus.
Since we want to incorporate a pre-trained (vision)
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language model as an encoder backbone into the
transformer architecture (Vaswani et al., 2017) for
neural machine translation, our used external data
only contains the images and the source texts.

Particularly, our model is initialized with the
widely used BERT, and pre-trained on large scale
image-text dataset (about six million pairs), expect-
ing to learn a better cross-modality representation
between the image and the source language. Next,
we stack a regular transformer decoder on top of
the pre-trained (vision) language model and pro-
ceed to the task of MMT. Meanwhile, we design
another modality loss in addition to the traditional
sequential cross entropy loss. The modality loss is
to minimize the difference between source-target
cross attention and image-target cross attention. In-
tuitively, minimizing this loss function can promote
the modality alignment among the three possible
pairwise configurations in the latent semantic space.
In other words, differences among (source, target),
(source, image), and (target, image) alignments can
be reduced. Our experimental section also presents
a detailed analysis of how each factor separately
contributes to the overall gains.

In summary, this paper makes the following con-
tributions. (1) We propose to integrate a pre-trained
vision language model into multi-modal machine
translation, aiming at learning and utilizing better
cross-modality representations. (2) We address the
importance of the modality loss which can further
boost the model performance. (3) We conduct ex-
tensive experiments on the benchmark Multi-30K
dataset, and our results outperform strong baselines
by a large margin.

2 Related Works

Constrained Scenario Most works like (Calixto
et al., 2017; Zhou et al., 2018; Ive et al., 2019; Yao
and Wan, 2020) in MMT prefer to use Multi-30K
dataset alone. For example, a standard paradigm
of MMT explored by many previous works is to si-
multaneously learn the vision language interaction
and the target language generation (Calixto et al.,
2017; Zhou et al., 2018; Ive et al., 2019; Yang et al.,
2020). However, training on such a limited dataset,
the benefits provided by visual features of these
methods are quantitatively marginal w.r.t. auto-
matic evaluation metrics BLEU and METEOR.
Unconstrained Scenario In the submissions of
WMT 2018 (Grönroos et al., 2018; Helcl et al.,
2018) as shown in Table 1, either images / source

texts or the source / target texts parallel dataset (or
back-translation) are added to improve the model
performance. However, as they discovered, train-
ing with the large scale parallel textual corpus will
shift the machine translation model towards the
pure textual domain, further weakening the effect
of visual features. The additional target data will
also make the fair comparison difficult. A special
unconstrained scenario by (Su et al., 2019b) lever-
ages large monolingual language data to pre-train
an unsupervised translation model. It considers
the cross representation of the source-target in an
unsupervised manner, but the image domain is still
isolated without proper training.

We will discuss another unconstrained scenario
that only allows to use additional images and source
texts. Zhu et al. (2019) investigates the represen-
tation from pre-trained BERT by feeding it into
all layers of a text-only translation model. This
work, to a large extent, encourages us to explore
how the (vision) language pre-trained model can
benefit the MMT. However, we found that a direct
architecture of feeding cross-modality representa-
tions (from LXMERT) to multi-modal translation
model does not work well.

To our best knowledge, Yin et al. (2020) cur-
rently achieves the state-of-the-art on Multi-30K. It
employed a common encoder-decoder framework
by hard-encoding a multi-modal graph to guide the
learning of the image-text cross attention, where
the graph structure is annotated by a pre-trained
visual grounding model (Yang et al., 2019). The
external data is not explicitly used in this work, but
the pre-trained visual grounding model uses BERT
as part of its backbone. Instead of relying on a
pre-defined graph to prevent the attention between
the word and visual feature without connection,
we obtain a soft cross attention from large-scale
vision-language data pre-training. It is also worth
mentioning that we make the BERT based visual
grounding and multi-modal machine translation
into an end-to-end trainable architecture.

3 Our Method

3.1 Initial Trial

The overall architecture of our proposed ap-
proach is based on the commonly used transformer
(Vaswani et al., 2017), which is the basic unit of
most pre-trained (vision) language model. Our ini-
tial experiment is to adopt pre-trained (vision) lan-
guage model as the encoder. The baseline is to train
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[CLS] a white and [MASK] dog … its mouth [SEP] [MASK] tree … [SEP] … 

Transformer Encoder
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Figure 1: The overall architecture of our proposed multi-modal NMT with pre-trained vision language model.
Note that the [MASK] tokens and random images are merely applied during vision language pre-training.

