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Abstract

State-of-the-art Variational Auto-Encoders
(VAEs) for learning disentangled latent
representations give impressive results in
discovering features like pitch, pause duration,
and accent in speech data, leading to highly
controllable text-to-speech (TTS) synthesis.
However, these LSTM-based VAEs fail to
learn latent clusters of speaker attributes when
trained on limited or noisy datasets. Further,
different latent variables are found to encode
the same features, limiting the control and
expressiveness during speech synthesis. To
resolve these issues, we propose REMMI (Re-
ordered transformer Encoder with Minimal
Mutual Information) where we minimize the
mutual information between different latent
variables and devise a modified Transformer
architecture with layer reordering to learn
controllable latent representations in speech
data. We show that REMMI reduces the
cluster overlap of speaker attributes by at least
30% over LSTM-VAE.

1 Introduction

Learning disentangled latent representations in
speech is an active area of research (Hsu et al.,
2017; Chou et al., 2018; Park et al., 2020) with
applications in controlling the style (for example,
pitch, pause duration, and accent) of synthesized
speech. Recurrent architectures like Long Short
Term Memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) networks in Variational Autoencoders
(VAE) have been state-of-the-art in discovering dis-
entangled latent representations in speech (Wang
et al., 2018; Jia et al., 2018; Skerry-Ryan et al.,
2018) as well as sequential data more generally.
For example Li and Mandt (2018) attempt to disen-
tangle global and local features of video/speech in
different latent variables. Hsu et al. (2019) disen-
tangled different dimensions of the latent variables
to discover meaningful representations and hence

proposed a speech synthesis model with control-
lable pitch, pause duration, and speed.

These papers as well as several others (Chung
et al., 2015; Hsu et al., 2019; Leglaive et al., 2020;
Hono et al., 2020; Sun et al., 2020) make one lim-
iting assumption— the availability of hundreds of
hours of speech data for training deep learning
networks. As we show in our experiments, state-
of-the-art VAEs fail to learn meaningful separation
of speaking styles in speech data when presented
with small datasets. In addition, different latent
variables learned by the VAE are no longer un-
correlated. Both these shortcomings lead to poor
control of speaking styles during synthesis.

While LSTMs are state-of-the-art in learning
latent variables in speech, Transformers have
been used for understanding latent representations
for text completion (Wang and Wan, 2019) and
Transformer-based VAEs were used in Jiang et al.
(2020) to model independent style attributes in mu-
sic generation.

Inspired by these limitations of LSTM-based
VAEs and the promise of more ”attentive” net-
works, we modify the loss function of the state-
of-the-art VAEs (Hsu et al., 2019) by explicitly
minimizing the mutual information between latent
variables, thereby penalizing common learned fea-
tures between different representations. We then
modify Transformer architecture for learning ro-
bust disentangled latent representations of speech
from limited and noisy data. We show that our
proposed architecture– REMMI (Reordered trans-
former Encoder with Minimal Mutual Information)
discovers compact stable latent representations of
speaker attributes even on datasets as small as 4
hours of total speech samples while state-of-the-art
fails. Our proposed VAE outperforms LSTM and
vanilla Transformers even on challenging dataset
like Common Voice which has considerable back-
ground noise, low recording quality and large num-
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ber of speakers with the same style or accent. To
summarize, following are the main contributions
of our work,

1. Formulate a modified VAE loss function for
speech data and a novel Transformer-based
VAE for learning uncorrelated latent variables,
thereby allowing more precise control over
synthesis compared to the existing state-of-
the-art.

2. Show that our latent clusters of speaking
styles are better separated than existing LSTM
and vanilla Transformer based VAEs on noisy
and small datasets.

3. Show that the our modified Transformer archi-
tecture allows a faster convergence of the vari-
ational lower bound compared to both vanilla
Transformer and LSTM based VAEs.

2 Related Work

Multiple previous work have targeted this prob-
lem of learning latent representations for sequen-
tial data like speech (Wang et al., 2018; Jia et al.,
2018; Skerry-Ryan et al., 2018). As discussed, the
main advantage of learning such representations
is that it allows creating diverse examples during
reconstruction by manipulating the encoded latent
variable. Li and Mandt (2018) propose two sets of
latents which learn global features like the gener-
ated sequence contents and local dynamic features
such as pitch, speed etc. However, a limitation
of this approach is the lack of interpretability of
the learnt dimensions— it is known that the differ-
ent dimensions of the latent variables are learning
some features but there is little to no visibility into
what those actual features are.

