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Abstract

Incorporating external knowledge into Named
Entity Recognition (NER) systems has been
widely studied in the generic domain. In this
paper, we focus on clinical domain where only
limited data is accessible and interpretability
is important. Recent advancement in technol-
ogy and the acceleration of clinical trials has
resulted in the discovery of new drugs, pro-
cedures as well as medical conditions. These
factors motivate towards building robust zero-
shot NER systems which can quickly adapt
to new medical terminology. We propose
an auxiliary gazetteer model and fuse it with
an NER system, which results in better ro-
bustness and interpretability across different
clinical datasets. Our gazetteer based fusion
model is data efficient, achieving +1.7 micro-
F1 gains on the i2b2 dataset using 20% train-
ing data, and brings + 4.7 micro-F1 gains on
novel entity mentions never presented during
training. Moreover, our fusion model is able
to quickly adapt to new mentions in gazetteers
without re-training and the gains from the pro-
posed fusion model are transferable to related
datasets.

1 Introduction

Named entity recognition (NER) (Lample et al.,
2016; Ma and Hovy, 2016) aims to identify text
mentions of specific entity types. In clinical do-
mains, it’s particularly useful for automatic infor-
mation extraction, e.g., diagnosis information and
adverse drug events, which could be applied for a
variety of downstream tasks such as clinical event
surveillance, decision support (Jin et al., 2018),
pharmacovigilance, and drug efficacy studies.

We have witnessed a rapid progress on NER
models using deep neural networks. However, ap-
plying them to clinical domain (Bhatia et al., 2019)
is hard due to the following challenges: (a) accessi-
bility of limited data, (b) discovery of new drugs,

procedures and medical conditions and the (c) need
for building interpretable and explainable models.
Motivated by these, we attempt to incorporate ex-
ternal name or ontology knowledge, e.g., Remde-
sivir is a DRUG and COVID-19 is a Medical
Condition, into neural NER models for clini-
cal applications.

Recent work on leveraging external knowledge
can be categorized into two categories - Gazetteer
embedding and Gazetteer models. Recent work has
primarily focused on gazetteer embeddings. Song
et al. (2020) feed the concatenation of BERT out-
put and gazetteer embedding into Bi-LSTM-CRF.
Peshterliev et al. (2020) use self-attention over
gazetteer types to enhance gazetteer embedding
and then concatenate it with ELMO, char CNN and
GloVe embeddings. By contrast, the basic idea of
gazetteer model is to treat ontology knowledge as
a new clinical modality. Magnolini et al. (2019)
combine outputs of Bi-LSTM and gazetteer model
and feed them into CRF layer. Liu et al. (2019a) ap-
ply hybrid semi-Markov conditional random field
(HSCRF) to predict a set of candidate spans and
rescore them with a pre-trained gazetteer model.

In this paper, we combine the advantages of both
worlds. Unlike the work of Peshterliev et al. (2020),
we build self-attention over entity mentions and
their context rather than over different gazetteer
types. For example, Take Tylenol 3000 (NUM)
mg (METRIC) per day, in which Tylenol is more
likely to be a DRUG given NUM, METRIC in con-
text. Moreover, we study two fusion methods to
integrate information from two modalities.

• Early fusion. Similar to Magnolini et al.
(2019), NER model and gazetteer model apply
a shared tagger, as shown in Fig. 1a

• Late fusion. For better interpretability and
flexibility, we allow NER and gazetteer mod-
els to apply separate taggers and fuse them
before taking softmax, as shown in Fig. 1b
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(a) Early fusion (b) Late fusion
Figure 1: Model Architecture. (a) Early fusion. The outputs of NER and gazetteer are concatenated and fed into a shared tagger.
(b) Late fusion. NER and gazetteer apply separate taggers and two modalities are fused by taking element-wise max pooling.

Unlike the work of Liu et al. (2019a), NER and
gazetteer models are jointly learned end-to-end.

Our contributions are as follows. (1) We pro-
pose to augment NER models with an auxiliary
gazetteer model via late fusion, which provides
better interpretability and flexibility. Interestingly,
the NER model can preserve the gains even if the
gazetteer model is unplugged at inference time. (2)
Our thorough analysis shows that the fusion model
is data efficient, explainable and is able to quickly
adapt to novel entity mentions in gazetteers. (3) Ex-
periments show that the fusion model consistently
brings gains cross different clinical NER datasets.

2 Approach

2.1 NER model
NER is a sequence tagging problem by maximizing
a conditional probability of tags y given an input
sequence x. We first encode x into hidden vectors
and apply a tagger to produce output y.

r = EncoderR
(
x
)

(1)

ort = TaggerR
(
rt
)

(2)

yt = softmax(ort ) (3)

2.2 Gazetteer model
We embed gazetteers into E ∈ RM×K×d, where
M is the number of gazetteers (e.g, drugs, medical
condition), K is the number of gazetteer labels (e.g,
B-Drug, E-Drug), and d is the embedding size. We
define Eg

t = [E0,z0t
;E1,z1t

; · · · ,EM,zMt
], where zjt

is the gazetteer label of token xt in gazetteer j. In

order to model the association of name knowledge
between entity mentions and their contexts, we
compute context-aware gazetteer embedding using
scaled dot-product self-attention

gt = softmax
(Eg

t (E
g
t′)

T

√
d

)
Eg

t , ∀|t− t′| ≤ w

(4)
where w is the size of attention window.