Encoder
visual Test2016 EnDe Test2016 EnFr
feature BLEU Meteor BLEU Meteor

Transformer - 38.3 56.6 59.6 74.6
BERT - 39.1 57.1 61.0 75.3
LXMERT X 37.4 55.2 57.7 68.6

Table 2: BERT/LXMERT are frozen.

a transformer NMT from scratch. The first compet-
itive system is simply BERT, and the second one
is the pre-trained vision language model LXMERT.
LXMERT claimed that the initialization with pre-
trained BERT will harm the performance of their
downstream tasks. Table 2 shows the preliminary
results indicating that the pre-trained LXMERT
as the encoder performs surprisingly worse than
text-only BERT. Does the table suggest that the
visual features are equally marginalized in MMT
equipped with pre-trained language model? How-
ever, since BERT encoder can bring more improve-
ments, we can abandon LXMERT’s conclusion and
return to the paradigm with BERT initialization.

3.2 Vision Language Pre-training (VLP)

Ive et al. (2019) finds that integrating both object-
based embedding features and image features into
the NMT model results better performance in hu-
man evaluation on comprehensibility. We therefore
favor the object-semantics alignment whose inter-
action is composed of text embedding, object tag
embedding and object image features.

We visualize the training rationale of the VLP
in the red dashed box of Figure 1. Suppose that
an image and its description x are presented as
the input, where x represents a sequence of n to-

kens (x1, ..., xn), i.e., the sentence of the source
language in our following NMT system. We first
process the image with the efficient object detection
model Faster-RCNN (Ren et al., 2015) to detect
the object regions, box positions, object tags and
attribute tags. Particularly, two sets of features are
extracted. One is the image visual features of all
detected objects, denoted as v. The other is the
classification tags of the corresponding objects, de-
noted as t, as textual features.

Since the backbone of our transformer encoder
is pre-trained BERT, the input text x and object
tags t are both language tokens that can be easily
concatenated. However, there is a dimensionality
mismatch between the BERT embedding layer and
the visual features. For dimension reduction, a
fully-connected layer is necessary with input v,
and its task is to learn cross modality transferring.
The final input fed into the multiple transformer
layers of BERT can be written as follows.

Cat [Emb (Cat[x, t]) ,FFN(v)] (1)

We now face two similar tasks as BERT.
Task 1: Masked LM Same as the standard BERT,
our training objective employs the masking token
prediction, where 15% of the input text tokens are
randomly selected and replaced with the special
token [MASK]. Then, only the masked token will
be predicted.
Task 2: Paired Image Prediction Analogous to
the standard BERT, we pre-train the binarized
paired image prediction task that mimics predicting
the next sentence, where the training data can be
trivially generated for each batch. Specifically, for
a given text input, we choose its paired image or
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[CLS] a white and brown dog is catching a red ball in its mouth . [SEP] dog tree building grass ball [SEP] 

Model Decoder

Ein weiß-brauner Hund

Model Encoder

[SOS] Ein weiß-braune

Softmax Layer

Kv, VvKx, Vx Qy

Source-Target Cross-Attention Image-Target Cross-Attention

Cosine Similarity Optimized with NMTWell trained in VLP

Figure 2: The visualization of modality loss for an input sentence-image pair. It exemplifies the computational
flow of the modality loss w.r.t. the last layer of the decoder when decoding “Hund” in German.

a random image each with probability 50%. The
output vector of the first special token [CLS] is
used as the aggregate multi-modal representation
for this classification task.