Modifying Text-to-Speech systems by introduc-
ing additional encoders has been a standard way to
discover meaningful representations. Zhang et al.
(2019) build on top of Tacotron-2 (Shen et al.,
2018) architecture and use Gaussians to model their
latent variables. An improved version can be seen
in Hsu et al. (2019) where a hierarchical latent with
mixture of Gaussians is used. Hsu et al. (2019)
propose adversarial training to further improve la-
tent variables and the features discovered by dis-
entangling the background noise and reverberation
along with speaker identity from the recording con-
ditions.

While all these prior work aim to discover latent
representations, there is a lot of room for improv-
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Figure 1: Graphical model of controllable TTS system.
Note that q(yl|X) in the Encoder can be approximated
in terms of q(zl|X), in which case node yl will have an
edge from zl instead of X as done in Hsu et al. (2019).

ing those representations especially in cases where
we have very limited hours of speech dataset. As
we show in our experiments, in the absence of ex-
plicit restrictions on the training objective these
VAEs easily collapse when presented with smaller
datasets. Thus we focus on improving the repre-
sentations, specifically latent clusters of speaker at-
tributes, in cases of extremely limited datasets. Our
contributions, however are not limited to smaller
datasets and we see similar improved performance
on larger and noisy datasets too.

3 Background

Controllable text-to-speech (TTS) VAE-based sys-
tems like in Hsu et al. (2019) take an input text
sequence Yt and an optional observed categori-
cal label yo (e.g., speaker identity or accent) as
input and learn to synthesize a sequence, usually
mel-spectrogram frames X as output. Additional
latent variables zo and zl can be introduced to dis-
cover meaningful representations during this pro-
cess. Here zo is a continuous latent learnt on top
of shown labels yo, hence zo captures the vari-
ation in features correlated with the speaker at-
tribute yo. zl is a completely unsupervised continu-
ous variable learnt on top of standard Expectation-
Maximization style latent mixture components yl.
This graphical model is depicted in Figure 1. The
objective function for learning such model, i.e. syn-
thesizing sequence X given Yt and yo, can be for-
mulated as the variational lower bound1,

1Complete derivation is given in the Appendix A.
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log p(X|Yt,yo) ≥ log p(X|Yt, z̃o, z̃l)

−
K∑

yl=1

q(yl|X)DKL[ q(zl|X) || p(zl|yl) ]

−DKL[ q(yl|X) || p(yl) ]
−DKL[q(zo|X) || p(zo|yo) ]
= −Lmel − LKL

where Lmel = −log p(X|Yt, z̃o, z̃l) and LKL
refers to the remaining terms. Here z̃o, z̃l are
sampled points and are reparameterized (Kingma
and Welling, 2014) as z̃o = µ̂o + σ̂o � εo and
z̃l = µ̂l + σ̂l � εl with µ̂o, µ̂l, σ̂o, σ̂l as the mean
and standard deviation of the posterior distributions
q(zo|X) and q(zl|X) respectively and with auxil-
iary noise variable εo, εl ∼ N (0, I). Following
Higgins et al. (2017) the loss L can be written in a
more general form as,

L = Lmel + βLKL (1)

with β balancing the relative weighing between the
latent channels and reconstruction accuracy. Here
Lmel is the mel loss which controls the quality of
the mel-spectrograms produced and LKL refers to
the total KL Loss controlling the features learnt in
latent variables.

This VAE can be used in the Tacotron-2 archi-
tecture (Hsu et al., 2019) as shown in Figure 2(a)
to learn the text to mel-spectrogram mapping and
the latent features controlled by LKL.

4 Methodology

We now describe the two main components, 1)
Minimizing mutual information and 2) Layer re-
ordering in our proposed REMMI architecture.

4.1 Minimizing Mutual Information

The latent zl in Figure 1 is unsupervised while the
latent zo learns features correlated with the shown
label yo. Our experiments showed that both zl, zo
can end up encoding the same set of features, which
leads to poor control in synthesizing speech. An
intuition into why this happens lies in the fact that
zl is an unsupervised variable and it can discover
any feature hidden in the input speech sequence.
There is no term in the loss function (1) which
prevents the features of zl from being correlated
with the observed labels yo (Klys et al., 2018).