Similar to the NER model, we apply a tagger to
produce output y

ogt = TaggerG
(
gt
)

(5)

yt = softmax(ogt ) (6)

2.3 Fusion: NER + gazetteer
To better use information from both modalities, we
investigate two different fusion methods to com-
bine information from NER and gazetteer.

• Early fusion. In Fig. 1a, we concatenate rt
with gt, and feed it into a shared tagger

yt = softmax
(
TaggerRG

(
[rt;gt]

))
(7)

• Late fusion. In Fig. 1b, we directly fuse ort
and ogt by performing element-wise max pool-
ing

yt = softmax
(
max(ort ,o

g
t )
)

(8)

3 Experiments

3.1 Experimental setup
LM pre-training. We continue to pre-train
RoBERTabase (L=12, H=768, A=12) (Liu et al.,
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Table 1: Results on i2b2 (Med, TTP) and DCN (Med, DS).
We report micro-F1 score, each is averaged over 3 random
seeds.

i2b2 DCN
Med TTP Med DS

NER w/o fusion 92.26 87.22 84.51 83.99

Early fusion 92.14 87.42 84.82 84.51
Early fusion + attention 92.44 87.43 84.99 84.47

Late fusion 92.37 87.32 84.84 84.58
Late fusion + attention 92.35 87.41 84.82 84.37

2019b) on MIMIC-III dataset (Johnson et al.,
2016), which comprises deidentified clinical data
from ∼ 60k intensive care unit admissions.

Fine-tuning on clinical NER datasets. We fine-
tune RoBERTamimic and learn a gazetteer model
(w/ NER tagger) from scratch on clinical datasets.

• i2b2 - We use public datasets from the 2009
and 2010 i2b2 challenges for medication
(Med) (Uzuner et al., 2010), and “test, treat-
ment, problem” (TTP) entity extraction. We
follow the original data split from Chalapathy
et al. (2016) of 170 notes for training and 256
for testing.

• De-identified clinical notes (DCN) - Second
dataset (Bhatia et al., 2018) consists of 1,500
de-identified, annotated clinical notes with
medications (Med) and medical conditions
(DS). We follow i2b2 challenge guidelines for
data annotation.

We extract medical condition and drug dictionaries
from UMLS(Bodenreider, 2004) (ontology knowl-
edge graph) based on graph as well semantic mean-
ings. We followed different steps to prune the
dictionaries based on different medical ontologies
such as RxNorm for medication (∼100k concepts),
ICD-10 CM and SNOMED for medical conditions
(∼500k concepts). We employ Inside, Outside, Be-
gin, End and Singleton (IOBES) format for both
tags and gazetteers1.

We minimize the cross-entropy loss during train-
ing and report micro-F1 score at test time. We use
RoBERTamimic as NER encoder and parameterize
Taggers via Multi-layer Perception (MLPs). We
use BertAdam optimizer, learning rate 5e−5, and
dropout 0.1. We tune hyper-parameters d ∈ [2, 12]
(best:8) and w ∈ [2, 10] (best:5) on validation set.

1We do string matching for gazetteers by following (Chiu
and Nichols, 2016). For example, if A, B and AB are all in
gazetteers, we’ll label AB as AB. The basic idea is to start
from bigger spans, so we first check for ABC, if not found
then AB, if not found then A and B.

Table 2: Performance on unseen entity mentions. Models are
trained using 20% training data. We report performance of
Medication in i2b2 Med and Treatment in i2b2 TTP.

Medication Treatment

NER w/o fusion 76.96 72.40
Late fusion w/ attention 81.63 (+4.7) 74.30 (+1.9)

Table 3: Ablation study on individual modules.

R0 RG R R0G

76.23 96.33 90.71 85.75

3.2 Results.

We report overall results in Table 1. We observe
that incorporating name knowledge consistently
boost performance on all datasets by 0.18 ∼ 0.59
micro-F1 gains. Overall, two fusion methods
achieve comparable results.

3.3 Analysis

We investigate the effectiveness of late fusion on
handling three challenges: novel entity mentions,
little data access and interpretability.

3.3.1 Novel entity mentions
New drugs and medical condition come out very
frequently. For example, “remdesivir”and “Barici-
tinib” for COVID-19. To investigate the effect of
late fusion on unseen entity mentions, we focus
on answering questions: whether it can generalize
well on unseen entity mentions, and whether it is
able to correct prediction once novel entity names
are added into gazetteer without re-training?