3.3 Multi-modal NMT
Once the vision language model has been fully
trained on a large paired image-text dataset, it is rea-
sonable to assume that the obtained cross-modality
representations between the source text and the im-
age are more powerful than those training on the
limited Multi-30K. The (key, value) pairs of both
the textual and visual features participate in the dot-
product attention of the transformer decoder. But
there is another dimensionality mismatch between
the BERT output and the decoder hidden size. To
close this gap, we append an additional fully con-
nected layer after the last layer of BERT. In this
section, we also introduce a novel modality loss
that is potential to benefit the multi-modal repre-
sentation learning while but incurs only a few extra
model parameters.
Modality Loss To train a multi-modal machine
translation task, i.e., generating the tokens in the
target language y = (y1, ..., ym), a common objec-
tive is the sequential cross entropy loss LXENT =
−
∑m

j=1 log p(yj |y<jx,v), which is the sum of
the negative log-likelihoods of the auto-regressive
text generation task. Our proposed auxiliary modal-
ity loss can be intuitively depicted as Figure 2.

Concretely, when generating the j-th token in
the target, the output textual and visual (key, value)
pairs from the encoder are separately used to com-
pute the cross-lingual and cross-modality attention
with the query vector of the l-th layer in the decoder.
The derived vectors can be written as follows.

h
(l)
x,j = Softmax

(
Kxq

(l)
j /
√
d
)
Vx (2)

where d is the hidden size of the model decoder,

and similar attention holds for visual features
h
(l)
v,j = Softmax

(
Kvq

(l)
j /
√
d
)
Vv. Thus, the

modality loss can be represented as

L(l)M =
m∑
j=1

(1− cos(h(l)
x,j ,h

(l)
v,j)) (3)

where the cosine similarity is defined as
cos(a,b) = a>b

‖a‖,‖b‖ . Consequently, the overall
training objective is a weighted combination of two
loss functions.

L = LXENT +
L∑
l=1

λ(l)L(l)M (4)

where L is total number of transformer layers in
decoder. Empirically, we found that only using
the modality loss of the last layer is sufficient to
improve the model performance. Intuitively, the
query vector will be directly fed into the softmax
layer for decoding the target tokens, making the last
layer more informative than other remote layers.

A common method of choosing the weighting
parameter λ is to run cross validation on the held-
out development data. For the task at hand, this
is a time-consuming process. We instead discard
the layer-wise λ(l) in Eq. (4) and introduce a self-
tuning module with respect to the generation pro-
cess of every single target token. Mathematically,
the refined modality loss can be formulated as,

L̃(l)M =

m∑
j=1

λ
(l)
j (1− cos(h(l)

x,j ,h
(l)
v,j)). (5)

where the token level λj is learnable and derived
from a feedforward neural network.

λ
(l)
j = Sigmoid(w>y Emb(yj)+w>x h

(l)
x,j+w>v h

(l)
v,j)

where wy,wx,wv are three d-dimensional vectors
shared cross different decoder layers and required
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Algorithm 1 Training Pipeline

Require: Image, source text paired dataDVLP; Im-
age, source/target text triple data DMMT.

1: Initialize the transformer encoder of NMT with
pre-trained BERT.

2: Pre-train the transformer encoder on DVLP
with masked language model task and pair im-
age prediction task.

3: Extract the image, source text paired from
DMMT.

4: Continue the vision language pre-training on
above extracted data.

5: Freeze the transformer encoder, and optimize
other parameters on DMMT with cross entropy
loss and modality loss until convergence.

6: Optimize all model parameters on DMMT with
cross entropy loss and modality loss until con-
vergence.

to jointly optimize with the model parameters, but
useless during inference. We expect the model to
dynamically adjust the weight parameters of the to-
kens with different importance. For example, there
is a good chance that the content words also appear
as detected objects by the Faster R-CNN. If the
term w>v h

(l)
v,j can positively increase its scale for

such words, the corresponding λjs become larger
and therefore reinforce the maximization of the
cosine similarity. In contrast, although it happens
that a mapping exists between the source and target
functional words, the image-target cross attention
may become weak, making it less necessary to pro-
mote the similarity. The term w>x h

(l)
x,j is intended

to model the importance of the source contribution.
Our results, however, show that in the current ex-
periment setup its effect is not quite as significant.