This can be resolved by minimizing the mutual
information I between latents zo (equivalently yo)
and zl. We can formulate this as,

min I(yo; zl) , max H(yo|zl)

= min

∫
zl

∫
yo

p(zl) p(yo|zl) log p(yo|zl)dyodzl

= min

∫
X

∫
zl

∫
yo

p(X) p(zl|X) p(yo|zl)
log p(yo|zl) dyo dzl dX

Since integral over zl is intractable, we replace
p(zl|X) with an approximate posterior q(zl|X).
Further, since the true distribution p(yo|zl) is un-
known, we approximate it by introducing a new
network qψ(yo|zl) leading to min I(yo; zl)

≈ min
∫
X

∫
zl

∫
yo

p(X) q(zl|X) qψ(yo|zl)
log qψ(yo|zl)dyo dzl dX

= min ED(X)q(zl|X)

[∫
yo

qψ(yo|zl)
log qψ(yo|zl) dyo

]

≈ min 1

N

∑
a

[
qψ(yo = a|zl′)
log qψ(yo = a|zl′)

]
(2)

where zl
′ ∼ q(zl|X), a ∈ {0, 1, 2...A}, A is total

number of unique classes of yo,N is the number of
samples used for Monte Carlo estimates, andD(X)
is the underlying distribution of the input points X.
Our proposed encoder is depicted in Figure 2(b).
Since we are using qψ to make predictions for yo,
this network needs to be learnt itself. Hence we
need to subtract an additional qψ(yoT |zl′) from the
loss function, where yoT is the ground truth yo for
the input X. With N = 1 our proposed term is,

LMI =
∑
a

qψ(yo = a|zl′)log qψ(yo = a|zl′)

− qψ(yoT |zl
′) (3)

Combining equations (1) and (3), the total loss
function in our proposed model is,

Ltotal = Lmel + βLKL + γLMI (4)

= Lmel + Lcond

To summarize, Lmel controls the quality of the
mel-spectrogram produced during decoding, LKL
controls the features learnt in the latent variables
zl, zo and LMI makes sure that zl, zo encode dif-
ferent features. We will be referring to Lmel as the
reconstruction or mel loss, LKL as the KL loss and
Lcond = βLKL + γLMI as the conditional loss
respectively throughout this paper.
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(a) Tacotron Architecture
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(b) Proposed Encoder (c) Original versus Proposed Transformer

Figure 2: Left: The Tacotron-2 architecture. VAE consists of two left parts where LSTMs predict mean µ and
variance σ2 of multivariate Gaussians N (µzl

, diag(σ2
zl
)),N (µzo , diag(σ

2
zo
)). z̃l, z̃o from this distribution are

sampled and concatenated to the text encoding to conditionally learn the text to mel-spectrogram mapping. Center:
Proposed encoder with the network qψ . The generator stays the same as in Figure 1. Right: The original and the
proposed Transformers replace the LSTMs shown in the VAE of Tacotron-2 architecture.

4.2 Layer Reordering in Transformer

Introducing the above loss helps disentangle the
learning of zo and zl, but there is another problem
that remains. Our experiments on MAILABS and
Common Voice data, discussed in section 5.3, indi-
cated that clusters of zo corresponding to different
shown labels yo start sharing regions in the latent
space. Hence for any given label yo the sampled
ẑo ∼ p(zo|yo) may or may not belong to the style
which yo denotes. This leads to speech samples
where the style correlated with the shown attribute
yo is not under control while sampling from the
priors.

We tackle this problem by replacing LSTMs
with Transformers. We expected that the ability
of Transformers to attend to specific frames of in-
terest where features could be localized or have
a higher expression density, with a higher weight
in the input speech sequence should bring down
the dataset volume required for convergence by a
considerable amount. Hence the lower bound on
dataset size needed for modelling non overlapping
clusters of zo should be smaller while still keeping
the sampled style under control. This should also
accelerate the separation between latent clusters
for larger datasets. Our experiments with vanilla
Transformer-based VAEs confirm our predictions.

We next drew some inspiration from Parisotto
et al. (2019) and modified the Transformer en-
coder. This was an attempt at changing the learning
paradigm— instead of directly learning to translate

Yt to X in different yo styles, we first learn to
synthesize a general representation for all X, and
then learn specific deviations of each style yo from
this general representation. For example, instead
of learning directly to speak in different accents
first we learn to speak, and then we learn the sub-
tleties of different accents. Our hypothesis was that
learning different yo styles should be a lot faster if
a common understanding of all X in the dataset is
gained first. The accent specific speech frames X
(or style specific as per yo) should just be a slight
deviation from this common representation.

Our proposed architecture is shown in Figure 2c
where we switch the order of LayerNorm form-
ing a direct connection between the input and the
output. Due to this layer reordering if we make
sure that all the modules MHA, LayerNorm,
FeedForward are initialized with their expecta-
tion near 0, a direct path is formed early in training
allowing a general representation of speech to be
learnt independent of the shown labels yo. Now
as training progresses and these modules warm up,
the accent or yo specific features will be learnt by
conditioning the encoder.