Zero-shot. We report results on unseen entity
mentions not presented in train and validation sets.
In Table 2, we see that late fusion brings significant
improvement: +4.7 F1 for medication (i2b2 Med)
and +1.9 F1 for Treatment (i2b2 TTP).

“One”-shot in gazetteer. We evaluate the ability
of late fusion to quickly adapt to non-stationary
gazetteers, e.g., specialists might add new entity
mentions into gazetteers or give feedback when
models make incorrect prediction.

For this analysis, we split entity mentions in
training set into two parts: 70% labelled and 30%
in gazetteer, and compare models:

• R0: NER model only

• RG: R + G via late fusion

• R: Unplug G from RG after training

• R0G: Fix R0 and learn G via late fusion

where R is NER model and G is gazetteer model.
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Figure 2: Quick adaptation to non-stationary gazetteers. As
we increase the number of unseen entity mentions included in
gazetteers, the performance goes up without re-training.

Table 4: Cross-evaluation on i2b2 Med and DCN Med. Col-
umn: dataset models are trained on. Row: dataset models are
evaluated on.

i2b2 DCN

i2b2 94.54→ 94.77 68.78→ 69.68
(+0.23) (+0.9)

DCN 59.98→ 60.08 90.02→ 90.71
(+0.1) (+0.69)

In Table 3, we observe that G plays two roles:
(1) R > R0. G can regularize R to gain better
generalization ability, and (2) R0G > R0 and
RG > R. Besides serving as a regularizer, G
provides extra information at test time.

Moreover, we evaluate late fusion by varying
the number of unseen entity mentions included in
gazetteers. In Fig. 2, without re-training models,
late fusion can adapt to new mentions and obtain
linear gains, which enables effective user feedback.

Overall, the ability to detect and adapt to novel
entity mentions, without re-training models, is use-
ful with accelerated growth in drug development as
well as in practical settings where entity extraction
is one of the components to build knowledge graph
and search engines (Wise et al., 2020; Bhatia et al.,
2020). For example, linking new drugs discov-
ered in clinical trails of COVID-19 to standardized
codes in ICD-10 2 or SNOMED 3.

3.3.2 Limited data access
Typically, data accessible to use in the clinical do-
main is quite limited. In this section, we focus on
evaluating fusion model in low-resource settings as
well as investigate whether the gain is transferable
across related datasets. Here we present results
with late fusion methodology.

Low-resource setting We evaluate late fusion by
reducing training data size from 100% to 20%. Fig.
3 shows late fusion gains more when less training

2https://www.cdc.gov/nchs/icd/icd10cm.
htm

3https://www.nlm.nih.gov/healthit/
snomedct/index.html

Figure 3: Accuracy vs. Training data size on i2b2 Med. We
randomly sample 20%, 40%, · · · , 100% of training data and
report micro-F1 score averaged over 3 random seeds.

Table 5: Qualitative examples.

(1) Treated for COPD flare︸ ︷︷ ︸
B-R, I-R

with supplemental DuoNebs

NER w/o fusion B-R, O
Late fusion w/o attention B-R, O
Late fusion w/ attention B-R, I-R

(2) Postop day 0, increase sodium︸ ︷︷ ︸
S-M

, free water added

R: O, G: S-M, RG: S-M

data is present. With 20% training data, late fu-
sion is able to boost performance over the baseline
model by 1.7 micro-F1 on i2b2 Med dataset.

Transfer learning. To verify the generalization
ability of late fusion, we train models on one
dataset and report evaluation on another data
source. We re-train models on i2b2 Med and DCN
Med using common entity types: Dosage, Medica-
tion, Frequency, and Mode. Table.4 shows that the
gains from gazetteer enhanced fusion models are
preserved in i2b2→ DCN and DCN→ i2b2.

3.3.3 Interpretability

Explainable and controllable models are very im-
portant for clinical applications. Unfortunately, it
is extremely challenging for deep neural networks.
We illustrate two qualitative examples in Table.5.
Late fusion models are trained on i2b2 Med using
20% training data.

(1) Late fusion correctly predicts flare as I-R
(Reason) since COPD flare is a Medical
Condition.

(2) By looking into individual predictions from
R and G, we notice that correct prediction is
caused by name knowledge in gazetteers.

Overall, late fusion provides us a tool for diagno-
sis system: to answer questions whether NER or
gazetteer model failed and explain why mentions
belong to a particular entity type.

https://www.cdc.gov/nchs/icd/icd10cm.htm
https://www.cdc.gov/nchs/icd/icd10cm.htm
https://www.nlm.nih.gov/healthit/snomedct/index.html
https://www.nlm.nih.gov/healthit/snomedct/index.html


3295

4 Conclusion

We studied fusion methods to improve NER sys-
tem by leveraging name knowledge from gazetteers.
We did a thorough analysis on the effectiveness of
fusion methods on handling limited data and non-
stationary gazetteers. In addition, we demonstrated
that fusion models are explainable and can be used
to improve NER systems. Future research should
extend our approach to structured knowledge to
further improve NER system and gain better inter-
pretability.
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