3.4 Two-Stage Training

When BERT is applied to the downstream tasks,
the task-specific module parameters are usually
plugged into BERT and all the trainable parameters
are simultaneously fine-tuned (Devlin et al., 2019).
However, we found this is not the optimal strategy
of training our downstream task – multi-modal ma-
chine translation. The large number of untrained
parameters in the transformer decoder almost ac-
count for half of the model size. We conjecture that
the encoder parameters have already reached a flat
plateau after the pre-training, and it is difficult to
set the consistent optimization hyper-parameters

(such as learning rate, decay rate or warm-up steps)
for both the encoder and decoder.

Therefore, we adopt a two-stage training sched-
ule. In the first stage, the encoder parameters are
frozen and only the decoder parameters are opti-
mized w.r.t. the cross entropy and modality loss.
In the second stage, all model parameters become
trainable and are updated concurrently. This step
simulates the regular BERT fine-tuning procedure,
and its convergence is expected to lead to a better
performance. To this end, we have elaborated the
key ideas of our proposed method and summarize
the training pipeline of the entire model training
process in Algorithm 1.

4 Experiments

In this section, we describe the datasets, the de-
tailed settings as well as the compared baselines.

4.1 Datasets and Settings

Multi-30K We conduct experiments on the Multi-
30K dataset (Elliott et al., 2016), where each image
is paired with one English(En) description and hu-
man translations of German(De) and French(Fr).
It has 29,000 instances for training and 1,014 in-
stances for development. Besides, we evaluate our
model on various testing sets, including the Multi-
30K 2016 test set, the WMT17 test set and the am-
biguous MSCOCO test set, which contain 1,000,
1,000 and 461 instances, respectively.
External Data We use about 6 million image and
English text paired data for our vision language
model pre-training, including MSCOCO (Lin et al.,
2014), Im2text (Ordonez et al., 2011), visual7w
(Zhu et al., 2016), VQA 2.0 (Goyal et al., 2017),
Conceptual captions (Sharma et al., 2018), GQA
(Hudson and Manning, 2019). We first process the
image with a popular off-the-shelf Faster-RCNN
toolkit1 (Ren et al., 2015; Anderson et al., 2018;
Wu et al., 2019). The Faster R-CNN (Ren et al.,
2015) network is pre-trained on the MSCOCO
dataset and fine-tuned on the Visual Genome (Kr-
ishna et al., 2017) dataset to detect salient visual
objects, where the number of visual objects ranges
from 10 to 100 with the highest prediction prob-
ability and 2048 is the dimension of the flattened
last pooling layer in the ResNet (He et al., 2016)
backbone. Then, we obtain the position-sensitive

1https://github.com/airsplay/
py-bottom-up-attention

https://github.com/airsplay/py-bottom-up-attention
https://github.com/airsplay/py-bottom-up-attention
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Model
En⇒De

Notes on external resourcesTest2016 Test2017 MSCOCO
BLEU Meteor BLEU Meteor BLEU Meteor

Our text-only 38.3 56.6 30.3 51.0 28.6 47.7 Our own implemented transformer
Doubly-Att 36.5 55.0 - - - -
Fusion-conv 37.0 57.0 29.8 51.2 25.1 46.0
Trg-mul 37.8 57.7∗ 30.7 52.2∗ 26.4 47.4
VAG 31.6 52.2 - - - - Constrained methods
VMMT 37.7 56.0 30.1 49.9 25.5 44.8 ResNet features only
DNetwork 38.0 55.6 - - - -
Multimodal-Att 38.7 55.7 - - - -

Semi-unconstrained methods
VMMT 38.4 58.3 - - - - few Back-translation data
Multimodal-Att 39.5 56.9 - - - - few Back-translation data
Graph-Fusion 39.8∗ 57.6 32.2∗ 51.9 28.7∗ 47.6∗ BERT(en), visual grounding tool
Our Model 42.7 60.7 35.5 54.9 32.8 52.2 BERT(en), images-en

WMT 2018 unconstrained methods
MeMAD 45.1 - 40.8 - 36.9 - images-en, OpenSub en-de/fr
CUNI 42.7 59.1 - - - - images-en, Bookshop en-de/fr,

Back-translation

Table 3: Experimental results on the En⇒De MMT. Our results are highlighted in bold. ∗ indicates previous SOTA.
B will be short for BLEU and M will be short for Metoer in other tables.