We also introduce GRU-type gating (Chung
et al., December 2014) to stabilize learning by min-
imizing the maximum gradient norms produced,
and apply a small nonlinearity via LeakyRelu at
the outputs of the MHA and FeedForward mod-
ules to balance the observed trade-off between
frequent gradient updates and maximum gradient



3566

d Feature µzl,d − 3σzl,d µzl,d µzl,d + 3σzl,d
0 Speaking Rate (sec) 3.0± 0.2 3.7± 0.3 4.4± 0.3
1 F0 (Hz) 240.5± 12.57 211.4± 15.66 184± 10.43
2 Pause Duration (msec) 70± 3.40 79± 3.30 91± 3.50

Table 1: Length of the mel-spectrogram synthesized and pause durations increase while pitch decreases with
increasing dth dimension of zl from its marginal prior mean in REMMI.

Figure 3: Left: Synthesized mel spectrogram for ”What is it, that is worrying you today?” The stack of 3 mel
spectrograms on the right are zoomed areas from frames 20 to 80 for each of their original mel-spectrogram. It can
be seen that the pause duration denoted by the dark region increases as you synthesize the same text moving from
µi−3σi to µi+3σi. Center: Three mel-spectrograms synthesized for the text ”The area has four catholic schools
and three church of England schools”, corresponding to three random sampling of z̃o, z̃l from their posteriors. First
synthesis is considerably shorter than the second and third. Notice the different positions of voids between frames
50 and 100, and at frame 150 in the third spectrogram being considerably different. Right: Mel-spectrograms
synthesized for the text ”The team has also participated in the opening pitch of the Brooklyn Cyclones”. The third
spectrogram shows smooth areas in the higher mel channels compared to the second and the first. These random
latent sampling affects intonation and spectrogram texture.

norm2.

5 Experiments

We refer to our proposed VAE with modifica-
tions from sections 4.1 (LMI term) and 4.2 as
REMMI, the vanilla Transformer with LMI term
as Transformer-VAE and the LSTM based state-of-
the-art Tacotron-2 without LMI term (Hsu et al.,
2019) as LSTM-VAE. We trained each model on
two datasets— 1) MAILABS (Solak, 2018 (ac-
cessed November 11, 2020) with a total 35hrs
of UK and 39hrs of US speech in studio quality
recorded by 4 professional speakers, 2) Common
Voice (Ardila et al., 2020) with 4hrs of UK and
19hrs of US speech crowd-sourced from 477 volun-
teers with varying background noise, microphone
qualities and other recording conditions. The in-
put feature X were mel-scale spectrograms, the
label yo was set to be 0 for all X belonging to US
and 1 for all UK. Dimension of zo and zl were
picked to be 2 and 3 respectively and K = 3 for all

2Importance of Gates and the specific choice of
LeakyRelu is discussed in the Ablation Study in Appendix
D.

experiments 3.

5.1 Features Learnt

Before we demonstrate our latent cluster improve-
ments over Transformer-VAE and LSTM-VAE, we
show that REMMI does learn important latent fea-
tures in speech. Our experiments (focused on learn-
ing the speaking rate, the fundamental frequency
F0, and the pause duration) are summarized in
Table 1. µzl,d and σzl,d are the dth dimension
mean and standard deviations of the marginal prior
p(zl) =

∑
k p(zl|yl = k)p(yl = k). All other di-

mensions of zl are kept fixed at their own marginal
priors while analyzing dth dimension.

For demonstrating control on speaking rate, we
did 25 different synthesis for the text ”We had been
wandering, indeed, in the leafless shrubbery an
hour in the morning”. It can be seen from Table 1
that the length of the synthesized mel-spectrogram
increases as the value of zl dimension 0 increases.

Next, we synthesized 25 texts, with 10 samples
for each text to show control on pause duration and

3Other hyperparameters of our VAE and training details of
Tacotron-2 are given in Appendix F, G, H.
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Figure 4: In LSTM-VAE F0 encoded by zl is significantly different for yo = 0, 1 showing that yo specific informa-
tion is encoded by zl. However this difference is no longer significant once we include our proposed LMI terms in
LSTM-VAE w/ LMI experiment. zo keeps showing different values of F0 for yo = 0, 1 in both LSTM-VAE and
LSTM-VAE w/ LMI experiments demonstrating learnt features which are conditional on yo.

Figure 5: Left: Test LKL versus epochs. Including LMI in loss function decreases LKL pointing to improved
latent variables. Right: Test Lmel versus epoch. The Lmel remains the same even upon including LMI demon-
strating our proposed LMI does not hurt the synthesized mel-spectrogram quality.

pitch (or the fundamental frequency F0). For pause
duration experiments each text contained at least
one comma and we measured the maximum period
of intermediate silence for each synthesis. To calcu-
late F0 we used the YIN algorithm (Guyot, 2018).
In Table 1 it can be seen that the pause duration
increases and F0 decreases with increasing values
of 2nd and 1st dimensions of zl, respectively.

Furthermore the sampled variables z̃o, z̃l
from their respective posterior distributions
q(zo|X), q(zl|X) in Lmel gives the effect of differ-
ent intonations with different speakers every time
we synthesize a given text Yt. We demonstrate
concrete examples in Figure 3.

5.2 Importance of LMI

Our experiment on MAILABS dataset shows that
the latent variable zl starts encoding yo specific
features in the absence of an explicit LMI term
in the total loss, contrary to the expectation that zl
should not encode any yo style specific information.
As shown in Figure 4, zl shows different values of
F0 for classes yo = 0, 1 in the absence of LMI ,
while zo continues to show accent specific values

for both yo classes with and without LMI terms.
The values in Figure 4 are plotted for a synthesis
of 25 different texts with 10 samples for each text.
We show similar trends for speaking rate in the
Appendix.

A consequence of including LMI in the loss
function (4) can also be seen in the test curve of
LKL. We can see in Figure 5 that LSTM-VAE w/
MI has a lower value of LKL. Also note that as
shown in Figure 5, Lmel remains the same in both
the experiments hence there is an overall decrease
in the total loss value. We also observe that the two
terms of LMI in equation (3) are in contention to
each other. The first term tries to learn a represen-
tation zl such that it does not have any information
about label yo whereas the second term tries to
maximize the probability of predicting true label
yo given zl. We verify from our experiments that
at convergence zl acts as a complete random input
for estimating yo with qψ(yo|zl) = 0.5 for both
yo = 0, 1.
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4hrs US+4hrs UK 20hrs US+20hrs UK 39hrs US+35hrs UK
Model DI DBI DI DBI DI DBI
LSTM-VAE 0.55±0.15 2.11±0.24 1.41±0.21 1.60±0.29 2.10±0.29 1.12±0.24
Transformer-VAE 1.22±0.26 0.44±0.05 2.24±0.05 0.30±0.15 2.48±0.23 0.27±0.09
REMMI 1.85±0.59 0.35±0.07 2.33±0.21 0.29±0.10 2.80±0.26 0.26±0.07

Table 2: REMMI consistently increases DI and reduces DBI for different sizes of MAILABS dataset and performs
at least 3% better (DBI for 20hrs US+20hrs UK) on MAILABS dataset compared to all existing architectures.

4hrs US+4hrs UK 10hrs US+4hrs UK 19hrs US+4hrs UK
Model DI DBI DI DBI DI DBI
LSTM-VAE 0.98±0.17 83.18±13.66 0.85±0.23 85.53±15.10 0.80±0.30 98.20±24.68
Transformer-VAE 0.99±0.15 0.19±0.01 0.98±0.22 0.18±0.18 0.94±0.29 0.17±0.30
REMMI 1.03±0.40 0.15±0.005 0.99±0.20 0.16±0.04 0.99±0.25 0.16±0.05

Table 3: REMMI performs at least 4% better (DI for 4hrs US+4hrs UK Common Voice compared to Transformer-
VAE) on all sizes of noisy Common Voice dataset than all existing LSTM and Transformer-VAE architectures.

Overlap on MAILABS Overlap on Common Voice
Model 4+4 20+20 39+35 4+4 10+4 19+4
LSTM-VAE 30% 11% 0% 92% 94% 96%
Transformer-VAE 7% 0% 0% 52% 65% 81%
REMMI 0% 0% 0% 47% 56% 65%

Table 4: Overlap percentages for datasets of size M +N with M hrs US and N hrs UK speech. REMMI reduces
the overlap percentage by 30% for limited MAILABS dataset and by half for limited Common Voice dataset.
The reduction difference for entire Common Voice dataset is 31% compared to LSTM and 16% compared to
Transformer-VAE.

Figure 6: Loss Curves on MAILABS dataset. Left: Test Lcond versus Epochs. REMMI converges faster compared
to both Transformer-VAE and LSTM-VAE. Center: Test Lmel versus Epochs. REMMI accelerates Lcond without
compromising the mel-spectrogram quality or Lmel. Right: Test Lcond versus model depth. Transformer and
REMMI do not overfit to a given dataset with increasing model depth unlike LSTM-VAE.