Model
En⇒Fr

Test2016 Test2017
B M B M

Our Text-only 59.6 74.6 52.7 69.1
Doubly-Att 59.9 74.1 52.4 68.1
Fusion-conv 53.5 70.4 51.6 68.6
Trg-mul 54.7 71.3 52.7 69.5∗

VAG 53.8 70.3 - -
DNetwork 59.8 74.4 - -

Semi-unconstrained methods
Graph-Fusion 60.9∗ 74.9∗ 53.9∗ 69.3
Our Model 65.8 79.1 58.2 73.5

WMT 2018 unconstrained methods
MeMAD 68.3 - 62.5 -
CUNI 62.8 77.0 - -

Table 4: Experimental results on the En⇒Fr MMT.

visual features by concatenating the region features
and the corresponding positions.

For the English text, we follow the same pre-
processing as the open-source BERT toolkit2. The
BERT base model with hidden size 768 is utilized
as initialization. Note that unlike (Grönroos et al.,
2018; Helcl et al., 2018), we never include any ex-

2https://github.com/huggingface/
transformers

ternal data related to the target languages for both
vision language pre-training and machine transla-
tion training. For notation simplicity and differ-
entiating their setting, we define our scenario as
semi-constrained.

4.2 Baselines

We mainly compare with the following repre-
sentative and competitive frameworks. The con-
strained methods include Doubly-Att (Calixto
et al., 2017), Fusion-conv / Trg-mul (Caglayan
et al., 2017), VAG (Zhou et al., 2018), VMMT
(Calixto et al., 2019) and Multimodal-Att (Yao
and Wan, 2020). MeMAD and CUNI (Grönroos
et al., 2018; Helcl et al., 2018) mainly discussed
the unconstrained scenario of MMT. In addition,
VMMT and Multimodal-Att attempted to adding
in-domain back-translation data. We prefer to in-
clude them into semi-unconstrained methods as
well. Graph-Fusion (Yin et al., 2020) uses BERT
based visual ground model to hard-code a unified
multi-modal graph and performs semantic interac-
tions by graph fusion layers, achieving the current
state-of-the-art performance.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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4.3 Main Results

In Table 3 and 4, we report the main experimen-
tal results of our proposed method with previous
research works. All reported numbers of our ap-
proach are evaluated on the best performed model
for the validation set. Note that when optimizing
the parameters, we only use the modality loss cal-
culated from the last layer with learnable token
level λ(6)j . In other words, the reported numbers

are obtained by minimizing LXENT + L̃(6)M . In the
ablation study, we demonstrate this simplification
not only reduces the computational complexity, but
also achieves better result than our initial proposal.

Both tables show that our multi-modal trans-
lation outperforms the existing models and base-
lines, especially the recent state-of-the-art algo-
rithm Graph Fusion, which also leveraged the pre-
trained BERT based visual grounding model from
large scale paired image-text data. However, it
only hard-coded the inferred multi-modal graph by
visual grounding to construct the mask matrix of
cross modality attention in the transformer encoder.
One advantage of our work is that we directly build
our NMT model on top of the pre-trained vision
language BERT, making the most of pre-trained
cross modality attention. Another advantage is that
our end-to-end trainable model can spontaneously
avoid the error accumulation.

Since our multi-modal translation model is im-
plemented based on the text-only transformer, we
also report the text-only results with our own im-
plemented transformer for a fair comparison. Our
text-only transformer is a surprisingly strong base-
line and very competitive with most cited works.
For English to German translation task, our text-
only baseline almost beats all previous works on
the ambiguous MSCOCO test set, and is only in-
ferior to two systems on Multi-30K test sets with
less than 2 BLEU score difference. For English
to French translation task, only the Graph Fusion
algorithm significantly outperforms our text-only
transformer. In contrast, on the three test sets of
English to German, our final multi-modal transla-
tion model can on average achieve approximately
+4.6 BLEU and +4.2 METEOR over the text-only
baseline. On the two test sets of English to French,
the averaged gains of our model are about +5.85
and +4.45 on BLEU and METEOR.