5.3 Cluster Quality

As discussed in section 4.2, we want clus-
ters of p(zo|yo = 0) and p(zo|yo = 1)
to be far from each other with no overlaps
so that we can control yo styles during syn-
thesis. Hence we objectively measured the
cluster quality with Dunn Index (DI) (Bezdek
and Pal, 1995) and DB Index (DBI) (Davies
and Bouldin, 1979) where DI=min1≤i<j≤nd(i,j)

max1≤k≤nd′(k)
,

DBI= 1
n

∑n
i=1maxj 6=i

(
σi+σj
d(µi,µj)

)
, j, i are cluster

indices, d(i, j) denotes the distance between the
clusters i and j, n is the total number of points,
d′(k) is the maximal intra-cluster distance and
µi, σi, µj , σj are the means and standard deviations
of the clusters i, j respectively. Thus DI is the ratio
of minimal inter-cluster distance to the maximal
intra-cluster distance. Similarly, DBI is the ratio of
spread in each cluster to the distance between their
means.

In Tables 2 and 3, we compare the test DI
and DBI for different dataset sizes between
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Dataset CMOS CS
MAILABS4hrs US+4hrs UK 0.2581 +- 0.1249 0.576 +- 0.0947
CommonVoice 4hrs US+4hrs UK 0.0541 +- 0.0966 0.327 +- 0.0888

Table 5: Positive CMOS confirms that REMMI produces speech that sounds more British than LSTM-VAE. A
higher CS also shows that REMMI has better control over synthesized accent than LSTM-VAE.

REMMI, Transformer-VAE and LSTM-VAE. We
see that REMMI performs consistently better than
Transformer-VAE and LSTM-VAE for both MAIL-
ABS and Common Voice dataset. We also observe
that as dataset size decreases, the performance gap
between our REMMI and LSTM-VAE increases.

In Table 4 we calculate the percentage of
overlap between clusters with test points ẑo ∼
p(zo|yo = i) marked as overlapping with clus-
ter p(zo|yo = j) if they fall within [µp(zo|yo=j) −
σp(zo|yo=j), µp(zo|yo=j) + σp(zo|yo=j)], with i, j =
0, 1. We observe that our REMMI consistently de-
creases the overlap regions by large margins even
on challenging datasets like Common Voice, where
more than 90% overlap exists for existing state-of-
the-art. As discussed earlier this better separation
provides improved control on synthesis and pre-
vents uncontrolled styles when sampling speech
from the priors.

5.4 Synthesis Quality

To get opinion scores on the quality of the syn-
thesized British accent between LSTM-VAE and
REMMI, we used Griffin-Lim reconstruction (Grif-
fin and Lim, 1983) to convert the Mel spectro-
grams to waveforms for models trained on Com-
mon Voice 4hrs US+4hrs UK and MAILABS 4hrs
US+4hrs UK data. To compare the accents, we
synthesized 30 pairs of speech samples (LSTM
was sample 1, REMMI was sample 2) and asked
20 Mechanical Turk (MTurk) (Crowston, 2012)
participants to rate which sample sounded more
British. The rating scale given to MTurk partici-
pants was: +2: 2nd sample sounds more British
than 1st, +1: 2nd sounds slightly more British
than 1st, 0: 2nd and 1st sound equally British, -
1: 1st sounds slightly more British than 2nd, -2:
1st sounds more British than 2nd. We repeated the
experiment with REMMI as sample 1 and LSTM
as sample 2 (reversing the corresponding rating
scale) and averaged the scores of the experiments
to counter any ordering bias. We calculated the
CMOS by averaging the difference in the mean
scores for REMMI and LSTM-VAE.

Second, to check if REMMI provided more con-
trol on synthesized accent (whether US or British)
than LSTM-VAE and provide human verification
that the separation in latent clusters led to control-
lable synthesis, we generated 50 random pairs of
(US sample, UK synthesized sample) using LSTM-
VAE and REMMI each. We asked 10 MTurk par-
ticipants to rate if the US and UK samples sounded
different. The scale was: 0- Samples sound the
same, 1- Samples sound slightly different, 2- Sam-
ples sound different. We calculated the Control
Score (CS) by averaging the difference in the mean
scores for REMMI and LSTM-VAE.

The resulting CMOS and CS with 95% confi-
dence intervals in Table 5 show that in MAILABS
4hrs US+4hrs UK our approach is superior in both
producing speech that sounds more British and pro-
viding controlled synthesis. In Common Voice due
to noisy synthesis, LSTM-VAE and REMMI pro-
duce nearly the same accent quality, but a signifi-
cantly positive CS provides better synthesis control
for REMMI. In practice, this means that LSTM-
VAE cannot be controlled at test time to produce
US/British speech, while REMMI can be better
controlled at this task.

5.5 Loss Curves

The conditional loss Lcond in equation (4) con-
trols the latent variables being modelled namely
zl, zo and yl. The trend in Figure 6 for MAILABS
dataset shows that REMMI has an accelerated con-
vergence compared to both Transformer-VAE and
LSTM-VAE. It can also be seen in Figure 6 that
Lmel remains the same in all the 3 experiments,
LSTM-VAE, Transformer-VAE and REMMI. This
shows that while our REMMI is successful in low-
ering Lcond, it does so without hurting Lmel or the
synthesized mel-spectrogram quality.

We also observed that for a given dataset size
in LSTM-VAE, Lcond increases with increasing
model depth which points towards inferior latent
features. This trend is summarized in Figure 6
and shows that Transformer-VAE and REMMI do
not overfit to a given dataset size with increasing
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layers.

6 Conclusion

In this work we showed that REMMI discovers
disentangled latent representations of speech with
uncorrelated latent variables allowing better control
of speech synthesis. Our layer reordering in Trans-
formers produces notably improved latent clusters
of speaker attributes keeping the speaker styles
under control on varying dataset sizes with differ-
ent noise conditions. We can generate mel spec-
trograms for different text with controllable pitch,
pause durations, speaking speed and accent. We
also showed that there is a significant boost both
in convergence and in the stability of the learnt
representations with our proposed method. Going
forward we would like to explore the application
of REMMI beyond speech, e.g, image captionining
with sentiments or text to image rendering with
different emotions.
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Appendix

A Variational Lower Bound

For an input text sequence Yt and an observed cat-
egorical label yo frames X can be learnt via the
joint distribution log p(X,Yt, yo). Additional la-
tent variables zo and zl can be introduced to dis-
cover meaningful representations during this pro-
cess. Here zo is a continuous latent learnt on top
of shown labels yo, hence the features zo discovers
is correlated with what is shown to the model via
yo, while zl is a completely unsupervised continu-
ous variable learnt on top of standard Expectation-
Maximization style latent mixture components yl.
Note that yl is a K-way categorical discrete vari-
able. The variational lower bound can then be
formulated as,

log p(X|Yt, yo) ≥ Eq(zo|X)q(zl|X)q(yl|X)[
log

p(X|Yt, zo, zl)p(zo|yo)p(zl|yl)p(yl)
q(zo|X)q(zl|X)q(yl|X)

]
= Eq(zo|X)q(zl|X)[log p(X|Yt, zo, zl)] (5)

−DKL(q(zo|X) || p(zo|yo))
− Eq(yl|X)[DKL(q(zl|X) || p(zl|yl))]
−DKL(q(yl|X) || p(yl))
≈ log p(X|Yt, z̃o, z̃l) (6)

−
K∑
yl=1

q(yl|X)DKL[ q(zl|X) || p(zl|yl) ]

(7)

−DKL[ q(yl|X) || p(yl) ]
−DKL[q(zo|X) || p(zo|yo) ]
= −Lmel − LKL

B Gated Architecture

In the past multiplicative interactions have been
successful at stabilizing learning across different
architectures (Cho et al., 2014; Srivastava et al.,
2015). This motivated us to try out GRU-type gat-
ing at the heads of the proposed Transformers. The
outputs at the GRU-type gating is controlled by the
following equation,

r = σ(W (l)
r y + U (l)

r x),

z = σ(W (l)
z y + U (l)

z x− b(l)g ),

ĥ = tanh(W (l)
g y + U (l)

g (r � x))

g(l)(x, y) = (1− z)� x+ z � ĥ

where r stands for the reset gates, z is the update
gates, ĥ is the candidate activation similar to other
recurrent units (Bahdanau et al., 2016). The overall
gate activation g(x, y) takes input x as the residual
connection and y the output of the FeedForward
or Multi-Head Attention modules. g(x, y)
is basically an interpolation between the previous
activations ĥ and the residual input x.



3573

C Speaking Rate for yo = 0, 1

Figure 7: Length of mel-spectrogram synthesized by zl in LSTM-VAE for MAILABS is significantly different for
yo = 0, 1 showing that yo specific information is encoded by zl. However this difference is no longer significant
once we include our proposed LMI terms in LSTM-VAE w/ LMI experiment. zo keeps showing different lengths
for yo = 0, 1 in both LSTM-VAE and LSTM-VAE w/ LMI experiments demonstrating learnt features which are
conditional on yo.