Model
Test2016 Test2017 MSCOCO
B M B M B M

Text-only En⇒De Model
Transformer 38.3 56.6 30.3 51.0 28.6 47.7
BERT-NMT 39.4 56.6 29.7 48.6 27.9 46.2
BERT-enc 1st 39.1 57.1 31.8 51.1 29.5 47.9
BERT-enc 2nd 40.0 58.7 34.7 53.8 30.6 51.2

Multi-modal En⇒De Model
Our Model 42.7 60.7 35.5 54.9 32.8 52.2
- LM 41.8 60.0 34.7 54.6 32.3 52.3

Table 5: Comparison with variants of text-only models.
1st and 2nd means the 1st and 2nd stage of training.

4.4 Probing Textual Language Model
Our implemented text-only transformer only uses
the source-target parallel corpus extracted from
Multi-30K, which overlooks the power of the pre-
training on the source side. Because our multi-
modal encoder has been fully pre-trained, we sys-
tematically compare it with another two text-only
baselines. The first baseline virtually has the same
architecture as multi-modal framework but without
vision language pre-training, denoted as BERT-enc.
The second one is BERT-NMT (Zhu et al., 2019)
by incorporating the output of BERT into the atten-
tion module of the transformer. We directly run the
experiments with their released codebase3. With-
out image data, all text-only models only optimize
the cross entropy loss, so we also present the result
of our model without the modality loss.

As shown in Table 5, the BERT-NMT is some-
times even worse than the regular transformer.
We hypothesize that the existence of too many
untrained parameters in the encoder makes the
model difficult to optimize on the limited Multi-
30K dataset. When we directly use the pre-trained
BERT as the encoder and train the model with two-
stage schedule, we observe a consistent improve-
ment on the metrics over the regular transformer,
i.e., +1.1 BLEU at 1st-stage and +2.7 BLEU at 2nd-
stage. Thus, we argue that with the proper 2-stage
training strategy, the pre-trained BERT can account
for one half of the overall gains in our final model.

4.5 Ablation Study
To validate the contribution of each component in
our approach, we conduct a series of incremental
experiments to observe the model performances in
different scenarios, summarized in Table 6.

3https://github.com/bert-nmt/bert-nmt

https://github.com/bert-nmt/bert-nmt
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Multi-modal Model
Test2016 Test2017 MSCOCO Average
B M B M B M ∆B ∆M

End2End 38.7 58.3 31.6 53.1 29.1 50.0 - -
1st-Stage 40.0 57.5 32.4 51.5 30.8 49.8 +1.27 -0.87

+ 2nd-Stage 41.8 60.0 34.7 54.6 32.3 52.3 +3.13 +1.83
+ Last Layer Modality loss L̃(6)M 42.7 60.7 35.5 54.9 32.8 52.2 +3.90 +2.13

or + All Layers Modality loss
∑6

i=1 L̃
(6)
M 41.7 59.9 34.8 54.7 32.0 51.7 +3.07 +1.63

or + Last Layer Modality loss L(6)M (λ(6) = 0.4) 42.1 59.9 34.9 54.6 31.8 51.3 +3.17 +1.46

Table 6: Ablation study of MMT training on the En⇒De dataset after VLP. Different modality losses are exclusive.

Two-Stage Training In previous analysis, we’ve
seen how the 2-stage training can benefit the text-
only model. In Table 6, we present the metrics
of different multi-modal models. The end-to-end
training, similar to the traditional fine-tuning strat-
egy in (Devlin et al., 2019), optimizes all model
parameters of the downstream task once the VLP is
finished. We found it leads even worse result than
optimizing the decoder alone (i.e., 1st-stage train-
ing) on the metric BLEU. In addition, the result
after the 2nd-stage fine-tuning produces significant
performance increase. We also plot the learning
curve of BLEU on development dataset in Figure 3.
The apparent gap between two curves confirms the
contribution of 2-stage training.
Modality Loss Note that the results in the first
three lines of Table 6 are achieved by optimizing
the cross entropy loss alone. In this study, we will
verify the effectiveness of the modality loss in 3
different setups. We found only optimizing the
modality loss of the last layer can achieve the best
performance. As we discussed before, the query
vector of the last layer will directly and maximally
influence the generation of the target token, while
the vectors from remote layers seem not impor-
tant. We can use the statistics of the learnable λ
to avoid the time-consuming cross-validation. For
example, we set λ as the approximate mean 0.4
in the original modality loss Eq. (4). Although a
slightly performance drop appears, we can get rid
of 3 trainable vectors.