Figure 8: Left: Lower gradient norm for REMMI w/ Gates along with smaller variance compared to Transformers-
VAE and REMMI w/o Gates. Right: Distance between the means of zo|yo for yo = 0, 1 for different activation
functions at the output of Multi-Head Attention and FeedForward modules. We see that LeakyRelu
with α = 0.05 performs the best in segregating the prior clusters among all experiments.
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D Ablation Study

D.1 Importance of Gates
Our comparison of Gated architectures with non-
Gated ones in Figure 8 shows that the maximum
gradient norm which directly influences the conver-
gence is much lower and stable with a lower vari-
ance for REMMI (which includes gates) compared
to REMMI without (w/o) Gates and Transformer-
VAE.

D.2 Choosing the Right Activation
In Figure 8 we see that the distance between
zo|yo cluster means is very small when the
output from Multi-Head Attention and
FeedForward modules are fed to GRU-Type
Gating layers without any non linearity. Hence
our choice of this non linearity was inspired by the
trade-off between number of gradient updates and
the maximum gradient norm. We see in Table 6 that
relu has a high maximum gradient norm ∇norm
which led to convergence instability and small dis-
tance between zo|yo cluster means. But for tanh,
almost all activations were producing gradient up-
dates and this frequent update was leading to small
cluster distance as shown in Figure 8. Hence we
needed a function somewhere between relu and
tanh, which has a small gradient norm while also
having fewer gradient updates. LeakyRelu turns
out to be the best candidate for this with its high
distance between means as shown in Figure 8.

Experiment % activation max∇norm
relu 84.5 (< 0) 40.96
tanh 0 (>+2,<-2) 10.68
leakyrelu - 7.17

Table 6: Comparing the percentage of activations for
which gradient saturates and maximum gradient norm
∇norm

E Compute Information

We ran all our experiments on NVIDIA Tesla
V100 GPU with 16GB of GPU memory. Our
LSTM-VAE (both with and without LMI ) experi-
ments take average 5.81sec/step (seconds per step)
with convergence near 40k steps. Transformer-
VAE takes an average 2.81sec/step with conver-
gence near 25k steps, and REMMI takes aver-
age 2.81sec/step with convergence near 25k steps.
Total number of parameters are 28.03mn (mil-
lion) for LSTM-VAE w/ and w/o MI, 27.84mn

for Tranformer-VAE and 28.03mn for REMMI.

F Audio Hyperparameters

Parameter Value

num mels 80
num freq 1025
max mel frames 900
silence threshold 2
n fft 2048
hop size 275
win size 1100
sample rate 16000
magnitude power 2.0
trim silence True
trim fft size 2048
trim hop size 512
trim top db 50
preemphasize True
preemphasis 0.97
min level db -100
ref level db 20
fmin 55
fmax 7600
power 1.5

Table 7: Parameters for converting wav files to mel-
spectrograms

G Tacotron-2 Hyperparameters

Parameter Value

batch size 64
output frames per step 4
max training iterations 100k
optimizer Adam

β1 0.9
β2 0.999
ε 1e-6

L2 regularization weight 1-e6
learning rate decay exponential
initial learning rate 1e-3
decay start epoch 40k
decay epochs 18k
final learning rate 1e-4
clip gradients True
teacher forcing constant at 1

Table 8: Hyperparameters common for all experiments
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H VAE Hyperparameters

Parameter Value

zl dim 3
zo dim 2
|yo| 2 (UK, US)
zo, zl convolution channels 128
activation function for convolution tanh
kernel size 3x3
MC estimate num samples 1
num units for LSTM 128
min logvariance for q(zl|X) -4
min logvariance for q(zo|X) -6
initial mean for p(zl|yl)

p(zl|yl = 0) (1,0,0)
p(zl|yl = 1) (0,1,0)
p(zl|yl = 2) (0,0,1)

initial logvariance for p(zl|yl) -4
initial mean for q(zo|yo)

p(zo|yo = 0) (-0.5, -0.5)
p(zo|yo = 1) (+0.5, +0.5)

initial logvariance for p(zo|yo) -5
dropout 0.1
zoneout (for LSTM) 0.1
qψ num layers 4
qψ num units 8
qψ activations tanh
Transformer d model 64
Transformer num heads 4
Transformer feedforward dimension 256
max positional encoding 584

Table 9: Hyperparameters used for our VAEs