4.6 Case Studies

Actually, the translation performance of the MMT
with vision language model only exceeds about 2
BLEU scores compared with the NMT with BERT
language model. So we cannot guarantee that all
sentences in the testsets can be better translated
by MMT with VLP. We only exemplify two cases
with better translation quality for MMT with VLP,

epochs

Start 2nd stage training
from the best model
on dev set of 1st stage
training

1st

2nd

Figure 3: Learning curve of two-stage training w.r.t.
BLEU on development set.

to indicate the potential benefits.
In the first case, German words “personen” and

“leute” both mean “people”, where leute is a general
expression and can’t be in singular, and “personen”
is a formal expression when stating how many peo-
ple. In object detection model, the tag “person”
possibly enhances the NMT model to produce a
similar German word “personen”. In addition, per-
son is also a German word.

The second case comes from the Ambiguous
COCO testset. The NMT with BERT language
model cannot miss the translation of the word pizza.
The detected object “pizza” may also emphasize
the word and help the MMT, though MMT trans-
lated the rectangular pizza to stein-pizza (stone-
pizza).

4.7 Discussion

The major limitation of our method is that the train-
ing pipeline cannot easily generalize to other source
languages other than English, because the image-
text paired data is unavailable in other languages.
Liu et al. (2020) presented a sequence-to-sequence
denoising auto-encoder pre-trained on large-scale
monolingual corpora in many languages, and suc-
cessfully applied to multi-lingual translation. Hope-
fully, we can explore the similar unsupervised
cross-lingual or zero-shot transfer learning tech-
niques, which help adapt the multi-lingual BERT
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src four people relaxing on a grassy hill overlooking a rocky valley .
ref vier personen entspannen auf einem grasbewachsenen hügel mit ausblick auf ein felsiges tal .
brt vier leute entspannen sich auf einem grasbewachsenen hügel mit blick auf ein steiniges tal .
vlp vier personen entspannen sich auf einem grasbewachsenen hügel mit blick auf ein steiniges tal .
src a girl with arms crossed leaning on counter over a rectangular pizza ,

by a wall calendar and containers .
ref ein mädchen mit gekreuzten armen stützt sich auf eine theke mit einer rechteckigen pizza ,

neben einem wandkalender und behältern .
brt ein mädchen mit verschränkten armen lehnt sich mit überkreuzten armen an einer theke

neben einer wand und kartons .
vlp ein mädchen mit gekreuzten armen lehnt sich über eine theke neben einer wand ,

auf der sich ein stein-pizza und behälter steht .

Table 7: Case Studies

Figure 4: The image for the second case

to a vision multi-lingual model. We will leave this
direction as our future work. The main purpose
is not to design a better vision language model
for other downstream tasks such as VQA. Note
that the contemporary works including ViLBERT
(Lu et al., 2019) and Oscar (Li et al., 2020) may
share the same idea to utilize pre-trained BERT.
Our idea is mostly enlighten by (Ive et al., 2019).
Another different approach is VL-BERT (Su et al.,
2019a), which required to mask sub-regions of the
image and introduced masked ROI classification
loss, rather than mimicking the NSP loss in tradi-
tional BERT.

5 Conclusion

In this paper, we found the vision language pre-
training on the source side can significantly im-
prove the multi-modal machine translation, even
without additional target corpus. Although the
model architecture is as simple as the regular
encoder-decoder transformer, our proposed train-
ing pipeline can help the MMT system outperform
previous works by a large margin on the Multi-30K
dataset. The success of the source-image cross-
modality representation learning encourages us to
design the modality loss that aims at transferring
the pre-trained representations to the target-image
pair. The quantitative analysis also demonstrates
its effectiveness.

Impact Statement

Vision language pre-training has achieved great
success in many NLP tasks. We believe it would
definitely benefit the multi-modal translation and
expect this work can indicate a new unconstrained
scenario.
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